1
|
Garg A, Debnath A. Thermodynamic origin of fenugreek phytochemical binding to the ASC pyrin domain for inflammation inhibition. Phys Chem Chem Phys 2025; 27:4211-4221. [PMID: 39912203 DOI: 10.1039/d4cp04644g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is an essential adaptor protein that regulates inflammasome signaling by binding to NOD-like receptor proteins containing pyrin 3 (NLRP3), crucial for the activation of neuroinflammation. Fenugreek phytochemicals are well-known substances with anti-inflammatory properties. The binding interactions of fenugreek phytochemicals toward the ASC pyrin domain (PYD) protein for inflammation inhibition are largely unknown. To this end, all-atom unbiased molecular dynamics simulations that are a total of 58.33 μs long, including absolute binding free energy and umbrella sampling simulations, are performed for unbound and bound ASC-fenugreek complexes. Our calculations reveal that luteolin, one of the flavonoids in fenugreek, previously known to block NLRP3 inflammasome activation and ASC oligomerization, has the strongest binding to ASC among the major phytochemicals, interacting favorably through hydrogen bonds and driven by enthalpic interactions. Electrostatic interactions primarily govern the bindings of flavonoids and alkaloids, whereas van der Waals interactions dictate the binding of saponins. The higher interface water entropy near the binding residues of the ASC-luteolin complex facilitates the binding of luteolin with ASC. The binding residues of ASC toward luteolin, predicted from hydrogen bond occupancy, native contact analyses, and negative binding enthalpy, are similar to those of NLPR3 known from earlier experiments. This suggests that luteolin binding to ASC can potentially block ASC-NLRP3 binding and activation, which regulate inflammatory ASC oligomerization. The study provides insights for governing the binding interactions of fenugreek phytochemicals towards ASC to inhibit inflammasome complex formation, which controls apoptotic signaling pathways, alongside facilitating the drug discovery process for the future.
Collapse
Affiliation(s)
- Avinash Garg
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
2
|
Kumar Y, Basu S, Chatterji D, Ghosh A, Jayaraman N, Maiti PK. Self-Assembly of Mycolic Acid in Water: Monolayer or Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3140-3156. [PMID: 39882987 DOI: 10.1021/acs.langmuir.4c03743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The enduring pathogenicity of Mycobacterium tuberculosis can be attributed to its lipid-rich cell wall, with mycolic acids (MAs) being a significant constituent. Different MAs' fluidity and structural adaptability within the bacterial cell envelope significantly influence their physicochemical properties, operational capabilities, and pathogenic potential. Therefore, an accurate conformational representation of various MAs in aqueous media can provide insights into their potential role within the intricate structure of the bacterial cell wall. We have carried out MD simulations of MAs in an aqueous solution and shed light on various structural properties such as thickness, order parameters, area-per-MAs, conformational changes, and principle component (PC) in the single-component and mixture MAs monolayer. The different conformational populations in the monolayer were estimated using the distance-based analysis between the function groups represented as W, U, and Z conformations that lead to the fold of the MAs chain in the monolayer. Additionally, we have also simulated the mixture of alpha-MA (α-MA or AMA), methoxy-MA (MMA), and keto-MA (KMA) with 50.90% AMA, 36.36% MMA, and 12.72% KMA composition. The thickness of the MAs monolayer was observed to range from 5 to 7 nm with an average 820 kg/m3 density for α-MA, MMA, and KMA quantitative agreement with experimental results. The mero chain (long chain), consisting of a functional group at the proximal and distal positions, tends to fold and exhibit a more disordered phase than the short chain. The keto-MA showed the greatest WUZ total conformations (35.32%) with decreasing trend of eZ > eU > aU > aZ folds in both single component and mixture. Our results are in quantitative agreement with the experimental observations. The sZ folds show the lowest conformational probability in monolayer assembly (0.75% in a single component and 1.1% in a mixture). However, eU and aU folds are most probable for AMA and MMA. One striking observation is the abundance of MA conformers beyond the known WUZ convention because of the wide range distribution of intramolecular distances and change in dihedral angles. From a thermodynamic perspective, all mycolic acid monolayers in this study within the microsecond-long simulation, MA molecules self-assembled, and the self-assembled monolayer was found to be stable. The conformation of MAs corresponding to lower free energy minima in the monolayer gives rise to tighter packing and a highly dense self-assembly. Such a highly packed assembly shows higher resistance for drug permeability. Therefore, we concluded that the monolayer formed by AMA will be more densely packed and may cause more resistance for the drug molecules.
Collapse
Affiliation(s)
- Yogendra Kumar
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Subhadip Basu
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Anirban Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Prabal Kumar Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science (IISc), Bangalore 560012, India
| |
Collapse
|
3
|
Paul A, Chakrabarti J. Dynamics of an aqueous suspension of short hyaluronic acid chains near a DPPC bilayer. Phys Chem Chem Phys 2024. [PMID: 39021115 DOI: 10.1039/d4cp01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synergy between hyaluronic acid (HA) and lipid molecules plays a crucial role in synovial fluids, cell coatings, etc. Diseased cells in cancer and arthritis show changes in HA concentration and chain size, impacting the viscoelastic and mechanical properties of the cells. Although the solution behavior of HA is known in experiments, a molecular-level understanding of the role of HA in the dynamics at the interface of HA-water and the cellular boundary is lacking. Here, we perform atomistic molecular dynamics simulation of short HA chains in an explicit water solvent in the presence of a DPPC bilayer, relevant in pathological cases. We identify a stable interface between HA-water and the bilayer where the water molecules are in contact with the bilayer and the HA chains are located away without any direct contact. Both translation and rotation of the interfacial waters in contact with the lipid bilayer and translation of the HA chains exhibit subdiffusive behavior. The diffusive behavior sets in slightly away from the bilayer, where the diffusion coefficients of water and HA decrease monotonically with increase in HA concentration. On the contrary, the dependence on HA chain size is only marginal due to enhanced chain flexibility as their size increases.
Collapse
Affiliation(s)
- Anirban Paul
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block JD, Sector - III, Salt Lake, Kolkata 700106, India.
| | - Jaydeb Chakrabarti
- Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block JD, Sector - III, Salt Lake, Kolkata 700106, India.
- Department of Chemical and Biological Sciences and the Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
| |
Collapse
|
4
|
Shih KC, Leriche G, Liu CH, He J, John VT, Fang J, Barker JG, Nagao M, Yang L, Yang J, Nieh MP. Antivesiculation and Complete Unbinding of Tail-Tethered Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1688-1697. [PMID: 38186288 DOI: 10.1021/acs.langmuir.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.
Collapse
Affiliation(s)
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jibao He
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - John G Barker
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
5
|
Punia R, Goel G. Free Energy Surface and Molecular Mechanism of Slow Structural Transitions in Lipid Bilayers. J Chem Theory Comput 2023; 19:8245-8257. [PMID: 37947833 DOI: 10.1021/acs.jctc.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Lipid membrane remodeling, crucial for many cellular processes, is governed by the coupling of membrane structure and shape fluctuations. Given the importance of the ∼ nm length scale, details of the transition intermediates for conformational change are not fully captured by a continuum-mechanical description. Slow dynamics and the lack of knowledge of reaction coordinates (RCs) for biasing methods pose a challenge for all-atom (AA) simulations. Here, we map system dynamics on Langevin dynamics in a normal mode space determined from an elastic network model representation for the lipid-water Hamiltonian. AA molecular dynamics (MD) simulations are used to determine model parameters, and Langevin dynamics predictions for bilayer structural, mechanical, and dynamic properties are validated against MD simulations and experiments. Transferability to describe the dynamics of a larger lipid bilayer and a heterogeneous membrane-protein system is assessed. A set of generic RCs for pore formation in two tensionless bilayers is obtained by coupling Langevin dynamics to the underlying energy landscape for membrane deformations. Structure evolution is carried out by AA MD, wherein the generic RCs are used in a path metadynamics or an umbrella sampling simulation to determine the thermodynamics of pore formation and its molecular determinants, such as the role of distinct bilayer motions, lipid solvation, and lipid packing.
Collapse
Affiliation(s)
- Rajat Punia
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Yang L, Guo S, Hou C, Jiang S, Shi L, Ma X, Zheng B, Fang Y, Ye L, He X. Low-Entropy Hydration Shells at the Spike RBD's Binding Site May Reveal the Contagiousness of SARS-CoV-2 Variants. Biomolecules 2023; 13:1628. [PMID: 38002310 PMCID: PMC10669249 DOI: 10.3390/biom13111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
The infectivity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is primarily determined by the binding affinity between the receptor-binding domain (RBD) of the spike protein and the angiotensin-converting enzyme 2 (ACE2) receptor. Here, through screening off pseudo hydrophilic groups on protein surfaces, the distribution of low-entropy regions on hydration shells of the ACE2 receptor and the RBDs of multiple SARS-CoV-2 variants was demonstrated. Shape matching between the low-entropy hydration shells of multiple SARS-CoV-2 variants and the ACE2 receptor has been identified as a mechanism that drives hydrophobic attraction between the RBDs and the ACE2 receptor, which estimates the binding affinity. Low-entropy regions of the hydration shells, which play important roles in determining the binding of other viruses and their receptors, are demonstrated. The RBD-ACE2 binding is thus found to be guided by hydrophobic collapse between the shape-matched low-entropy regions of the hydration shells of the proteins. A measure of the low-entropy status of the hydration shells can be estimated by calculating genuine hydrophilic groups within the binding sites. An important indicator of the contagiousness of SARS-CoV-2 variants is the low-entropy level of its hydration shells at the spike protein binding site.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Chengyu Hou
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China;
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150001, China;
| | - Yi Fang
- Department of Mathematics, Nanchang University, Nanchang 330031, China;
| | - Lin Ye
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; (S.G.); (S.J.); (L.S.); (X.M.)
- Shenzhen STRONG Advanced Materials Research Institute Co., Ltd., Shenzhen 518035, China
| |
Collapse
|
7
|
Filipecka-Szymczyk K, Makowska-Janusik M, Marczak W. Molecular Dynamics Simulation of Hydrogels Based on Phosphorylcholine-Containing Copolymers for Soft Contact Lens Applications. Molecules 2023; 28:6562. [PMID: 37764338 PMCID: PMC10535866 DOI: 10.3390/molecules28186562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The structure and dynamics of copolymers of 2-hydroxyethyl methacrylate (HEMA) with 2-methacryloyloxyethyl phosphorylcholine (MPC) were studied by molecular dynamics simulations. In total, 20 systems were analyzed. They differed in numerical fractions of the MPC in the copolymer chain, equal to 0.26 and 0.74, in the sequence of mers, block and random, and the water content, from 0 to 60% by mass. HEMA side chains proved relatively rigid and stable in all considered configurations. MPC side chains, in contrast, were mobile and flexible. Water substantially influenced their dynamics. The copolymer swelling caused by water resulted in diffusion channels, pronounced in highly hydrated systems. Water in the hydrates existed in two states: those that bond to the polymer chain and the free one; the latter was similar to bulk water but with a lower self-diffusion coefficient. The results proved that molecular dynamics simulations could facilitate the preliminary selection of the polymer materials for specific purposes before their synthesis.
Collapse
Affiliation(s)
| | | | - Wojciech Marczak
- Faculty of Science and Technology, Jan Dlugosz University, Al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland; (K.F.-S.); (M.M.-J.)
| |
Collapse
|
8
|
Yang L, Guo S, Liao C, Hou C, Jiang S, Li J, Ma X, Shi L, Ye L, He X. Spatial Layouts of Low-Entropy Hydration Shells Guide Protein Binding. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300022. [PMID: 37483413 PMCID: PMC10362119 DOI: 10.1002/gch2.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/29/2023] [Indexed: 07/25/2023]
Abstract
Protein-protein binding enables orderly biological self-organization and is therefore considered a miracle of nature. Protein‒protein binding is driven by electrostatic forces, hydrogen bonding, van der Waals force, and hydrophobic interactions. Among these physical forces, only hydrophobic interactions can be considered long-range intermolecular attractions between proteins due to the electrostatic shielding of surrounding water molecules. Low-entropy hydration shells around proteins drive hydrophobic attraction among them that essentially coordinate protein‒protein binding. Here, an innovative method is developed for identifying low-entropy regions of hydration shells of proteins by screening off pseudohydrophilic groups on protein surfaces and revealing that large low-entropy regions of the hydration shells typically cover the binding sites of individual proteins. According to an analysis of determined protein complex structures, shape matching between a large low-entropy hydration shell region of a protein and that of its partner at the binding sites is revealed as a universal law. Protein‒protein binding is thus found to be mainly guided by hydrophobic collapse between the shape-matched low-entropy hydration shells that is verified by bioinformatics analyses of hundreds of structures of protein complexes, which cover four test systems. A simple algorithm is proposed to accurately predict protein binding sites.
Collapse
Affiliation(s)
- Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- School of AerospaceMechanical and Mechatronic EngineeringThe University of SydneyNSW2006Australia
| | - Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chenchen Liao
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Chengyu Hou
- School of Electronics and Information EngineeringHarbin Institute of TechnologyHarbin150080P. R. China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Jiacheng Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lin Ye
- School of System Design and Intelligent ManufacturingSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special EnvironmentsCenter for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
- Shenzhen STRONG Advanced Materials Research Institute Co., LtdShenzhen518035P. R. China
| |
Collapse
|
9
|
Diaz A, Ramakrishnan V. Effect of osmolytes on the EcoRI endonuclease: Insights into hydration and protein dynamics from molecular dynamics simulations. Comput Biol Chem 2023; 105:107883. [PMID: 37210944 DOI: 10.1016/j.compbiolchem.2023.107883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Osmolytes play an important role in cellular physiology by modulating the properties of proteins, including their molecular specificity. EcoRI is a model restriction enzyme whose specificity to DNA is altered in the presence of osmolytes. Here, we investigate the effect of two different osmolytes, glycerol and DMSO, on the dynamics and hydration of the EcoRI enzyme using molecular dynamics simulations. Our results show that the osmolytes, alter the essential dynamics of EcoRI. Particularly, we observe that the dynamics of the arm region of EcoRI which is involved in DNA binding is significantly altered. In addition, conformational free energy analyses reveals that the osmolytes bring about a change in the landscape similar to that of EcoRI bound to cognate DNA. We further observe that the hydration of the enzyme for each of the osmolyte is different, indicating that the mechanism of action of each of these osmolytes could be different. Further analyses of interfacial water dynamics using rotational autocorrelation function reveals that while the protein surface contributes to a slower tumbling motion of water, osmolytes, additionally contribute to the slowing of the angular motion of the water molecules. Entropy analysis also corroborates with this finding. We also find that the slowed rotational motion of interfacial waters in the presence of osmolytes contributes to a slowed relaxation of the hydrogen bonds between the interfacial waters and the functionally important residues in the protein. Taken together, our results show that osmolytes alter the dynamics of the protein by altering the dynamics of water. This altered dynamics, mediated by the changes in the water dynamics and hydrogen bonds with functionally important residues, may contribute to the altered specificity of EcoRI in the presence of osmolytes.
Collapse
Affiliation(s)
- Aathithya Diaz
- Computational Molecular Biophysics Laboratory, Bioinformatics Center, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India
| | - Vigneshwar Ramakrishnan
- Computational Molecular Biophysics Laboratory, Bioinformatics Center, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur 613401, Tamil Nadu, India.
| |
Collapse
|
10
|
Miyajima A, Nakao H, Ikeda K, Nakano M. The Nanometer-Scale Proximity of Bilayers Facilitates Intermembrane Lipid Transfer. J Phys Chem Lett 2023; 14:4172-4178. [PMID: 37114850 DOI: 10.1021/acs.jpclett.3c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biological membranes approach one another in various biological phenomena, such as lipid transport at membrane contact sites and membrane fusion. The proximity of two bilayers may cause environmental changes in the interbilayer space and alter the dynamics of lipid molecules. Here, we investigate the structure and dynamics of vesicles aggregated due to the depletion attraction caused by polyethylene glycol (PEG) through static and dynamic small-angle neutron scattering. Manipulation of the interbilayer distance using PEG-conjugated lipids reveals that lipid molecules rapidly transfer between vesicles when the opposing bilayers are within ∼2 nm of each other. This distance corresponds to a region in which water molecules are more structured than in bulk water. Kinetic analysis suggests that the decrease in water entropy is responsible for the progression of lipid transfer. These results provide a basis for understanding the dynamic function of biomembranes in confined regions.
Collapse
Affiliation(s)
- Ayari Miyajima
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Malik S, Karmakar S, Debnath A. Quantifying dynamical heterogeneity length scales of interface water across model membrane phase transitions. J Chem Phys 2023; 158:091103. [PMID: 36889951 DOI: 10.1063/5.0137727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
All-atom molecular dynamics simulations of 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipid membranes reveal a drastic growth in the heterogeneity length scales of interface water (IW) across fluid to ripple to gel phase transitions. It acts as an alternate probe to capture the ripple size of the membrane and follows an activated dynamical scaling with the relaxation time scale solely within the gel phase. The results quantify the mostly unknown correlations between the spatiotemporal scales of the IW and membranes at various phases under physiological and supercooled conditions.
Collapse
Affiliation(s)
- Sheeba Malik
- Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan, India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Ananya Debnath
- Department of Chemistry, IIT Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
12
|
Kalayan J, Chakravorty A, Warwicker J, Henchman RH. Total free energy analysis of fully hydrated proteins. Proteins 2023; 91:74-90. [PMID: 35964252 PMCID: PMC10087023 DOI: 10.1002/prot.26411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/15/2022]
Abstract
The total free energy of a hydrated biomolecule and its corresponding decomposition of energy and entropy provides detailed information about regions of thermodynamic stability or instability. The free energies of four hydrated globular proteins with different net charges are calculated from a molecular dynamics simulation, with the energy coming from the system Hamiltonian and entropy using multiscale cell correlation. Water is found to be most stable around anionic residues, intermediate around cationic and polar residues, and least stable near hydrophobic residues, especially when more buried, with stability displaying moderate entropy-enthalpy compensation. Conversely, anionic residues in the proteins are energetically destabilized relative to singly solvated amino acids, while trends for other residues are less clear-cut. Almost all residues lose intraresidue entropy when in the protein, enthalpy changes are negative on average but may be positive or negative, and the resulting overall stability is moderate for some proteins and negligible for others. The free energy of water around single amino acids is found to closely match existing hydrophobicity scales. Regarding the effect of secondary structure, water is slightly more stable around loops, of intermediate stability around β strands and turns, and least stable around helices. An interesting asymmetry observed is that cationic residues stabilize a residue when bonded to its N-terminal side but destabilize it when on the C-terminal side, with a weaker reversed trend for anionic residues.
Collapse
Affiliation(s)
- Jas Kalayan
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Arghya Chakravorty
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jim Warwicker
- Manchester Institute of Biotechnology and School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Richard H Henchman
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Sharma GP, Meyer AC, Habeeb S, Karbach M, Müller G. Free-energy landscapes and insertion pathways for peptides in membrane environment. Phys Rev E 2022; 106:014404. [PMID: 35974613 DOI: 10.1103/physreve.106.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Free-energy landscapes for short peptides-specifically for variants of the pH low insertion peptide (pHLIP)-in the heterogeneous environment of a lipid bilayer or cell membrane are constructed, taking into account a set of dominant interactions and the conformational preferences of the peptide backbone. Our methodology interprets broken internal H-bonds along the backbone of a polypeptide as statistically interacting quasiparticles, activated from the helix reference state. The favored conformation depends on the local environment (ranging from polar to nonpolar), specifically on the availability of external H-bonds (with H_{2}O molecules or lipid headgroups) to replace internal H-bonds. The dominant side-chain contribution is accounted for by residue-specific transfer free energies between polar and nonpolar environments. The free-energy landscape is sensitive to the level of pH in the aqueous environment surrounding the membrane. For high pH, we identify pathways of descending free energy that suggest a coexistence of membrane-adsorbed peptides with peptides in solution. A drop in pH raises the degree of protonation of negatively charged residues and thus increases the hydrophobicity of peptide segments near the C terminus. For low pH, we identify insertion pathways between the membrane-adsorbed state and a stable trans-membrane state with the C terminus having crossed the membrane.
Collapse
Affiliation(s)
- Ganga P Sharma
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Aaron C Meyer
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Suhail Habeeb
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | - Michael Karbach
- Fachgruppe Physik, Bergische Universität Wuppertal, D-42097 Wuppertal, Germany
| | - Gerhard Müller
- Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA
| |
Collapse
|
14
|
Qi X, Jin B, Cai B, Yan F, De Yoreo J, Chen CL, Pfaendtner J. Molecular Driving Force for Facet Selectivity of Sequence-Defined Amphiphilic Peptoids at Au-Water Interfaces. J Phys Chem B 2022; 126:5117-5126. [PMID: 35763341 DOI: 10.1021/acs.jpcb.2c02638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shape-controlled colloidal nanocrystal syntheses often require facet-selective solution-phase chemical additives to regulate surface free energy, atom addition/migration fluxes, or particle attachment rates. Because of their highly tunable properties and robustness to a wide range of experimental conditions, peptoids represent a very promising class of next-generation functional additives for control over nanocrystal growth. However, understanding the origin of facet selectivity at the molecular level is critical to generalizing their design. Herein we employ molecular dynamics simulations and biased sampling methods and report stronger selectivity to Au(111) than to Au(100) for Nce3Ncp6, a peptoid that has been shown to assist the formation of 5-fold twinned Au nanostars. We find that facet selectivity is achieved through synergistic effects of both peptoid-surface and solvent-surface interactions. Moreover, the amphiphilic nature of Nce3Ncp6 together with the order of peptoid-peptoid and peptoid-surface binding energies, that is, peptoid-Au(100) < peptoid-peptoid < peptoid-Au(111), further amplifies its distinct collective behavior on different Au surfaces. Our studies provide a fundamental understanding of the molecular origin of facet-selective adsorption and highlight the possibility of future designs and uses of sequence-defined peptoids for predictive syntheses of nanocrystals with designed shapes and properties.
Collapse
Affiliation(s)
- Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Biao Jin
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bin Cai
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Feng Yan
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - James De Yoreo
- Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.,Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jim Pfaendtner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Physical Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
15
|
Singh O, Das BK, Chakraborty D. Influence of ion specificity and concentration on the conformational transition of intrinsically disordered sheep prion peptide. Chemphyschem 2022; 23:e202200211. [PMID: 35621322 DOI: 10.1002/cphc.202200211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/26/2022] [Indexed: 11/12/2022]
Abstract
The structural sensitivity of the IDPs with the ions has been observed experimentally; however, it is still unclear how the presence of different metal ions affects structural stability. We performed atomistic molecular dynamics simulation of sheep prion peptide (142-167) in presence of different monovalent, divalent ions at various concentrations to find out the effect of the size, charge, and ionic concentration on the structure of the peptide. It is found that Li + ions have a higher survival probability compared to Na + , K + and Mg2 + affecting the solvation structure of the protein leading to the alpha-helix structure. At high concentration, due to the increase in the ion-solvent and ion-counter interactions, the effect of the ions is screened on the surface of the protein and hence no ion specificity is observed. This study demonstrates how ions can be used to regulate the protein structure and function that can help in designing drugs.
Collapse
Affiliation(s)
- Omkar Singh
- National Institute of Technology Karnataka, Chemistry, INDIA
| | | | - Debashree Chakraborty
- National Institute of Technology Karnataka, Chemistry, Department of Chemistry, Science Block, NIT K Surathkal, 575025, Mangalore, INDIA
| |
Collapse
|
16
|
Malik S, Debnath A. Structural Changes of Interfacial Water upon Fluid-Ripple-Gel Phase Transitions of Bilayers. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Santra S, Jana M. Influence of Aqueous Arginine Solution on Regulating Conformational Stability and Hydration Properties of the Secondary Structural Segments of a Protein at Elevated Temperatures: A Molecular Dynamics Study. J Phys Chem B 2022; 126:1462-1476. [PMID: 35147426 DOI: 10.1021/acs.jpcb.1c09583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects of aqueous arginine solution on the conformational stability of the secondary structural segments of a globular protein, ubiquitin, and the structure and dynamics of the surrounding water and arginine were examined by performing atomistic molecular dynamics (MD) simulations. Attempts have been made to identify the osmolytic efficacy of arginine solution, and its influence in guiding the hydration properties of the protein at an elevated temperature of 450 K. The similar properties of the protein in pure water at elevated temperatures were computed and compared. Replica exchange MD simulation was performed to explore the arginine solution's sensitivity in stabilizing the protein conformations for a wide range of temperatures (300-450 K). It was observed that although all the helices and strands of the protein undergo unfolding at elevated temperature in pure water, they exhibited native-like conformational dynamics in the presence of arginine at both ambient and elevated temperatures. We find that the higher free energy barrier between the folded native and unfolded states of the protein primarily arises from the structural transformation of α-helix, relative to the strands. Our study revealed that the water structure around the secondary segments depends on the nature of amino acid compositions of the helices and strands. The reorientation of water dipoles around the helices and strands was found hindered due to the presence of arginine in the solution; such hindrance reduces the possibility of exchange of hydrogen bonds that formed between the secondary segments of protein and water (PW), and as a result, PW hydrogen bonds take longer time to relax than in pure water. On the other hand, the origin of slow relaxation of protein-arginine (PA) hydrogen bonds was identified to be due to the presence of different types of protein-bound arginine molecules, where arginine interacts with the secondary structural segments of the protein through multiple/bifurcated hydrogen bonds. These protein-bound arginine formed different kinds of bridged PA hydrogen bonds between amino acid residues of the same secondary segments or among multiple bonds and helped protein to conserve its native folded form firmly.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
18
|
Rajasekaran M, Ayappa G. Influence of the extent of hydrophobicity on water organization and dynamics on 2D graphene oxide surfaces. Phys Chem Chem Phys 2022; 24:14909-14923. [DOI: 10.1039/d1cp03962h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Graphene oxide (GO) nanomaterials are being extensively explored for a wide spectrum of applications, ranging from water desalination to fuel cell applications due to their tunable mechanical, thermal, and electrical...
Collapse
|
19
|
Pal S, Chattopadhyay A. Hydration Dynamics in Biological Membranes: Emerging Applications of Terahertz Spectroscopy. J Phys Chem Lett 2021; 12:9697-9709. [PMID: 34590862 DOI: 10.1021/acs.jpclett.1c02576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Water drives the spontaneous self-assembly of lipids and proteins into quasi two-dimensional biological membranes that act as catalytic scaffolds for numerous processes central to life. However, the functional relevance of hydration in membrane biology is only beginning to be addressed, predominantly because of challenges associated with direct measurements of hydration microstructure and dynamics in a biological milieu. Our recent work on the novel interplay of membrane electrostatics and crowding in shaping membrane hydration dynamics utilizing terahertz (THz) spectroscopy represents an important step in this context. In this Perspective, we provide a glimpse into the ever-broadening functional landscape of hydration dynamics in biological membranes in the backdrop of the unique physical chemistry of water molecules. We further highlight the immense (and largely untapped) potential of the THz toolbox in addressing contemporary problems in membrane biology, while emphasizing the adaptability of the analytical framework reported recently by us to such studies.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
20
|
Malik S, Debnath A. Dehydration induced dynamical heterogeneity and ordering mechanism of lipid bilayers. J Chem Phys 2021; 154:174904. [PMID: 34241050 DOI: 10.1063/5.0044614] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the influence of dehydration on the membrane structure is crucial to control membrane functionality related to domain formation and cell fusion under anhydrobiosis conditions. To this end, we perform all-atom molecular dynamic simulations of 1,2-dimyristoyl-sn-glycero-3-phosphocholine dimyristoylphosphatidylcholine lipid membranes at different hydration levels at 308 K. As dehydration increases, the lipid area per head group decreases with an increase in bilayer thickness and lipid order parameters indicating bilayer ordering. Concurrently, translational and rotational dynamics of interfacial water (IW) molecules near membranes slow down. On the onset of bilayer ordering, the IW molecules exhibit prominent features of dynamical heterogeneity evident from non-Gaussian parameters and one-dimensional van Hove correlation functions. At a fully hydrated state, diffusion constants (D) of the IW follow a scaling relation, D∼τα -1, where the α relaxation time (τα) is obtained from self-intermediate scattering functions. However, upon dehydration, the relation breaks and the D of the IW follows a power law behavior as D∼τα -0.57, showing the signature of glass dynamics. τα and hydrogen bond lifetime calculated from intermittent hydrogen bond auto-correlation functions undergo a similar crossover in association with bilayer ordering on dehydration. The bilayer ordering is accompanied with an increase in fraction of caged lipids spanned over the bilayer surface and a decrease in fraction of mobile lipids due to the non-diffusive dynamics. Our analyses reveal that the microscopic mechanism of lipid ordering by dehydration is governed by dynamical heterogeneity. The fundamental understanding from this study can be applied to complex bio-membranes to trap functionally relevant gel-like domains at room temperature.
Collapse
Affiliation(s)
- Sheeba Malik
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Rajasthan, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Rajasthan, India
| |
Collapse
|
21
|
Päslack C, Das CK, Schlitter J, Schäfer LV. Spectrally Resolved Estimation of Water Entropy in the Active Site of Human Carbonic Anhydrase II. J Chem Theory Comput 2021; 17:5409-5418. [PMID: 34259506 DOI: 10.1021/acs.jctc.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A major challenge in understanding ligand binding to biomacromolecules lies in dissecting the underlying thermodynamic driving forces at the atomic level. Quantifying the contributions of water molecules is often especially demanding, although they can play important roles in biomolecular recognition and binding processes. One example is human carbonic anhydrase II, whose active site harbors a conserved network of structural water molecules that are essential for enzymatic catalysis. Inhibitor binding disrupts this water network and changes the hydrogen-bonding patterns in the active site. Here, we use atomistic molecular dynamics simulations to compute the absolute entropy of the individual water molecules confined in the active site of hCAII using a spectrally resolved estimation (SRE) approach. The entropy decrease of water molecules that remain in the active site upon binding of a dorzolamide inhibitor is caused by changes in hydrogen bonding and stiffening of the hydrogen-bonding network. Overall, this entropy decrease is overcompensated by the gain due to the release of three water molecules from the active site upon inhibitor binding. The spectral density calculations enable the assignment of the changes to certain vibrational modes. In addition, the range of applicability of the SRE approximation is systematically explored by exploiting the gradually changing degree of immobilization of water molecules as a function of the distance to a phospholipid bilayer surface, which defines an "entropy ruler". These results demonstrate the applicability of SRE to biomolecular solvation, and we expect it to become a useful method for entropy calculations in biomolecular systems.
Collapse
Affiliation(s)
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
22
|
Majumdar J, Moid M, Dasgupta C, Maiti PK. Dielectric Profile and Electromelting of a Monolayer of Water Confined in Graphene Slit Pore. J Phys Chem B 2021; 125:6670-6680. [PMID: 34107687 DOI: 10.1021/acs.jpcb.1c02266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A monolayer of water confined between two parallel graphene sheets exists in many different phases and exhibits fascinating dielectric properties that have been studied in experiments. In this work, we use molecular dynamics simulations to study how the dielectric properties of a confined monolayer of water is affected by its structure. We consider six of the popular nonpolarizable water models-SPC/E, SPC/Fw, TIP3P, TIP3P_M (modified), TIP4P-2005, and TIP4P-2005f-and find that the in-plane structure of the water molecules at ambient temperature and pressure is strongly dependent on the water model: all the 3-point water models considered here show square ice formation, whereas no such structural ordering is observed for the 4-point water models. This allows us to investigate the role of the in-plane structure of the water monolayer on its dielectric profile. Our simulations show an anomalous perpendicular dielectric constant compared to the bulk, and the models that do not exhibit ice formation show very different dielectric response along the channel width compared to models that exhibit square ice formation. We also demonstrate the occurrence of electromelting of the in-plane ordered water under the application of a perpendicular electric field and find that the critical field for electromelting strongly depends on the water model. Together, we have shown the dependence of confined water properties on the different water structures that it may take when sandwiched between bilayer graphene. These remarkable properties of confined water can be exploited in various nanofluidic devices, artificial ion channels, and molecular sieving.
Collapse
Affiliation(s)
- Jeet Majumdar
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Mohd Moid
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.,International Centre for Theoretical Sciences, Bangalore 560089, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
23
|
Santra S, Dhurua S, Jana M. Analyzing the driving forces of insulin stability in the basic amino acid solutions: A perspective from hydration dynamics. J Chem Phys 2021; 154:084901. [PMID: 33639734 DOI: 10.1063/5.0038305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Amino acids having basic side chains, as additives, are known to increase the stability of native-folded state of proteins, but their relative efficiency and the molecular mechanism are still controversial and obscure as well. In the present work, extensive atomistic molecular dynamics simulations were performed to investigate the hydration properties of aqueous solutions of concentrated arginine, histidine, and lysine and their comparative efficiency on regulating the conformational stability of the insulin monomer. We identified that in the aqueous solutions of the free amino acids, the nonuniform relaxation of amino acid-water hydrogen bonds was due to the entrapment of water molecules within the amino acid clusters formed in solutions. Insulin, when tested with these solutions, was found to show rigid conformations, relative to that in pure water. We observed that while the salt bridges formed by the lysine as an additive contributed more toward the direct interactions with insulin, the cation-π was more prominent for the insulin-arginine interactions. Importantly, it was observed that the preferentially more excluded arginine, compared to histidine and lysine from the insulin surface, enriches the hydration layer of the protein. Our study reveals that the loss of configurational entropy of insulin in arginine solution, as compared to that in pure water, is more as compared to the entropy loss in the other two amino acid solutions, which, moreover, was found to be due to the presence of motionally bound less entropic hydration water of insulin in arginine solution than in histidine or lysine solution.
Collapse
Affiliation(s)
- Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Shakuntala Dhurua
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
24
|
Venkatraman RK, Baiz CR. Ultrafast Dynamics at the Lipid-Water Interface: DMSO Modulates H-Bond Lifetimes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6502-6511. [PMID: 32423219 DOI: 10.1021/acs.langmuir.0c00870] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dimethyl sulfoxide (DMSO) is a common cosolvent and cryopreservation agent used to freeze cells and tissues. DMSO alters the H-bond structure of water, but its interactions with biomolecules and, specifically, with biological interfaces remain poorly understood. Here we investigate the effects of DMSO on the H-bond dynamics at the lipid-water interface using a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations. Ester carbonyl absorption spectra show that DMSO dehydrates the interface, and simulations show that the area per lipid is decreased. Ultrafast 2D IR spectra measure the time scales of frequency fluctuations at the ester carbonyl positions located precisely between the hydrophobic and hydrophilic regions of the membrane. 2D IR measurements show that low DMSO concentrations (<10 mol %) induce ∼40% faster H-bond dynamics compared with pure water, whereas increased concentrations (>10-20 mol %) once again slow down the dynamics. This slow-fast-slow trend is described in terms of two different solvation regimes. Below 10 mol %, DMSO weakens the interfacial H bond, leading to faster "bulk-like" dynamics, whereas above 10 mol %, water molecules become "relatively immobilized" as the H-bond networks becoming disrupted by the H-bond donor/acceptor imbalance at the interface. These studies are an important step toward characterizing the environments around lipid membranes, which are essential to numerous biological processes.
Collapse
Affiliation(s)
- Ravi Kumar Venkatraman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
25
|
Carlson S, Brünig FN, Loche P, Bonthuis DJ, Netz RR. Exploring the Absorption Spectrum of Simulated Water from MHz to Infrared. J Phys Chem A 2020; 124:5599-5605. [DOI: 10.1021/acs.jpca.0c04063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shane Carlson
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Florian N. Brünig
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Philip Loche
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Douwe Jan Bonthuis
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Roland R. Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
26
|
Deplazes E, Sarrami F, Poger D. Effect of H3O+ on the Structure and Dynamics of Water at the Interface with Phospholipid Bilayers. J Phys Chem B 2020; 124:1361-1373. [DOI: 10.1021/acs.jpcb.9b10169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- School of Pharmacy and Biomedical Sciences, Curtin Institute for Computation, Curtin University, Perth, Western Australia 6845, Australia
| | - Farzaneh Sarrami
- School of Chemistry and Biochemistry, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - David Poger
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
27
|
M R, Ayappa KG. Influence of surface hydrophilicity and hydration on the rotational relaxation of supercooled water on graphene oxide surfaces. Phys Chem Chem Phys 2020; 22:16080-16095. [DOI: 10.1039/d0cp01515f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The presence of a bulk water film influences the dynamical transitions of supercooled water on graphene oxide surfaces.
Collapse
Affiliation(s)
- Rajasekaran M
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore
- India
| | - K. Ganapathy Ayappa
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore
- India
- Centre for Biosystems Science and Engineering
| |
Collapse
|
28
|
Srivastava A, Malik S, Karmakar S, Debnath A. Dynamic coupling of a hydration layer to a fluid phospholipid membrane: intermittency and multiple time-scale relaxations. Phys Chem Chem Phys 2020; 22:21158-21168. [DOI: 10.1039/d0cp02803g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the coupling of a hydration layer and a lipid membrane is crucial to gaining access to membrane dynamics and understanding its functionality towards various biological processes.
Collapse
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| | - Sheeba Malik
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences
- Tata Institute of Fundamental Research
- Hyderabad 500107
- India
| | - Ananya Debnath
- Department of Chemistry
- Indian Institute of Technology Jodhpur
- Rajasthan
- India
| |
Collapse
|
29
|
Tiwari A, Honingh C, Ensing B. Accurate calculation of zero point energy from molecular dynamics simulations of liquids and their mixtures. J Chem Phys 2019; 151:244124. [PMID: 31893925 DOI: 10.1063/1.5131145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The two-phase thermodynamic (2PT) method is used to compute the zero point energy (ZPE) of several liquids and their mixtures. The 2PT method uses the density of states (DoS), which is computed from the velocity autocorrelation (VAC) function obtained from a short classical molecular dynamics trajectory. By partitioning the VAC and the DoS of a fluid into solid and gaslike components, quantum mechanical corrections to thermodynamical properties can be computed. The ZPE is obtained by combining the partition function of the quantum harmonic oscillator with the vibrational part of the solidlike DoS. The resulting ZPE is found to be in excellent agreement with both experimental and ab initio results. Solvent effects such as hydrogen bonding and polarization can be included by the utilization of ab initio density functional theory based molecular dynamics simulations. It is found that these effects significantly influence the DoS of water molecules. The obtained results demonstrate that the 2PT model is a powerful method for efficient ZPE calculations, in particular, to account for solvent effects and polarization.
Collapse
Affiliation(s)
- A Tiwari
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - C Honingh
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B Ensing
- Van't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
30
|
Srivastava A, Karmakar S, Debnath A. Quantification of spatio-temporal scales of dynamical heterogeneity of water near lipid membranes above supercooling. SOFT MATTER 2019; 15:9805-9815. [PMID: 31746927 DOI: 10.1039/c9sm01725a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A hydrated 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) lipid membrane is investigated using an all atom molecular dynamics simulation at 308 K to determine the physical sources of universal slow relaxations of hydration layers and length-scale of the spatially heterogeneous dynamics. Continuously residing interface water (IW) molecules hydrogen bonded to different moieties of lipid heads in the membrane are identified. The non-Gaussian parameters of all classes of IW molecules show a cross-over from cage vibration to translational diffusion. A significant non-Gaussianity is observed for the IW molecules exhibiting large length correlations in translational van Hove functions. Two time-scales for the ballistic motions and hopping transitions are obtained from the self intermediate scattering functions of the IW molecules with an additional long relaxation, which disappears for bulk water. The long relaxation time-scales for the IW molecules obtained from the self intermediate scattering functions are in good accordance with the hydrogen bond relaxation time-scales irrespective of the nature of the chemical confinement and the confinement lifetime. Employing a block analysis approach, the length-scale of dynamical heterogeneities is captured from a transition from non-Gaussianity to Gaussianity in van Hove correlation functions of the IW molecules. The heterogeneity length-scale is comparable to the wave-length of the small and weak undulations of the membrane calculated by Fourier transforms of lipid tilts. This opens up a new avenue towards a possible correlation between heterogeneity length-scale and membrane curvature more significant for rippled membranes. Thus, our analyses provide a measure towards the spatio-temporal scale of dynamical heterogeneity of confined water near membranes.
Collapse
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur 342037, India.
| | | | | |
Collapse
|
31
|
Chari SSN, Dasgupta C, Maiti PK. Scalar activity induced phase separation and liquid-solid transition in a Lennard-Jones system. SOFT MATTER 2019; 15:7275-7285. [PMID: 31490527 DOI: 10.1039/c9sm00962k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report scalar activity induced phase separation and crystallization in a system of 3-d Lennard-Jones particles taken at state points spanning from the gas to the liquid regime using molecular dynamics simulation (MD). Scalar activity was introduced by increasing the temperature of half of the particles (labeled 'hot') while keeping the temperature of the other half constant at a lower value (labeled 'cold'). The relative temperature difference between the two subsystems is considered as a measure of the activity. From our simulations we observe that the two species tend to phase separate at sufficiently high activity ratio. The extent of separation is quantified by the defined order parameter and the entropy production during this process is determined by employing the two-phase thermodynamic (2PT) model and the standard modified Benedict-Webb-Rubin (MBWR) equation of state for a LJ fluid. We observe that the extent of the phase separation and entropy production increases with the density of the system. From a cluster analysis, we obtain the mean number of clusters ncl, and the mean size of the largest cluster n0 in the system, complementing each other. Bond orientation order parameters reveal that the so formed largest cluster also develops solid-like order consisting of both FCC and HCP packing. The presence of such crystalline order is also supported by a common neighbor analysis.
Collapse
Affiliation(s)
- S Siva Nasarayya Chari
- Department of Physics, Indian Institute of Science, C. V. Raman Ave, Bengaluru 560012, India.
| | | | | |
Collapse
|
32
|
Heterogeneity in structure and dynamics of water near bilayers using TIP3P and TIP4P/2005 water models. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.110396] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
How B-DNA Dynamics Decipher Sequence-Selective Protein Recognition. J Mol Biol 2019; 431:3845-3859. [DOI: 10.1016/j.jmb.2019.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022]
|
34
|
Oh MI, Gupta M, Weaver DF. Understanding Water Structure in an Ion-Pair Solvation Shell in the Vicinity of a Water/Membrane Interface. J Phys Chem B 2019; 123:3945-3954. [DOI: 10.1021/acs.jpcb.9b01331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myong In Oh
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario M5T 0S8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario M5G 2C4, Canada
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
35
|
Cai X, Xie WJ, Yang Y, Long Z, Zhang J, Qiao Z, Yang L, Gao YQ. Structure of water confined between two parallel graphene plates. J Chem Phys 2019; 150:124703. [DOI: 10.1063/1.5080788] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xiaoxia Cai
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Wen Jun Xie
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Ying Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhuoran Long
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhuoran Qiao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
36
|
M R, Ayappa KG. Enhancing the Dynamics of Water Confined between Graphene Oxide Surfaces with Janus Interfaces: A Molecular Dynamics Study. J Phys Chem B 2019; 123:2978-2993. [DOI: 10.1021/acs.jpcb.8b12341] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
37
|
Päslack C, Schäfer LV, Heyden M. Atomistic characterization of collective protein–water–membrane dynamics. Phys Chem Chem Phys 2019; 21:15958-15965. [DOI: 10.1039/c9cp00725c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water mediates correlated vibrations of atoms of protein and membrane bilayer surfaces.
Collapse
Affiliation(s)
- Christopher Päslack
- Center for Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Matthias Heyden
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| |
Collapse
|
38
|
Päslack C, Smith JC, Heyden M, Schäfer LV. Hydration-mediated stiffening of collective membrane dynamics by cholesterol. Phys Chem Chem Phys 2019; 21:10370-10376. [DOI: 10.1039/c9cp01431d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration water governs the cholesterol-induced changes in collective headgroup dynamics in lipid bilayers.
Collapse
Affiliation(s)
- Christopher Päslack
- Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- D-44780 Bochum
- Germany
| | - Jeremy C. Smith
- Center for Molecular Biophysics
- Oak Ridge National Laboratory
- Oak Ridge
- USA
- Department of Biochemistry and Cellular and Molecular Biology
| | - Matthias Heyden
- School of Molecular Sciences
- Arizona State University
- Tempe
- USA
| | - Lars V. Schäfer
- Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
39
|
Dahanayake JN, Mitchell-Koch KR. Entropy connects water structure and dynamics in protein hydration layer. Phys Chem Chem Phys 2018; 20:14765-14777. [PMID: 29780979 PMCID: PMC6005386 DOI: 10.1039/c8cp01674g] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The enzyme Candida Antarctica lipase B (CALB) serves here as a model for understanding connections among hydration layer dynamics, solvation shell structure, and protein surface structure. The structure and dynamics of water molecules in the hydration layer were characterized for regions of the CALB surface, divided around each α-helix, β-sheet, and loop structure. Heterogeneous hydration dynamics were observed around the surface of the enzyme, in line with spectroscopic observations of other proteins. Regional differences in the structure of the biomolecular hydration layer were found to be concomitant with variations in dynamics. In particular, it was seen that regions of higher density exhibit faster water dynamics. This is analogous to the behavior of bulk water, where dynamics (diffusion coefficients) are connected to water structure (density and tetrahedrality) by excess (or pair) entropy, detailed in the Rosenfeld scaling relationship. Additionally, effects of protein surface topology and hydrophobicity on water structure and dynamics were evaluated using multiregression analysis, showing that topology has a somewhat larger effect on hydration layer structure-dynamics. Concave and hydrophobic protein surfaces favor a less dense and more tetrahedral solvation layer, akin to a more ice-like structure, with slower dynamics. Results show that pairwise entropies of local hydration layers, calculated from regional radial distribution functions, scale logarithmically with local hydration dynamics. Thus, the Rosenfeld relationship describes the heterogeneous structure-dynamics of the hydration layer around the enzyme CALB. These findings raise the question of whether this may be a general principle for understanding the structure-dynamics of biomolecular solvation.
Collapse
|
40
|
Srivastava A, Debnath A. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations. J Chem Phys 2018. [DOI: 10.1063/1.5011803] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Abhinav Srivastava
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Rajasthan, India
| | - Ananya Debnath
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwad, Rajasthan, India
| |
Collapse
|
41
|
Che X, Du XX, Cai X, Zhang J, Xie WJ, Long Z, Ye ZY, Zhang H, Yang L, Su XD, Gao YQ. Single Mutations Reshape the Structural Correlation Network of the DMXAA-Human STING Complex. J Phys Chem B 2017; 121:2073-2082. [PMID: 28178416 DOI: 10.1021/acs.jpcb.6b12472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Subtle changes in protein sequences are able to alter ligand-protein interactions. Unraveling the mechanism of such phenomena is important for understanding ligand-protein interactions, including the DMXAA-STING interaction. DMXAA specifically binds to mouse STING instead of human STING. However, the S162A mutation and a newly discovered E260I mutation endow human STINGAQ with DMXAA sensitivity. Through molecular dynamics simulations, we revealed how these single mutations alter the DMXAA-STING interaction. Compared to mutated systems, structural correlations in the interaction of STINGAQ with DMXAA are stronger, and the correlations are cross-protomers in the dimeric protein. Analyses on correlation coefficients lead to the identification of two key interactions that mediate the strong cross-protomer correlation in the DMXAA-STINGAQ interaction network: DMXAA-267T-162S* and 238R-260E*. These two interactions are partially and totally interrupted by the S162A and E260I mutations, respectively. Moreover, a smaller number of water molecules are displaced upon DMXAA binding to STINGAQ than that on binding to its mutants, leading to a larger entropic penalty for the former. Considering the sensitivity of STINGAQ and two of its mutants to DMXAA, a strong structural correlation appears to discourage DMXAA-STING binding. Such an observation suggests that DMXAA derivatives, which are deprived of hydrogen-bond interaction with both 162S* and 267T, are potential agonists of human STING.
Collapse
Affiliation(s)
- Xing Che
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiao-Xia Du
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiaoxia Cai
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Wen Jun Xie
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Zhuoran Long
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Zhao-Yang Ye
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Heng Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Xiao-Dong Su
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center and ‡State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center, School of Life Sciences, Peking University , Beijing 100871, China
| |
Collapse
|
42
|
Fisette O, Päslack C, Barnes R, Isas JM, Langen R, Heyden M, Han S, Schäfer LV. Hydration Dynamics of a Peripheral Membrane Protein. J Am Chem Soc 2016; 138:11526-35. [PMID: 27548572 DOI: 10.1021/jacs.6b07005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Water dynamics in the hydration shell of the peripheral membrane protein annexin B12 were studied using MD simulations and Overhauser DNP-enhanced NMR. We show that retardation of water motions near phospholipid bilayers is extended by the presence of a membrane-bound protein, up to around 10 Å above that protein. Near the membrane surface, electrostatic interactions with the lipid head groups strongly slow down water dynamics, whereas protein-induced water retardation is weaker and dominates only at distances beyond 10 Å from the membrane surface. The results can be understood from a simple model based on additive contributions from the membrane and the protein to the activation free energy barriers of water diffusion next to the biomolecular surfaces. Furthermore, analysis of the intermolecular vibrations of the water network reveals that retarded water motions near the membrane shift the vibrational modes to higher frequencies, which we used to identify an entropy gradient from the membrane surface toward the bulk water. Our results have implications for processes that take place at lipid membrane surfaces, including molecular recognition, binding, and protein-protein interactions.
Collapse
Affiliation(s)
- Olivier Fisette
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University , 44780 Bochum, Germany
| | - Christopher Päslack
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University , 44780 Bochum, Germany.,Max-Planck Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Ryan Barnes
- Department of Chemistry and Biochemistry and Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - J Mario Isas
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California , Los Angeles, California 90089, United States
| | - Matthias Heyden
- Max-Planck Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany
| | - Songi Han
- Department of Chemistry and Biochemistry and Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - Lars V Schäfer
- Center for Theoretical Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University , 44780 Bochum, Germany
| |
Collapse
|
43
|
Integrated Free Energy Model (IFEM) for microemulsions. J Colloid Interface Sci 2016; 466:400-12. [DOI: 10.1016/j.jcis.2015.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 11/22/2022]
|
44
|
Basu I, Manna M, Mukhopadhyay C. Insights into the behavioral difference of water in the presence of GM1. FEBS Lett 2015; 589:3887-92. [DOI: 10.1016/j.febslet.2015.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
|
45
|
Raghav N, Chakraborty S, Maiti PK. Molecular mechanism of water permeation in a helium impermeable graphene and graphene oxide membrane. Phys Chem Chem Phys 2015. [PMID: 26198311 DOI: 10.1039/c5cp02410b] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Layers of graphene oxide (GO) are found to be good for the permeation of water but not for helium (Science, 2012, 335(6067), 442-444) suggesting that the GO layers are dynamic in the formation of a permeation route depending on the environment they are in (i.e., water or helium). To probe the microscopic origin of this observation we calculate the potential of mean force (PMF) of GO sheets (with oxidized and reduced parts), with the inter-planar distance as a reaction coordinate in helium and water. Our PMF calculation shows that the equilibrium interlayer distance between the oxidized part of the GO sheets in helium is at 4.8 Å leaving no space for helium permeation. In contrast, the PMF of the oxidized part of the GO in water shows two minima, one at 4.8 Å and another at 6.8 Å, corresponding to no water and a water filled region, thus giving rise to a permeation path. The increased electrostatic interaction between water with the oxidized part of the sheet helps the sheet open up and pushes water inside. Based on the entropy calculations for water trapped between graphene sheets and oxidized graphene sheets at different inter-sheet spacings, we also show the thermodynamics of filling.
Collapse
Affiliation(s)
- Nallani Raghav
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | |
Collapse
|
46
|
Solís-Calero C, Ortega-Castro J, Frau J, Muñoz F. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:319505. [PMID: 25977746 PMCID: PMC4419266 DOI: 10.1155/2015/319505] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 01/03/2023]
Abstract
Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Christian Solís-Calero
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Joaquín Ortega-Castro
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Juan Frau
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| | - Francisco Muñoz
- Institut d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain
- Instituto de Investigación Sanitaria de Palma, 07010 Palma, Spain
| |
Collapse
|
47
|
Kumar H, Dasgupta C, Maiti PK. Driving force of water entry into hydrophobic channels of carbon nanotubes: entropy or energy? MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2014.998211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Goda T, Ishihara K, Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J Appl Polym Sci 2015. [DOI: 10.1002/app.41766] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| | - Kazuhiko Ishihara
- Department of Materials Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8656 Japan
- Department of Bioengineering; The University of Tokyo; 7-3-1 Hongo Bunkyo Tokyo 113-8656 Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering; Tokyo Medical and Dental University; 2-3-10 Kanda-Surugadai Chiyoda Tokyo 101-0062 Japan
| |
Collapse
|
49
|
Abstract
It is commonly assumed that the structure of water at a lipid-water interface is influenced mostly in the first hydration layer. However, recent results from different experimental methods show that perturbation extends through several hydration layers. Due to its low light penetration depth, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy is specifically suited to study interlamellar water structure in multibilayers. Results obtained by this technique confirm the long-range water structure disturbance. Consequently, in confined membrane environments nearly all water molecules can be perturbed. It is important to note that the behavior of confined water molecules differs significantly in samples prepared in excess water and in partially hydrated samples. We show in what manner the interlamellar water perturbation is influenced by the hydration level and how it is sequentially modified with a step-by-step dehydration of samples either by water evaporation or by osmotic pressure. Our results also indicate that besides different levels of hydration the lipid-water interaction is modulated by different lipid headgroups and different lipid phases as well. Therefore, modification of interlamellar water properties may clarify the role of water-mediated effects in biological processes.
Collapse
Affiliation(s)
- Zoran Arsov
- Laboratory of Biophysics, Department of Solid State Physics, "Jozef Stefan" Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
50
|
Abstract
The classical view of a biological membrane is based on the Singer-Nicholson mosaic fluid model in which the lipid bilayer is the structural backbone. Under this paradigm, many studies of biological processes such as, permeability, active transport, enzyme activity and adhesion and fusion processes have been rationalized considering the lipid membrane as a low dielectric slab of hydrocarbon chains with polar head groups exposed to water at each side in which oil/water partition prevails. In spite of several analyses and evidence available in relation to membrane hydration, water is not taken into account as a functional component. For this purpose, new insights in the water organization in restricted environments and the thermodynamical and mechanical properties emerging from them are specifically analysed and correlated.This chapter summarizes the progress of the studies of water in membranes along the book in order to give a more realistic structural and dynamical picture accounting for the membrane functional properties.
Collapse
Affiliation(s)
- E Anibal Disalvo
- Laboratorio de Biointerfases y Sistemas Biomimeticos, Centro de Investigacion y Transferencia de Santiago del Estero, Universidad Nacional de Santiago del Estero-Consejo Nacional de Investigaciones Científicas y Técnicas, 4200, Santiago del Estero, Argentina.
| |
Collapse
|