1
|
Kikuchi K, Fukuyama T, Uchihashi T, Furuta T, Maeda YT, Ueno T. Protein Needles Designed to Self-Assemble through Needle Tip Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106401. [PMID: 34989115 DOI: 10.1002/smll.202106401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The dynamic process of formation of protein assemblies is essential to form highly ordered structures in biological systems. Advances in structural and synthetic biology have led to the construction of artificial protein assemblies. However, development of design strategies exploiting the anisotropic shape of building blocks of protein assemblies has not yet been achieved. Here, the 2D assembly pattern of protein needles (PNs) is controlled by regulating their tip-to-tip interactions. The PN is an anisotropic needle-shaped protein composed of β-helix, foldon, and His-tag. Three different types of tip-modified PNs are designed by deleting the His-tag and foldon to change the protein-protein interactions. Observing their assembly by high-speed atomic force microscopy (HS-AFM) reveals that PN, His-tag deleted PN, and His-tag and foldon deleted PN form triangular lattices, the monomeric state with nematic order, and fiber assemblies, respectively, on a mica surface. Their assembly dynamics are observed by HS-AFM and analyzed by the theoretical models. Monte Carlo (MC) simulations indicate that the mica-PN interactions and the flexible and multipoint His-tag interactions cooperatively guide the formation of the triangular lattice. This work is expected to provide a new strategy for constructing supramolecular protein architectures by controlling directional interactions of anisotropic shaped proteins.
Collapse
Affiliation(s)
- Kosuke Kikuchi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Tatsuya Fukuyama
- Department of Physics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, 444-0864, Japan
- Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takafumi Ueno
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
2
|
Abstract
Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | |
Collapse
|
3
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
4
|
Klein HCR, Schwarz US. Studying protein assembly with reversible Brownian dynamics of patchy particles. J Chem Phys 2014; 140:184112. [DOI: 10.1063/1.4873708] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
5
|
Lactobacillus helveticus MIMLh5-specific antibodies for detection of S-layer protein in Grana Padano protected-designation-of-origin cheese. Appl Environ Microbiol 2013; 80:694-703. [PMID: 24242242 DOI: 10.1128/aem.03057-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Single-chain variable-fragment antibodies (scFvs) have considerable potential in immunological detection and localization of bacterial surface structures. In this study, synthetic phage-displayed antibody libraries were used to select scFvs against immunologically active S-layer protein of Lactobacillus helveticus MIMLh5. After three rounds of panning, five relevant phage clones were obtained, of which four were specific for the S-layer protein of L. helveticus MIMLh5 and one was also capable of binding to the S-layer protein of L. helveticus ATCC 15009. All five anti-S-layer scFvs were expressed in Escherichia coli XL1-Blue, and their specificity profiles were characterized by Western blotting. The anti-S-layer scFv PolyH4, with the highest specificity for the S-layer protein of L. helveticus MIMLh5, was used to detect the S-layer protein in Grana Padano protected-designation-of-origin (PDO) cheese extracts by Western blotting. These results showed promising applications of this monoclonal antibody for the detection of immunomodulatory S-layer protein in dairy (and dairy-based) foods.
Collapse
|
6
|
Pum D, Toca-Herrera JL, Sleytr UB. S-layer protein self-assembly. Int J Mol Sci 2013; 14:2484-501. [PMID: 23354479 PMCID: PMC3587997 DOI: 10.3390/ijms14022484] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 11/16/2022] Open
Abstract
Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.
Collapse
Affiliation(s)
- Dietmar Pum
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| | - Jose Luis Toca-Herrera
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| | - Uwe B. Sleytr
- Department of Nanobiotechnology, Institute for Biophysics, University of Natural Resources and Life Science, Vienna, Muthgasse 11, Vienna 1190, Austria; E-Mails: (J.L.T.-H); (U.B.S.)
| |
Collapse
|
7
|
Bobeth M, Blecha A, Blüher A, Mertig M, Korkmaz N, Ostermann K, Rödel G, Pompe W. Formation of tubes during self-assembly of bacterial surface layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15102-15111. [PMID: 22029537 DOI: 10.1021/la203430q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Based on experimental studies on tube formation during self-assembly of bacterial surface (S)-layers, a mechanistic model for describing the underlying basic mechanisms is proposed and the effect of process parameters on growth velocity and tube radius is investigated. The S-layer is modeled as a curved sheet with discrete binding sites for the association of monomers distributed along the S-layer edges. Reported changes of the tube radius owing to genetic protein modifications are explained within the framework of continuum mechanics. S-layer growth velocity and shape development are analyzed by Monte Carlo simulation in their dependence on the attachment and detachment frequencies of monomers at the S-layer. For curved S-layer patches, a criterion for the formation of S-layer tubes is derived. Accordingly, tubes can form only within a certain range of the initial monomer concentration. Furthermore, the effect of calcium ion concentration on tube formation is discussed, including recent experimental findings on the calcium effect.
Collapse
Affiliation(s)
- Manfred Bobeth
- Institut für Werkstoffwissenschaft and Max-Bergmann-Zentrum für Biomaterialien, Technische Universität Dresden, 01062 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Horejs C, Ristl R, Tscheliessnig R, Sleytr UB, Pum D. Single-molecule force spectroscopy reveals the individual mechanical unfolding pathways of a surface layer protein. J Biol Chem 2011; 286:27416-24. [PMID: 21690085 PMCID: PMC3149335 DOI: 10.1074/jbc.m111.251322] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Indexed: 12/14/2022] Open
Abstract
Surface layers (S-layers) represent an almost universal feature of archaeal cell envelopes and are probably the most abundant bacterial cell proteins. S-layers are monomolecular crystalline structures of single protein or glycoprotein monomers that completely cover the cell surface during all stages of the cell growth cycle, thereby performing their intrinsic function under a constant intra- and intermolecular mechanical stress. In gram-positive bacteria, the individual S-layer proteins are anchored by a specific binding mechanism to polysaccharides (secondary cell wall polymers) that are linked to the underlying peptidoglycan layer. In this work, atomic force microscopy-based single-molecule force spectroscopy and a polyprotein approach are used to study the individual mechanical unfolding pathways of an S-layer protein. We uncover complex unfolding pathways involving the consecutive unfolding of structural intermediates, where a mechanical stability of 87 pN is revealed. Different initial extensibilities allow the hypothesis that S-layer proteins adapt highly stable, mechanically resilient conformations that are not extensible under the presence of a pulling force. Interestingly, a change of the unfolding pathway is observed when individual S-layer proteins interact with secondary cell wall polymers, which is a direct signature of a conformational change induced by the ligand. Moreover, the mechanical stability increases up to 110 pN. This work demonstrates that single-molecule force spectroscopy offers a powerful tool to detect subtle changes in the structure of an individual protein upon binding of a ligand and constitutes the first conformational study of surface layer proteins at the single-molecule level.
Collapse
Affiliation(s)
| | - Robin Ristl
- From the Department for Nanobiotechnology and
| | - Rupert Tscheliessnig
- the Austrian Centre of Industrial Biotechnology, c/o Institute for Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | | | - Dietmar Pum
- From the Department for Nanobiotechnology and
| |
Collapse
|
9
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|