1
|
Warkotsch D, Christiansen H, Zierenberg J, Janke W. Pulling on grafted flexible polymers can cause twisted bundles. SOFT MATTER 2024; 20:4916-4927. [PMID: 38868862 DOI: 10.1039/d4sm00093e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bundles of semiflexible polymers can twist at low temperatures to balance energy gain from attraction and energy cost from bending. This raises the question whether twisting can be also observed for bundles of rather flexible grafted polymers stretched out by pulling force. Here, we address this question using Monte Carlo computer simulations of small bundles. Our data show that for weak forces F < Fl, intertwined globular conformations are favored, whereas for strong forces F > Fu, rod-like bundles emerge. In the intermediate force window Fl < F < Fu, bundles with a helical twist can be clearly identified. Applying a field to all monomers yields qualitatively the same effect. This suggests the conclusion that rather flexible polymers under pulling force or field behave effectively like semiflexible polymers without external pull.
Collapse
Affiliation(s)
- Dustin Warkotsch
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Henrik Christiansen
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| | - Johannes Zierenberg
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany.
| | - Wolfhard Janke
- Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany.
| |
Collapse
|
2
|
Maxian O, Mogilner A. Helical motors and formins synergize to compact chiral filopodial bundles: A theoretical perspective. Eur J Cell Biol 2024; 103:151383. [PMID: 38237507 DOI: 10.1016/j.ejcb.2023.151383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
Chiral actin bundles have been shown to play an important role in cell dynamics, but our understanding of the molecular mechanisms which combine to generate chirality remains incomplete. To address this, we numerically simulate a crosslinked filopodial bundle under the actions of helical myosin motors and/or formins and examine the collective buckling and twisting of the actin bundle. We first show that a number of proposed mechanisms to buckle polymerizing actin bundles without motor activity fail under biologically-realistic parameters. We then demonstrate that a simplified model of myosin spinning action at the bundle base effectively "braids" the bundle, but cannot control compaction at the fiber tips. Finally, we show that formin-mediated polymerization and motor activity can act synergitically to compact filopodium bundles, as motor activity bends filaments into shapes that activate twist forces induced by formins. Stochastic fluctuations of actin polymerization rates and slower cross linking dynamics both increase buckling and decrease compaction. We discuss implications of our findings for mechanisms of cytoskeletal chirality.
Collapse
Affiliation(s)
- Ondrej Maxian
- Courant Institute, New York University, New York, NY 10012, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60615, USA; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60615, USA
| | - Alex Mogilner
- Courant Institute, New York University, New York, NY 10012, USA; Department of Biology, New York University, New York, NY 10012, USA.
| |
Collapse
|
3
|
Michaels TCT, Memet E, Mahadevan L. Mechanical basis for fibrillar bundle morphology. SOFT MATTER 2020; 16:9306-9318. [PMID: 32935723 DOI: 10.1039/d0sm01145b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the morphology of self-assembled fibrillar bundles and aggregates is relevant to a range of problems in molecular biology, supramolecular chemistry and materials science. Here, we propose a coarse-grained approach that averages over specific molecular details and yields an effective mechanical theory for the spatial complexity of self-assembling fibrillar structures that arises due to the competing effects of (the bending and twisting) elasticity of individual filaments and the adhesive interactions between them. We show that our theoretical framework accounting for this allows us to capture a number of diverse fibril morphologies observed in natural and synthetic systems, ranging from Filopodia to multi-walled carbon nanotubes, and leads to a phase diagram of possible fibril shapes. We also show how the extreme sensitivity of these morphologies can lead to spatially chaotic structures. Together, these results suggest a common mechanical basis for mesoscale fibril morphology as a function of the nanoscale mechanical properties of its filamentous constituents.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Edvin Memet
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
4
|
Grason GM. Chiral and achiral mechanisms of self-limiting assembly of twisted bundles. SOFT MATTER 2020; 16:1102-1116. [PMID: 31894228 DOI: 10.1039/c9sm01840a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A generalized theory of the self-limiting assembly of twisted bundles of filaments and columns is presented. Bundles and fibers form in a broad variety of supramolecular systems, from biological to synthetic materials. A widely-invoked mechanism to explain their finite diameter relies on chirality transfer from the molecular constituents to collective twist of the assembly, the effect of which frustrates the lateral assembly and can select equilibrium, finite diameters of bundles. In this article, the thermodynamics of twisted-bundle assembly is analyzed to understand if chirality transfer is necessary for self-limitation, or instead, if spontaneously-twisting, achiral bundles also exhibit self-limited assembly. A generalized description is invoked for the elastic costs imposed by twist for bundles of various states of intra-bundle order from nematic to crystalline, as well as a generic mechanism for generating twist, classified both by chirality but also the twist susceptibility of inter-filament alignment. The theory provides a comprehensive set of predictions for the equilibrium twist and size of bundles as a function of surface energy as well as chirality, twist susceptibility, and elasticity of bundles. Moreover, it shows that while spontaneous twist can lead to self-limitation, assembly of twisted achiral bundles can be distinguished qualitatively in terms of their range of equilibrium sizes and thermodynamic stability relative to bulk (untwisted) states.
Collapse
Affiliation(s)
- Gregory M Grason
- Department of Polymer Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
5
|
The many implications of actin filament helicity. Semin Cell Dev Biol 2019; 102:65-72. [PMID: 31862222 DOI: 10.1016/j.semcdb.2019.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
One of the best known features of actin filaments is their helical structure. A number of essential properties emerge from this molecular arrangement of actin subunits. Here, we give an overview of the mechanical and biochemical implications of filament helicity, at different scales. In particular, a number of recent studies have highlighted the role of filament helicity in the adaptation to and the generation of mechanical torsion, and in the modulation of the filament's interaction with very different actin-binding proteins (such as myosins, cross-linkers, formins, and cofilin). Helicity can thus be seen as a key factor for the regulation of actin assembly, and as a link between biochemical regulators and their mechanical context. In addition, actin filament helicity appears to play an essential role in the establishment of chirality at larger scales, up to the organismal scale. Altogether, helicity appears to be an essential feature contributing to the regulation of actin assembly dynamics, and to actin's ability to organize cells at a larger scale.
Collapse
|
6
|
Ma R, Berro J. Structural organization and energy storage in crosslinked actin assemblies. PLoS Comput Biol 2018; 14:e1006150. [PMID: 29813051 PMCID: PMC5993335 DOI: 10.1371/journal.pcbi.1006150] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/08/2018] [Accepted: 04/18/2018] [Indexed: 11/19/2022] Open
Abstract
During clathrin-mediated endocytosis in yeast cells, short actin filaments (< 200nm) and crosslinking protein fimbrin assemble to drive the internalization of the plasma membrane. However, the organization of the actin meshwork during endocytosis remains largely unknown. In addition, only a small fraction of the force necessary to elongate and pinch off vesicles can be accounted for by actin polymerization alone. In this paper, we used mathematical modeling to study the self-organization of rigid actin filaments in the presence of elastic crosslinkers in conditions relevant to endocytosis. We found that actin filaments condense into either a disordered meshwork or an ordered bundle depending on filament length and the mechanical and kinetic properties of the crosslinkers. Our simulations also demonstrated that these nanometer-scale actin structures can store a large amount of elastic energy within the crosslinkers (up to 10kBT per crosslinker). This conversion of binding energy into elastic energy is the consequence of geometric constraints created by the helical pitch of the actin filaments, which results in frustrated configurations of crosslinkers attached to filaments. We propose that this stored elastic energy can be used at a later time in the endocytic process. As a proof of principle, we presented a simple mechanism for sustained torque production by ordered detachment of crosslinkers from a pair of parallel filaments.
Collapse
Affiliation(s)
- Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Julien Berro
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
7
|
Schnauß J, Händler T, Käs JA. Semiflexible Biopolymers in Bundled Arrangements. Polymers (Basel) 2016; 8:polym8080274. [PMID: 30974551 PMCID: PMC6432226 DOI: 10.3390/polym8080274] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022] Open
Abstract
Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.
Collapse
Affiliation(s)
- Jörg Schnauß
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Tina Händler
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, Leipzig 04103, Germany.
| | - Josef A Käs
- Institute for Experimental Physics I, Universität Leipzig, Linnéstraße 5, Leipzig 04103, Germany.
| |
Collapse
|
8
|
Jaspers M, Pape ACH, Voets IK, Rowan AE, Portale G, Kouwer PHJ. Bundle Formation in Biomimetic Hydrogels. Biomacromolecules 2016; 17:2642-9. [DOI: 10.1021/acs.biomac.6b00703] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maarten Jaspers
- Radboud University, Institute for Molecules and
Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| | - A. C. H. Pape
- Eindhoven University of Technology, Laboratory for
Macromolecular and Organic Chemistry, and Laboratory of Physical Chemistry,
and Institute for Complex Molecular Systems, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Eindhoven University of Technology, Laboratory for
Macromolecular and Organic Chemistry, and Laboratory of Physical Chemistry,
and Institute for Complex Molecular Systems, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Alan E. Rowan
- Radboud University, Institute for Molecules and
Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
- The University of Queensland, Australian Institute
for Bioengineering and Nanotechnology, Brisbane, Queensland 4072, Australia
| | - Giuseppe Portale
- Netherlands Organisation for Scientific Research (NWO), DUBBLE CRG at the ESRF, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
- University of Groningen, Department of Macromolecular
Chemistry and New Polymeric Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Paul H. J. Kouwer
- Radboud University, Institute for Molecules and
Materials, Heyendaalseweg
135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Benetatos P, Jho Y. Bundling in semiflexible polymers: A theoretical overview. Adv Colloid Interface Sci 2016; 232:114-126. [PMID: 26813628 DOI: 10.1016/j.cis.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 12/07/2015] [Accepted: 01/02/2016] [Indexed: 01/07/2023]
Abstract
Supramolecular assemblies of polymers are key modules to sustain the structure of cells and their function. The main elements of these assemblies are charged semiflexible polymers (polyelectrolytes) generally interacting via a long(er)-range repulsion and a short(er)-range attraction. The most common supramolecular structure formed by these polymers is the bundle. In the present paper, we critically review some recent theoretical and computational advances on the problem of bundle formation, and point a few promising directions for future work.
Collapse
Affiliation(s)
- Panayotis Benetatos
- Department of Physics, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 702-701, South Korea
| | - YongSeok Jho
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, 790-784, South Korea; Department of Physics, Pohang University of Science and Technology, 790-784, South Korea.
| |
Collapse
|
10
|
Piechocka IK, Jansen KA, Broedersz CP, Kurniawan NA, MacKintosh FC, Koenderink GH. Multi-scale strain-stiffening of semiflexible bundle networks. SOFT MATTER 2016; 12:2145-56. [PMID: 26761718 DOI: 10.1039/c5sm01992c] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.
Collapse
|
11
|
Sadhukhan P, Schumann O, Heussinger C. Elasto-plastic response of reversibly crosslinked biopolymer bundles. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:14. [PMID: 24965158 DOI: 10.1140/epje/i2014-14058-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 06/03/2023]
Abstract
We study the response of F-actin bundles to driving forces through a simple analytical model. We consider two filaments connected by reversibly bound crosslinks and driven by an external force. Two failure modes under load can be defined. Brittle failure is observed when crosslinks suddenly and collectively unbind, leading to catastrophic loss of bundle integrity. During ductile failure, on the other hand, bundle integrity is maintained, however at the cost of crosslink reorganization and defect formation. We present phase diagrams for the onset of failure, highlighting the importance of the crosslink stiffness for these processes. Crossing the phase boundaries, force-deflection curves display (frequency-dependent) hysteresis loops, reflecting the first-order character of the failure processes. We evidence how the introduction of defects can lead to complex elasto-plastic relaxation processes, once the force is switched off. Depending on, both the time-scale for defect motion and the crosslink stiffness, bundles can remain in a quasi-permanent plastically deformed state for a very long time.
Collapse
Affiliation(s)
- Poulomi Sadhukhan
- Institute for Theoretical Physics, Georg-August University of Göttingen, Friedrich-Hund Platz 1, 37077, Göttingen, Germany,
| | | | | |
Collapse
|
12
|
Pandolfi RJ, Edwards L, Johnston D, Becich P, Hirst LS. Designing highly tunable semiflexible filament networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:062602. [PMID: 25019805 DOI: 10.1103/physreve.89.062602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Indexed: 06/03/2023]
Abstract
Semiflexible polymers can generate a range of filamentous networks significantly different in structure from those seen in conventional polymer solutions. Our coarse-grained simulations with an implicit cross-linker potential show that networks of branching bundles, knotted morphologies, and structural chirality can be generated by a generalized approach independent of specific cross-linkers. Network structure depends primarily on filament flexibility and separation, with significant connectivity increase after percolation. Results should guide the design of engineered semiflexible polymers.
Collapse
Affiliation(s)
- Ronald J Pandolfi
- University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | - Lauren Edwards
- University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | - David Johnston
- University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | - Peter Becich
- University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| | - Linda S Hirst
- University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA
| |
Collapse
|
13
|
Azadi A, Grason GM. Defects in crystalline packings of twisted filament bundles. II. Dislocations and grain boundaries. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031604. [PMID: 22587105 DOI: 10.1103/physreve.85.031604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 05/31/2023]
Abstract
Twisted and ropelike assemblies of filamentous molecules are common and vital structural elements in cells and tissues of living organisms. We study the intrinsic frustration occurring in these materials between the two-dimensional organization of filaments in cross section and out-of-plane interfilament twist in bundles. Using nonlinear continuum elasticity theory of columnar materials, we study the favorable coupling of twist-induced stresses to the presence of edge dislocations in the lattice packing of bundles, which leads to a restructuring of the ground-state order of these materials at intermediate twist. The stability of dislocations increases as both the degree of twist and lateral bundle size grow. We show that in ground states of large bundles, multiple dislocations pile up into linear arrays, radial grain boundaries, whose number and length grows with bundle twist, giving rise to a rich class of "polycrystalline" packings.
Collapse
Affiliation(s)
- Amir Azadi
- Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
14
|
Grason GM. Defects in crystalline packings of twisted filament bundles. I. Continuum theory of disclinations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:031603. [PMID: 22587104 DOI: 10.1103/physreve.85.031603] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Indexed: 05/31/2023]
Abstract
We develop the theory of the coupling between in-plane order and out-of-plane geometry in twisted, two-dimensionally ordered filament bundles based on the nonlinear continuum elasticity theory of columnar materials. We show that twisted textures of filament backbones necessarily introduce stresses into the cross-sectional packing of bundles and that these stresses are formally equivalent to the geometrically induced stresses generated in thin elastic sheets that are forced to adopt spherical curvature. As in the case of crystalline order on curved membranes, geometrically induced stresses couple elastically to the presence of topological defects in the in-plane order. We derive the effective theory of multiple disclination defects in the cross section of bundle with a fixed twist and show that above a critical degree of twist, one or more fivefold disclinations is favored in the elastic energy ground state. We study the structure and energetics of multidisclination packings based on models of equilibrium and nonequilibrium cross-sectional order.
Collapse
Affiliation(s)
- Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
15
|
Vink RLC, Heussinger C. Cross-linked biopolymer bundles: Cross-link reversibility leads to cooperative binding/unbinding phenomena. J Chem Phys 2012; 136:035102. [DOI: 10.1063/1.3675832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|