1
|
Zeng L, Liu C, Yang Y, Hu S, Li R, Tan X, Shen J, Zhang Y, Huang S, Yang H. Power-free plasma separation based on negative magnetophoresis for rapid biochemical analysis. MICROSYSTEMS & NANOENGINEERING 2024; 10:207. [PMID: 39741142 DOI: 10.1038/s41378-024-00837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 01/02/2025]
Abstract
We present a versatile platform for label-free magnetic separation of plasma, tailored to accommodate diverse environments. This innovative device utilizes an advanced long-short alternating double Halbach magnetic array, specifically engineered for optimal magnetic separation. The array's adaptability allows for seamless integration with separation channels of varying sizes, enabling static separation of whole blood. The platform has a highly flexible processing throughput, spanning from 100 μL to 3 mL per separation cycle without sacrificing separation efficiency. A key aspect of this device is its power-free operation throughout the separation process, obviating the complexity of conventional separation devices. Its effectiveness is demonstrated by the extraction of 40 μL of plasma from 100 μL of rat whole blood within 8 min. The separated plasma proved effective for subsequent analysis of antibody concentration and size in the separated plasma for pharmacokinetic investigations, yielding results on par with those obtained via centrifugation. Furthermore, the device's high-throughput capability was validated using human whole blood, achieving 3 mL of plasma separation in just 1 min. In a follow-up study on COVID-19 IgG antibody detection, the results matched those from centrifugation. The device demonstrates a separation efficiency of 99.9% for cells larger than 1 μm in both rat and human blood samples, with a plasma recovery rate of 72.7%. In summary, our magnetic separation device facilitates rapid plasma extraction from whole blood, with a capacity of up to 3 mL per minute in human blood, without compromising subsequent plasma-based analyses, thereby highlighting its broad applicability across diverse settings.
Collapse
Affiliation(s)
- Lin Zeng
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Chao Liu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, China
| | - Yi Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- Marine Engineering College, Dalian Maritime University, 116026, Dalian, China
| | - Shi Hu
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Ruihan Li
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaotian Tan
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Jienan Shen
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yi Zhang
- Research Center for Medical AI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Shaohui Huang
- School of Biosciences, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Hui Yang
- Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Zhang S, Deng J, Li J, Tian F, Liu C, Fang L, Sun J. Advanced microfluidic technologies for isolating extracellular vesicles. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Huang Z, Wu Z, Zhou T, Shi L, Liu Z, Huang J. Multi-particle interaction in AC electric field driven by dielectrophoresis force. Electrophoresis 2021; 42:2189-2196. [PMID: 34117650 DOI: 10.1002/elps.202100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/11/2022]
Abstract
When the dielectrophoresis technology is used to manipulate micron-sized particles, the interaction between particles should not be ignored because of the particle-particle interaction. Especially, when multiple particles (number of particles is above 2) are simultaneously manipulated, the interaction between neighboring particles will affect the results of the manipulation. This research investigates the interaction of particles caused dielectrophoresis effect by the Arbitrary Lagrangian-Eulerian (ALE) method based on the hypothesis of the thin layer of the electric double layer at the microscale. The mathematics model can be solved simultaneously by the finite element method for the AC electric field, the flow field around the suspended particles and the particle mechanics at the micrometer scale. In this study, the particle conductivity and the direction of the electric field are investigated, we find that particle conductivity and electric field direction pose an impact on particle movement, and the research reveal the law of microparticle dielectrophoresis movement, which could offer theoretical and technology support to profoundly understand the precise manipulation of particles in microfluidic chips by the dielectrophoresis effect.
Collapse
Affiliation(s)
- Zhiwei Huang
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Zhihao Wu
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou, Hainan, P. R. China
| | - Zhenyu Liu
- Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP) 130033, Chinese Academy of Science, Changchun, Jilin, P. R. China
| | - Jiaomei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, P. R. China
| |
Collapse
|
4
|
Alnaimat F, Karam S, Mathew B, Mathew B. Magnetophoresis and Microfluidics: A Great Union. IEEE NANOTECHNOLOGY MAGAZINE 2020; 14:24-41. [DOI: 10.1109/mnano.2020.2966029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
5
|
Xue C, Sun Z, Li Y, Chen J, Liu B, Qin K. Separation of micro and sub‐micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. Electrophoresis 2020; 41:909-916. [DOI: 10.1002/elps.202000002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Chun‐Dong Xue
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian P. R. China
| | - Zhong‐Ping Sun
- School of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian P. R. China
| | - Yong‐Jiang Li
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian P. R. China
| | - Jian‐Feng Chen
- The First Affiliated Hospital of Dalian Medical University Dalian P. R. China
| | - Bo Liu
- School of Biomedical EngineeringFaculty of Electronic Information and Electrical EngineeringDalian University of Technology Dalian P. R. China
| | - Kai‐Rong Qin
- School of Optoelectronic Engineering and Instrumentation ScienceDalian University of Technology Dalian P. R. China
| |
Collapse
|
6
|
Xuan X. Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. MICROMACHINES 2019; 10:E744. [PMID: 31683660 PMCID: PMC6915689 DOI: 10.3390/mi10110744] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Magnetic field-induced particle manipulation is simple and economic as compared to other techniques (e.g., electric, acoustic, and optical) for lab-on-a-chip applications. However, traditional magnetic controls require the particles to be manipulated being magnetizable, which renders it necessary to magnetically label particles that are almost exclusively diamagnetic in nature. In the past decade, magnetic fluids including paramagnetic solutions and ferrofluids have been increasingly used in microfluidic devices to implement label-free manipulations of various types of particles (both synthetic and biological). We review herein the recent advances in this field with focus upon the continuous-flow particle manipulations. Specifically, we review the reported studies on the negative magnetophoresis-induced deflection, focusing, enrichment, separation, and medium exchange of diamagnetic particles in the continuous flow of magnetic fluids through microchannels.
Collapse
Affiliation(s)
- Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634-0921, USA.
| |
Collapse
|
7
|
Nguyen J, Conca DV, Stein J, Bovo L, Howard CA, Llorente Garcia I. Magnetic control of graphitic microparticles in aqueous solutions. Proc Natl Acad Sci U S A 2019; 116:2425-2434. [PMID: 30683726 PMCID: PMC6377480 DOI: 10.1073/pnas.1817989116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Graphite is an inexpensive material with useful electrical, magnetic, thermal, and optical properties. It is also biocompatible and used universally as a substrate. Micrometer-sized graphitic particles in solution are therefore ideal candidates for novel lab-on-a-chip and remote manipulation applications in biomedicine, biophysics, chemistry, and condensed-matter physics. However, submerged graphite is not known to be amenable to magnetic manipulation, the optimal manipulation method for such applications. Here, we exploit the diamagnetism of graphite and demonstrate contactless magnetic positioning control of graphitic microflakes in diamagnetic aqueous solutions. We develop a theoretical model for magnetic manipulation of graphite microflakes and demonstrate experimentally magnetic transport of such particles over distances [Formula: see text] with peak velocities [Formula: see text] in inhomogeneous magnetic fields. We achieve fully biocompatible transport for lipid-coated graphite in NaCl aqueous solution, paving the way for previously undiscovered biomedical applications. Our results prove that micrometer-sized graphite can be magnetically manipulated in liquid media.
Collapse
Affiliation(s)
- Johnny Nguyen
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Dario Valter Conca
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Johannes Stein
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Laura Bovo
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
- London Centre for Nanotechnology, University College London, London WC1H 0AJ, United Kingdom
- Department of Innovation and Enterprise, University College London, London W1T 4TJ, United Kingdom
| | - Chris A Howard
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Isabel Llorente Garcia
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
8
|
Chen Q, Li D, Malekanfard A, Cao Q, Lin J, Wang M, Han X, Xuan X. Tunable, Sheathless Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of Overhead Permanent Magnets. Anal Chem 2018; 90:8600-8606. [DOI: 10.1021/acs.analchem.8b01813] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Amirreza Malekanfard
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center and State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University, Beijing 10083, China
| | - Xiaotao Han
- Wuhan National High Magnetic Field Center and State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
9
|
Alnaimat F, Dagher S, Mathew B, Hilal‐Alnqbi A, Khashan S. Microfluidics Based Magnetophoresis: A Review. CHEM REC 2018; 18:1596-1612. [DOI: 10.1002/tcr.201800018] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Fadi Alnaimat
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Sawsan Dagher
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Bobby Mathew
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
| | - Ali Hilal‐Alnqbi
- Mechanical Engineering DepartmentCollege of EngineeringUAE University Al Ain Abu Dhabi UAE
- Abu Dhabi Polytechnic Abu Dhabi UAE
| | - Saud Khashan
- Mechanical Engineering DepartmentJordan University of Science and Technology Irbid Jordan
| |
Collapse
|
10
|
HUANG S, HE YQ, JIAO F. Advances of Particles/Cells Magnetic Manipulation in Microfluidic Chips. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61033-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Chen Q, Li D, Lin J, Wang M, Xuan X. Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Anal Chem 2017; 89:6915-6920. [PMID: 28548482 DOI: 10.1021/acs.analchem.7b01608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Magnetic fluids (e.g., paramagnetic solutions and ferrofluids) have been increasingly used for label-free separation of nonmagnetic particles in microfluidic devices. Their biocompatibility, however, becomes a concern in high-throughput or large-volume applications. One way to potentially resolve this issue is resuspending the particles that are separated in a magnetic fluid immediately into a biocompatible buffer. We demonstrate herein the proof-of-principle of the first integration of negative magnetophoresis and inertial focusing for a simultaneous separation and washing of nonmagnetic particles in coflowing ferrofluid and water streams. The two operations take place in parallel in a simple T-shaped rectangular microchannel with a nearby permanent magnet. We find that the larger and smaller particles' exiting positions (and hence their separation distance) in the sheath water and ferrofluid suspension, respectively, vary with the total flow rate or the flow rate ratio between the two streams.
Collapse
Affiliation(s)
- Qi Chen
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States.,MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Di Li
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| | - Jianhan Lin
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Maohua Wang
- MOA Key Laboratory of Agricultural Information Acquisition Technology (Beijing), China Agricultural University , Beijing 10083, China
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
12
|
Gómez-Pastora J, Xue X, Karampelas IH, Bringas E, Furlani EP, Ortiz I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2016.07.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Zhang J, Yan S, Yuan D, Zhao Q, Tan SH, Nguyen NT, Li W. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. LAB ON A CHIP 2016; 16:3947-3956. [PMID: 27722618 DOI: 10.1039/c6lc01007e] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Separation of microparticles has found broad applications in biomedicine, industry and clinical diagnosis. In a conventional aqueous ferrofluid, separation of microparticles usually employs a sheath flow or two offset magnets to confine particle streams for downstream particle sorting. This complicates the fluid control, device fabrication, and dilutes the particle sample. In this work, we propose and develop a novel viscoelastic ferrofluid by replacing the Newtonian base medium of the conventional ferrofluid with non-Newtonian poly(ethylene oxide) (PEO) aqueous solution. The properties of both viscoelastic 3D focusing and negative magnetophoresis of the viscoelastic ferrofluid were verified and investigated. By employing the both properties in a serial manner, continuous and sheathless separation of nonmagnetic particles based on particle size has been demonstrated. This novel viscoelastic ferrofluid is expected to bring more flexibility and versatility to the design and functionality in microfluidic devices.
Collapse
Affiliation(s)
- Jun Zhang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sheng Yan
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Dan Yuan
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Qianbin Zhao
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Say Hwa Tan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Weihua Li
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
14
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
15
|
Zhao W, Cheng R, Miller JR, Mao L. Label-Free Microfluidic Manipulation of Particles and Cells in Magnetic Liquids. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3916-3932. [PMID: 28663720 PMCID: PMC5487005 DOI: 10.1002/adfm.201504178] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Manipulating particles and cells in magnetic liquids through so-called "negative magnetophoresis" is a new research field. It has resulted in label-free and low-cost manipulation techniques in microfluidic systems and many exciting applications. It is the goal of this review to introduce the fundamental principles of negative magnetophoresis and its recent applications in microfluidic manipulation of particles and cells. We will first discuss the theoretical background of three commonly used specificities of manipulation in magnetic liquids, which include the size, density and magnetic property of particles and cells. We will then review and compare the media used in negative magnetophoresis, which include paramagnetic salt solutions and ferrofluids. Afterwards, we will focus on reviewing existing microfluidic applications of negative magnetophoresis, including separation, focusing, trapping and concentration of particles and cells, determination of cell density, measurement of particles' magnetic susceptibility, and others. We will also examine the need for developing biocompatible magnetic liquids for live cell manipulation and analysis, and its recent progress. Finally, we will conclude this review with a brief outlook for this exciting research field.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA
| | - Rui Cheng
- College of Engineering, The University of Georgia, 220 Riverbend Road, Room 166, Athens, Georgia 30602, USA
| | - Joshua R Miller
- Department of Chemistry, The University of Georgia, Athens, Georgia 30602, USA
| | - Leidong Mao
- College of Engineering, The University of Georgia, 220 Riverbend Road, Room 166, Athens, Georgia 30602, USA
| |
Collapse
|
16
|
Zhao W, Zhu T, Cheng R, Liu Y, He J, Qiu H, Wang L, Nagy T, Querec TD, Unger ER, Mao L. Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids. ADVANCED FUNCTIONAL MATERIALS 2016; 26:3990-3998. [PMID: 27478429 PMCID: PMC4963013 DOI: 10.1002/adfm.201503838] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h-1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples.
Collapse
Affiliation(s)
- Wujun Zhao
- Department of Chemistry, The University of Georgia Athens, GA 30602, USA
| | - Taotao Zhu
- Department of Chemistry, The University of Georgia Athens, GA 30602, USA
| | - Rui Cheng
- College of Engineering, The University of Georgia, 220 Riverbend Road Room, 166, Athens, GA 30602, USA
| | - Yufei Liu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Jian He
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Hong Qiu
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Lianchun Wang
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Troy D. Querec
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic, Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Elizabeth R. Unger
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic, Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Leidong Mao
- College of Engineering, The University of Georgia, 220 Riverbend Road Room, 166, Athens, GA 30602, USA
| |
Collapse
|
17
|
Wang ZM, Wu RG, Wang ZP, Ramanujan RV. Magnetic Trapping of Bacteria at Low Magnetic Fields. Sci Rep 2016; 6:26945. [PMID: 27254771 PMCID: PMC4890591 DOI: 10.1038/srep26945] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 05/03/2016] [Indexed: 02/04/2023] Open
Abstract
A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.
Collapse
Affiliation(s)
- Z M Wang
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore
| | - R G Wu
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - Z P Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075, Singapore
| | - R V Ramanujan
- School of Materials Science and Engineering, Nanyang Technological University 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
18
|
Zhou R, Wang C. Multiphase ferrofluid flows for micro-particle focusing and separation. BIOMICROFLUIDICS 2016; 10:034101. [PMID: 27190567 PMCID: PMC4859830 DOI: 10.1063/1.4948656] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/25/2016] [Indexed: 05/16/2023]
Abstract
Ferrofluids have demonstrated great potential for a variety of manipulations of diamagnetic (or non-magnetic) micro-particles/cells in microfluidics, including sorting, focusing, and enriching. By utilizing size dependent magnetophoresis velocity, most of the existing techniques employ single phase ferrofluids to push the particles towards the channel walls. In this work, we demonstrate a novel strategy for focusing and separating diamagnetic micro-particles by using the laminar fluid interface of two co-flowing fluids-a ferrofluid and a non-magnetic fluid. Next to the microfluidic channel, microscale magnets are fabricated to generate strong localized magnetic field gradients and forces. Due to the magnetic force, diamagnetic particles suspended in the ferrofluid phase migrate across the ferrofluid stream at the size-dependent velocities. Because of the low Reynolds number and high Péclet number associated with the flow, the fluid interface is sharp and stable. When the micro-particles migrate to the interface, they are accumulated near the interface, resulting in effective focusing and separation of particles. We investigated several factors that affect the focusing and separation efficiency, including susceptibility of the ferrofluid, distance between the microfluidic channel and microscale magnet, and width of the microfluidic channel. This concept can be extended to multiple fluid interfaces. For example, a complete separation of micro-particles was demonstrated by using a three-stream multiphase flow configuration.
Collapse
Affiliation(s)
- Ran Zhou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , 400 W. 13th St., Rolla, Missouri 65409, USA
| | - Cheng Wang
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology , 400 W. 13th St., Rolla, Missouri 65409, USA
| |
Collapse
|
19
|
Xi J, Zhang Z, Si XA, Yang J, Deng W. Optimization of magnetophoretic-guided drug delivery to the olfactory region in a human nose model. Biomech Model Mechanobiol 2015; 15:877-91. [PMID: 26386567 DOI: 10.1007/s10237-015-0730-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/13/2015] [Indexed: 02/03/2023]
Abstract
Magnetophoretic-guided delivery has been shown to be able to improve the olfactory doses. However, due to the complex nasal structure and quick decay of magnetic intensity, precise control of particle motion in the human nose remains a challenge. In this study, an optimization model was developed for magnetophoretic olfactory delivery systems. The performance of the model was evaluated using a baseline device design in an MRI-based human nose geometry. Three key components of the delivery system were examined, which included the particle release position, the front magnet to minimize nasal valve depositions, and the top magnet to attract particles into the olfactory region. Results show that the magnetophoretic olfactory delivery device can be significantly improved by optimizing the product and operational parameters. The olfactory delivery efficiency was increased by 1.5-fold compared to the baseline design. The top magnet height and strength were shown to be the most influential factor in olfactory delivery, followed by the drug release position and the front magnet strength. The optimization framework developed in this study can be easily adapted for the optimization of intranasal drug delivery to other regions such as paranasal sinuses.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, 1200 South Franklin Street, Mount Pleasant, MI, 48858, USA.
| | - Ze Zhang
- School of Engineering and Technology, Central Michigan University, 1200 South Franklin Street, Mount Pleasant, MI, 48858, USA
| | - Xiuhua April Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| | - Jing Yang
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, China
| | - Wu Deng
- Department of Anesthesiology, Boston University, Boston, MA, USA
| |
Collapse
|
20
|
Zhou Y, Kumar DT, Lu X, Kale A, DuBose J, Song Y, Wang J, Li D, Xuan X. Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet. BIOMICROFLUIDICS 2015. [PMID: 26221197 PMCID: PMC4499041 DOI: 10.1063/1.4926615] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Trapping and preconcentrating particles and cells for enhanced detection and analysis are often essential in many chemical and biological applications. Existing methods for diamagnetic particle trapping require the placement of one or multiple pairs of magnets nearby the particle flowing channel. The strong attractive or repulsive force between the magnets makes it difficult to align and place them close enough to the channel, which not only complicates the device fabrication but also restricts the particle trapping performance. This work demonstrates for the first time the use of a single permanent magnet to simultaneously trap diamagnetic and magnetic particles in ferrofluid flows through a T-shaped microchannel. The two types of particles are preconcentrated to distinct locations of the T-junction due to the induced negative and positive magnetophoretic motions, respectively. Moreover, they can be sequentially released from their respective trapping spots by simply increasing the ferrofluid flow rate. In addition, a three-dimensional numerical model is developed, which predicts with a reasonable agreement the trajectories of diamagnetic and magnetic particles as well as the buildup of ferrofluid nanoparticles.
Collapse
Affiliation(s)
- Yilong Zhou
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Dhileep Thanjavur Kumar
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Xinyu Lu
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Akshay Kale
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - John DuBose
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University , Dalian 116026, China
| | - Junsheng Wang
- College of Information Science and Technology, Dalian Maritime University , Dalian 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| |
Collapse
|
21
|
Three dimensional simulation of negative-magnetophoretic filtration of non-magnetic nanoparticles. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Xi J, Zhang Z, Si XA. Improving intranasal delivery of neurological nanomedicine to the olfactory region using magnetophoretic guidance of microsphere carriers. Int J Nanomedicine 2015; 10:1211-22. [PMID: 25709443 PMCID: PMC4334328 DOI: 10.2147/ijn.s77520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Although direct nose-to-brain drug delivery has multiple advantages, its application is limited by the extremely low delivery efficiency (<1%) to the olfactory region where drugs can enter the brain. It is crucial to developing new methods that can deliver drug particles more effectively to the olfactory region. MATERIALS AND METHODS We introduced a delivery method that used magnetophoresis to improve olfactory delivery efficiency. The performance of the proposed method was assessed numerically in an image-based human nose model. Influences of the magnet layout, magnet strength, drug-release position, and particle diameter on the olfactory dosage were examined. RESULTS AND DISCUSSION Results showed that particle diameter was a critical factor in controlling the motion of nasally inhaled ferromagnetic drug particles. The optimal particle size was found to be approximately 15 μm for effective magnetophoretic guidance while avoiding loss of particles to the walls in the anterior nose. Olfactory delivery efficiency was shown to be sensitive to the position and strength of magnets and the release position of drug particles. The results of this study showed that clinically significant olfactory doses (up to 45%) were feasible using the optimal combination of magnet layout, selective drug release, and microsphere-carrier diameter. A 64-fold-higher delivery of dosage was predicted in the magnetized nose compared to the control case, which did not have a magnetic field. However, the sensitivity of olfactory dosage to operating conditions and the unstable nature of magnetophoresis make controlled guidance of nasally inhaled aerosols still highly challenging.
Collapse
Affiliation(s)
- Jinxiang Xi
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Ze Zhang
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI, USA
| | - Xiuhua A Si
- Department of Mechanical Engineering, California Baptist University, Riverside, CA, USA
| |
Collapse
|
23
|
Tarn MD, Elders LT, Peyman SA, Pamme N. Diamagnetic repulsion of particles for multilaminar flow assays. RSC Adv 2015. [DOI: 10.1039/c5ra21867e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A continuous multilaminar flow reaction was performed on functionalised polymer particlesviadiamagnetic repulsion forces, using a simple, inexpensive setup.
Collapse
|
24
|
Lu X, DuBose J, Joo SW, Qian S, Xuan X. Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel. BIOMICROFLUIDICS 2015; 9:014108. [PMID: 25713690 PMCID: PMC4304953 DOI: 10.1063/1.4906798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 05/05/2023]
Abstract
Focusing suspended particles in a fluid into a single file is often necessary prior to continuous-flow detection, analysis, and separation. Electrokinetic particle focusing has been demonstrated in constricted microchannels by the use of the constriction-induced dielectrophoresis. However, previous studies on this subject have been limited to Newtonian fluids only. We report in this paper an experimental investigation of the viscoelastic effects on electrokinetic particle focusing in non-Newtonian polyethylene oxide solutions through a constricted microchannel. The width of the focused particle stream is found NOT to decrease with the increase in DC electric field, which is different from that in Newtonian fluids. Moreover, particle aggregations are observed at relatively high electric fields to first form inside the constriction. They can then either move forward and exit the constriction in an explosive mode or roll back to the constriction entrance for further accumulations. These unexpected phenomena are distinct from the findings in our earlier paper [Lu et al., Biomicrofluidics 8, 021802 (2014)], where particles are observed to oscillate inside the constriction and not to pass through until a chain of sufficient length is formed. They are speculated to be a consequence of the fluid viscoelasticity effects.
Collapse
Affiliation(s)
- Xinyu Lu
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - John DuBose
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University , Gyongsan 712-719, South Korea
| | - Shizhi Qian
- Institute of Micro/Nanotechnology, Old University , Norfolk, Virginia 23529, USA
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University , Clemson, South Carolina 29634-0921, USA
| |
Collapse
|
25
|
Zhu GP, Hejiazan M, Huang X, Nguyen NT. Magnetophoresis of diamagnetic microparticles in a weak magnetic field. LAB ON A CHIP 2014; 14:4609-15. [PMID: 25325774 DOI: 10.1039/c4lc00885e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Magnetic manipulation is a promising technique for lab-on-a-chip platforms. The magnetic approach can avoid problems associated with heat, surface charge, ionic concentration and pH level. The present paper investigates the migration of diamagnetic particles in a ferrofluid core stream that is sandwiched between two diamagnetic streams in a uniform magnetic field. The three-layer flow is expanded in a circular chamber for characterisation based on imaging of magnetic nanoparticles and fluorescent microparticles. A custom-made electromagnet generates a uniform magnetic field across the chamber. In a relatively weak uniform magnetic field, the diamagnetic particles in the ferrofluid move and spread across the chamber. Due to the magnetization gradient formed by the ferrofluid, diamagnetic particles undergo negative magnetophoresis and move towards the diamagnetic streams. The effects of magnetic field strength and the concentration of diamagnetic particles are studied in detail.
Collapse
Affiliation(s)
- Gui-Ping Zhu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798
| | | | | | | |
Collapse
|
26
|
Kashevsky SB, Kashevsky BE. Analytical model of batch magnetophoretic separation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062308. [PMID: 23848676 DOI: 10.1103/physreve.87.062308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/23/2013] [Indexed: 06/02/2023]
Abstract
Magnetophoresis (the motion of magnetic particles driven by the nonuniform magnetic field), that for a long time has been used for extracting magnetically susceptible objects in diverse industries, now attracts interest to develop more sophisticated microfluidic and batch techniques for separation and manipulation of biological particles, and magnetically assisted absorption and catalysis in organic chemistry, biochemistry, and petrochemistry. A deficiency of magnetic separation science is the lack of simple analytical models imitating real processes of magnetic separation. We have studied the motion of superparamagnetic (generally, soft magnetic) particles in liquid in the three-dimensional field of the diametrically polarized permanent cylindrical magnet; this geometry is basically representative of the batch separation mode. In the limit of the infinite-length magnet, we found the particle magnetophoresis proceeds independently of the magnet polarization direction, following the simple analytical relation incorporating all the relevant physical and geometrical parameters of the particle-magnet system. In experiments with a finite-length magnet we have shown applicability of the developed theory as to analyze the performance of the real batch separation systems in the noncooperative mode, and finally, we have presented an example of such analysis for the case of immunomagnetic cell separation and developed a criterion of the model limitation imposed by the magnetic aggregation of particles.
Collapse
Affiliation(s)
- S B Kashevsky
- Laboratory of Physical-Chemical Hydrodynamics, A. V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of Belarus 15, P. Brovki Street, 220072, Minsk, Belarus.
| | | |
Collapse
|
27
|
Tarn MD, Peyman SA, Pamme N. Simultaneous trapping of magnetic and diamagnetic particle plugs for separations and bioassays. RSC Adv 2013. [DOI: 10.1039/c3ra40237a] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Kokkinis G, Keplinger F, Giouroudi I. On-chip microfluidic biosensor using superparamagnetic microparticles. BIOMICROFLUIDICS 2013; 7:54117. [PMID: 24396528 PMCID: PMC3820637 DOI: 10.1063/1.4826546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/10/2013] [Indexed: 05/15/2023]
Abstract
In this paper, an integrated solution towards an on-chip microfluidic biosensor using the magnetically induced motion of functionalized superparamagnetic microparticles (SMPs) is presented. The concept of the proposed method is that the induced velocity on SMPs in suspension, while imposed to a magnetic field gradient, is inversely proportional to their volume. Specifically, a velocity variation of suspended functionalized SMPs inside a detection microchannel with respect to a reference velocity, specified in a parallel reference microchannel, indicates an increase in their non-magnetic volume. This volumetric increase of the SMPs is caused by the binding of organic compounds (e.g., biomolecules) to their functionalized surface. The new compounds with the increased non-magnetic volume are called loaded SMPs (LSMPs). The magnetic force required for the manipulation of the SMPs and LSMPs is produced by current currying conducting microstructures, driven by a programmable microcontroller. Experiments were carried out as a proof of concept. A promising decrease in the velocity of the LSMPs in comparison to that of the SMPs was measured. Thus, it is the velocity variation which determines the presence of the organic compounds in the sample fluid.
Collapse
Affiliation(s)
- G Kokkinis
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria
| | - F Keplinger
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria
| | - I Giouroudi
- Institute of Sensor and Actuator Systems, Vienna University of Technology, Gusshausstrasse 27-29/366-ISS, Vienna 1040, Austria
| |
Collapse
|
29
|
Liang L, Xuan X. Continuous sheath-free magnetic separation of particles in a U-shaped microchannel. BIOMICROFLUIDICS 2012; 6:44106. [PMID: 24175006 PMCID: PMC3500308 DOI: 10.1063/1.4765335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/16/2012] [Indexed: 05/07/2023]
Abstract
Particle separation is important to many chemical and biomedical applications. Magnetic field-induced particle separation is simple, cheap, and free of fluid heating issues that accompany electric, acoustic, and optical methods. We develop herein a novel microfluidic approach to continuous sheath-free magnetic separation of particles. This approach exploits the negative or positive magnetophoretic deflection to focus and separate particles in the two branches of a U-shaped microchannel, respectively. It is applicable to both magnetic and diamagnetic particle separations, and is demonstrated through the sorting of 5 μm and 15 μm polystyrene particles suspended in a dilute ferrofluid.
Collapse
Affiliation(s)
- Litao Liang
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA
| | | |
Collapse
|
30
|
Zhu T, Cheng R, Lee SA, Rajaraman E, Eiteman MA, Querec TD, Unger ER, Mao L. Continuous-flow Ferrohydrodynamic Sorting of Particles and Cells in Microfluidic Devices. MICROFLUIDICS AND NANOFLUIDICS 2012; 13:645-654. [PMID: 26430394 PMCID: PMC4587988 DOI: 10.1007/s10404-012-1004-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A new sorting scheme based on ferrofluid hydrodynamics (ferrohydrodynamics) was used to separate mixtures of particles and live cells simultaneously. Two species of cells, including Escherichia coli and Saccharomyces cerevisiae, as well as fluorescent polystyrene microparticles were studied for their sorting throughput and efficiency. Ferrofluids are stable magnetic nanoparticles suspensions. Under external magnetic fields, magnetic buoyancy forces exerted on particles and cells lead to size-dependent deflections from their laminar flow paths and result in spatial separation. We report the design, modeling, fabrication and characterization of the sorting device. This scheme is simple, low-cost and label-free compared to other existing techniques.
Collapse
Affiliation(s)
- Taotao Zhu
- Department of Chemistry, Nanoscale Science and Engineering Center, The University of Georgia, Athens, Georgia 30602, USA
| | - Rui Cheng
- Faculty of Engineering, Nanoscale Science and Engineering Center, The University of Georgia, Athens, Georgia 30602, USA
| | - Sarah A. Lee
- Center for Molecular BioEngineering, Department of Biological and Agricultural Engineering, The University of Georgia, Athens, Georgia 30602, USA
| | - Eashwar Rajaraman
- Center for Molecular BioEngineering, Department of Biological and Agricultural Engineering, The University of Georgia, Athens, Georgia 30602, USA
| | - Mark A. Eiteman
- Center for Molecular BioEngineering, Department of Biological and Agricultural Engineering, The University of Georgia, Athens, Georgia 30602, USA
| | - Troy D. Querec
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Elizabeth R. Unger
- Chronic Viral Diseases Branch, Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Leidong Mao
- Faculty of Engineering, Nanoscale Science and Engineering Center, The University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|