1
|
Böhmer T, Pabst F, Gabriel JP, Zeißler R, Blochowicz T. On the spectral shape of the structural relaxation in supercooled liquids. J Chem Phys 2025; 162:120902. [PMID: 40135608 DOI: 10.1063/5.0254534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Structural relaxation in supercooled liquids is non-exponential. In susceptibility representation, χ″(ν), the spectral shape of the structural relaxation is observed as an asymmetrically broadened peak with a ν1 low- and ν-β high-frequency behavior. In this perspective article, we discuss common notions, recent results, and open questions regarding the spectral shape of the structural relaxation. In particular, we focus on the observation that a high-frequency behavior of ν-1/2 appears to be a generic feature in a broad range of supercooled liquids. Moreover, we review extensive evidence that contributions from orientational cross-correlations can lead to deviations from the generic spectral shape in certain substances, in particular in dielectric loss spectra. In addition, intramolecular dynamics can contribute significantly to the spectral shape in substances containing more complex and flexible molecules. Finally, we discuss the open questions regarding potential physical origins of the generic ν-1/2 behavior and the evolution of the spectral shape toward higher temperatures.
Collapse
Affiliation(s)
- Till Böhmer
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Florian Pabst
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, 34136 Trieste, Italy
| | - Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Cologne, Germany
| | - Rolf Zeißler
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
2
|
Gabriel JP, Dyre JC, Hecksher T. Linear-Limit Aging Times of Three Monoalcohols. J Phys Chem B 2025; 129:3272-3279. [PMID: 40096660 DOI: 10.1021/acs.jpcb.5c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
This paper presents data on the physical aging of three monoalcohols, 2-ethyl-1-butanol, 5-methyl-2-hexanol, and 1-phenyl-1-propanol. Aging is studied by monitoring the dielectric loss at a fixed frequency in the kHz range following temperature jumps of a few Kelvin's magnitude, starting from states of equilibrium. The three alcohols differ in Debye relaxation strength and how much the Debye process is separated from the α process. We first demonstrate that single-parameter aging describes all data well and proceed to utilize this fact to identify the linear-limit normalized aging relaxation functions. From the Laplace transform of these functions, the linear-limit aging loss-peak angular frequency defines the inverse of the linear aging relaxation time. This allows for a comparison to the temperature dependence of the Debye and α dielectric relaxation times of the three monoalcohols. We conclude that the aging response for 5-methyl-2-hexanol and 2-ethyl-1-butanol follows the α relaxation, not the Debye process; no firm conclusion can be reached for 1-phenyl-1-propanol because its Debye and α processes are too close to be reliably distinguished.
Collapse
Affiliation(s)
- Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
- Institute of Materials Physics in Space, German Aerospace Center, Cologne D-51170, Germany
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde DK-4000, Denmark
| |
Collapse
|
3
|
Coslovich D, Galliano L, Costigliola L. Freezing, melting, and the onset of glassiness in binary mixtures. J Chem Phys 2025; 162:061102. [PMID: 39936512 DOI: 10.1063/5.0252877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
We clarify the relationship between freezing, melting, and the onset of glassy dynamics in a prototypical glass-forming mixture model. Our starting point is a precise operational definition of the onset of glassiness, as expressed by the emergence of inflections in time-dependent correlation functions. By scanning the temperature-composition phase diagram of the mixture, we find a disconnect between the onset of glassiness and freezing. Surprisingly, however, the onset temperature closely tracks the melting line, along which the excess entropy is approximately constant. At fixed composition, all characteristic temperatures display nonetheless similar pressure dependencies, which are very well predicted by the isomorph theory. While our results rule out a general connection between thermodynamic metastability and glassiness, they call for a reassessment of the role of crystalline precursors in glass-forming liquids.
Collapse
Affiliation(s)
- Daniele Coslovich
- Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy
| | - Leonardo Galliano
- Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151 Trieste, Italy
| | - Lorenzo Costigliola
- "Glass and Time," IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Drozd-Rzoska A, Kalabiński J, Rzoska SJ. Critical Model Insight into Broadband Dielectric Properties of Neopentyl Glycol (NPG). MATERIALS (BASEL, SWITZERLAND) 2024; 17:4144. [PMID: 39203322 PMCID: PMC11356773 DOI: 10.3390/ma17164144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/03/2024]
Abstract
This report presents the low-frequency (LF), static, and dynamic dielectric properties of neopentyl glycol (NPG), an orientationally disordered crystal (ODIC)-forming material important for the barocaloric effect applications. High-resolution tests were carried out for 173K
Collapse
Affiliation(s)
| | | | - Sylwester J. Rzoska
- Institute of High Pressure Physics Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| |
Collapse
|
5
|
Schlenoff JB, Akkaoui K. Unifying the temperature dependent dynamics of glass formers. J Chem Phys 2024; 161:034502. [PMID: 39007391 DOI: 10.1063/5.0211693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Strong changes in bulk properties, such as modulus and viscosity, are observed near the glass transition temperature, Tg, of amorphous materials. For more than a century, intense efforts have been made to define a microscopic origin for these macroscopic changes in properties. Using transition state theory (TST), we delve into the atomic/molecular level picture of how microscopic localized unit relaxations, or "cage rattles," evolve to macroscopic structural relaxations above Tg. Unit motion is broken down into two populations: (1) simultaneous rearrangement occurs among a critical number of units, nα, which ranges from 1 to 4, allowing a systematic classification of glass formers, GFs, that is compared to fragility; and (2) near Tg, adjacent units provide additional free volume for rearrangement, not simultaneously, but within the "primitive" lifetime, τ1, of one unit rattling in its cage. Relaxation maps illustrate how Johari-Goldstein β-relaxations stem from the rattle of nα units. We analyzed a wide variety of glassy materials and materials with a glassy response using literature data. Our four-parameter equation fits "strong" and "weak" GFs over the entire range of temperatures and also extends to other glassy systems, such as ion-transporting polymers and ferroelectric relaxors. The role of activation entropy in boosting preexponential factors to high "unphysical" apparent frequencies is discussed. Enthalpy-entropy compensation is clearly illustrated using the TST approach.
Collapse
Affiliation(s)
- Joseph B Schlenoff
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Khalil Akkaoui
- Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
6
|
Richert R. Dielectric Study of n-Propanol during Physical Vapor Deposition: No Surface Mobility and No Kinetic Stability. J Phys Chem B 2024; 128:5528-5533. [PMID: 38781977 DOI: 10.1021/acs.jpcb.4c01904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Dielectric relaxation experiments have been performed on n-propanol (NPOH) films during physical vapor deposition at temperatures above and below its glass transition, Tg = 97 K. The results for NPOH are compared with those of analogous experiments on methyl-m-toluate (MMT) and 2-methyltetrahydrofuran (MTHF), with all three deposited at the same reduced temperature, 0.82Tg. While MMT and MTHF display clear signs of a highly mobile surface layer, no such feature is observed for NPOH. The existence of this in situ observed mobile surface layer correlates perfectly with the material's ability to form kinetically stable glasses, as NPOH differs from MMT and MTHF by not displaying kinetic stability.
Collapse
Affiliation(s)
- R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
7
|
Koymeth S, Yao B, Paluch M, Dulski M, Swadzba-Kwasny M, Wojnarowska Z. Inflection Point in Pressure Dependence of Ionic Conductivity as a Fingerprint of Local Structure Formation. J Phys Chem B 2024; 128:5109-5117. [PMID: 38718191 PMCID: PMC11129299 DOI: 10.1021/acs.jpcb.3c08506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024]
Abstract
In this study, we employed dielectric spectroscopy to investigate the effect of temperature and pressure on the ion dynamics of phosphonium ionic liquids (ILs) differing by the length of an alkyl chain, [P666,n][TFSI] (n = 2, 6, 8, 12). We found that both temperature and pressure dependence of dc-conductivity (σdc) determined for all examined ILs herein exhibit unique characteristics, unusual for aprotic ILs. Two regions differing by ion self-organization have been identified from the derivative analysis of σdc(T-1) data. On the other hand, isothermal measurements performed at elevated pressure revealed a unique concave-convex character of σdc(P) dependences, resulting in a clear minimum in the pressure behavior of activation volume. Such an inflection point characterizing the pressure dependence of σdc in [P666,n][TFSI] ILs can be considered an inherent feature of ion dynamics governed by structural self-assembly. Our results offer a unique perspective to link the ion mobility at various T-P conditions to the nanostructural organization of ionic systems.
Collapse
Affiliation(s)
- S. Koymeth
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - B. Yao
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - M. Paluch
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - M. Dulski
- Faculty
of Science and Technology, Institute of Materials Science, University of Silesia in Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - M. Swadzba-Kwasny
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Road, Belfast BT9 5AG, U.K.
| | - Z. Wojnarowska
- Faculty
of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| |
Collapse
|
8
|
Romanini M, Macovez R, Valenti S, Noor W, Tamarit JL. Dielectric Spectroscopy Studies of Conformational Relaxation Dynamics in Molecular Glass-Forming Liquids. Int J Mol Sci 2023; 24:17189. [PMID: 38139017 PMCID: PMC10743228 DOI: 10.3390/ijms242417189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
We review experimental results obtained with broadband dielectric spectroscopy concerning the relaxation times and activation energies of intramolecular conformational relaxation processes in small-molecule glass-formers. Such processes are due to the interconversion between different conformers of relatively flexible molecules, and generally involve conformational changes of flexible chain or ring moieties, or else the rigid rotation of planar groups, such as conjugated phenyl rings. Comparative analysis of molecules possessing the same (type of) functional group is carried out in order to test the possibility of assigning the dynamic conformational isomerism of given families of organic compounds to the motion of specific molecular subunits. These range from terminal halomethyl and acetyl/acetoxy groups to both rigid and flexible ring structures, such as the planar halobenzene cycles or the buckled saccharide and diazepine rings. A short section on polyesters provides a generalisation of these findings to synthetic macromolecules.
Collapse
Affiliation(s)
| | | | | | | | - Josep Lluís Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Barcelona East School of Engineering (EEBE), Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (M.R.); (R.M.); (S.V.); (W.N.)
| |
Collapse
|
9
|
Baptista LA, Sevilla M, Wagner M, Kremer K, Cortes-Huerto R. Chilling alcohol on the computer: isothermal compressibility and the formation of hydrogen-bond clusters in liquid propan-1-ol. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:117. [PMID: 38019330 PMCID: PMC10687148 DOI: 10.1140/epje/s10189-023-00380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Molecular dynamics simulations have been performed to compute the isothermal compressibility [Formula: see text] of liquid propan-1-ol in the temperature range [Formula: see text] K. A change in behaviour, from normal (high T) to anomalous (low T), has been identified for [Formula: see text] at [Formula: see text] K. The average number of hydrogen bonds (H-bond) per molecule turns to saturation in the same temperature interval, suggesting the formation of a relatively rigid network. Indeed, simulation results show a strong tendency to form H-bond clusters with distinct boundaries, with the average largest size and width of the size distribution growing upon decreasing temperature, in agreement with previous theoretical and experimental studies. These results also emphasise a connection between the behaviour of [Formula: see text] and the formation of nanometric structures.
Collapse
Affiliation(s)
- Luis A Baptista
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mauricio Sevilla
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | | |
Collapse
|
10
|
Łucak K, Szeremeta AZ, Wrzalik R, Grelska J, Jurkiewicz K, Soszka N, Hachuła B, Kramarczyk D, Grzybowska K, Yao B, Kamiński K, Pawlus S. Experimental and Computational Approach to Studying Supramolecular Structures in Propanol and Its Halogen Derivatives. J Phys Chem B 2023; 127:9102-9110. [PMID: 37846653 PMCID: PMC10614193 DOI: 10.1021/acs.jpcb.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/28/2023] [Indexed: 10/18/2023]
Abstract
A series of four alcohols, n-propanol and its halogen (Cl, Br, and I) derivatives, were selected to study the effects of variation in polarity and halogen-driven interactions on the hydrogen bonding pattern and supramolecular structure by means of experimental and theoretical methods. It was demonstrated on both grounds that the average strength of H-bonds remains the same but dissociation enthalpy, the size of molecular nanoassemblies, as well as long-range correlations between dipoles vary with the molecular weight of halogen atom. Further molecular dynamics simulations indicated that it is connected to the variation in the molecular order introduced by specific halogen-based hydrogen bonds and halogen-halogen interactions. Our results also provided important experimental evidence supporting the assumption of the transient chain model on the molecular origin of the structural process in self-assembling alcohols.
Collapse
Affiliation(s)
- Kinga Łucak
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Anna Z. Szeremeta
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Roman Wrzalik
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Joanna Grelska
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Karolina Jurkiewicz
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Natalia Soszka
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Barbara Hachuła
- Institute
of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Daniel Kramarczyk
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Katarzyna Grzybowska
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Beibei Yao
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Kamil Kamiński
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| | - Sebastian Pawlus
- Institute
of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland
| |
Collapse
|
11
|
Mikkelsen M, Gabriel JP, Hecksher T. Dielectric and Shear Mechanical Spectra of Propanols: The Influence of Hydrogen-Bonded Structures. J Phys Chem B 2023; 127:371-377. [PMID: 36563319 DOI: 10.1021/acs.jpcb.2c07120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a dielectric and shear mechanical study of 1-propanol and three phenylpropanols. Contrary to other monoalcohols, the phenylpropanols do not show a bimodal behavior in their dielectric response, but instead show a single, rather narrow process. Combined dielectric and light scattering spectra (Böhmer, T.; et al. J. Phys. Chem. B 2019, 123, 10959) have shown that this single peak may be separated into a self- and a cross-correlation part, thus indicating that phenylpropanols do display features originating from hydrogen-bonded structures. The shear mechanical spectra support that interpretation, demonstrating a subtle, yet clear, low-frequency polymer-like mode, similar to what is found in other monoalcohols. An analysis of the characteristic time scales found in the spectra shows that shear alpha relaxation is faster than the dielectric alpha and that time scale separation of the dielectric Debye and alpha processes is temperature independent and nearly identical in all the phenylpropanols.
Collapse
Affiliation(s)
- Mathias Mikkelsen
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde 4000, Denmark
| |
Collapse
|
12
|
Richert R. One experiment makes a direct comparison of structural recovery with equilibrium relaxation. J Chem Phys 2022; 157:224501. [PMID: 36546803 DOI: 10.1063/5.0131342] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
For a molecular glass-former, propylene glycol, we directly compare the equilibrium fluctuations, measured as "structural" relaxation in the regime of linear response, with structural recovery, i.e., field induced physical aging in the limit of a small perturbation. The two distinct correlation functions are derived from a single experiment. Because the relaxation time changes only 2% during structural recovery, no aging model is needed to analyze the results. Although being conceptually different processes, dielectric relaxation and recovery dynamics are observed to be identical for propylene glycol, whereas single-particle dynamics as seen by photon correlation spectroscopy are significantly faster. This confirms the notion that structural recovery and aging are governed by all modes observed by dielectric spectroscopy, i.e., including cross correlations, not only by single-particle dynamics. A comparison with analogous results for other materials suggests that the relation between relaxation and recovery time scales may be material specific rather than universal.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
13
|
Singh LP. Primary and secondary relaxation processes in poly(propylene glycol) monobutyl ether: a broadband dielectric spectroscopy investigation. Polym J 2022. [DOI: 10.1038/s41428-022-00728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Investigation of dielectric spectrums, relaxation processes, and intermolecular interactions of primary alcohols, carboxylic acids, and their binary mixtures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Ananiadou A, Papamokos G, Steinhart M, Floudas G. Effect of confinement on the dynamics of 1-propanol and other monohydroxy alcohols. J Chem Phys 2021; 155:184504. [PMID: 34773957 DOI: 10.1063/5.0063967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report the effect of confinement on the dynamics of three monohydroxy alcohols (1-propanol, 2-ethyl-1-hexanol, and 4-methyl-3-heptanol) differing in their chemical structure and, consequently, in the dielectric strength of the "Debye" process. Density functional theory calculations in bulk 1-propanol identified both linear and ring-like associations composed of up to five repeat units. The simulation results revealed that the ring structures, with a low dipole moment (∼2 D), are energetically preferred over the linear assemblies with a dipole moment of 2.18 D per repeat unit. Under confinement in nanoporous alumina (in templates with pore diameters ranging from 400 to 20 nm), all dynamic processes were found to speed up irrespective of the molecular architecture. The characteristic freezing temperatures of the α and the Debye-like processes followed the pore size dependence: Ta,D=Ta,D bulk-A/d1/2, where d is the pore diameter. The characteristic "freezing" temperatures for the Debye-like (the slow process for confined 1-propanol is non-Debye) and the α-processes decrease, respectively, by 6.5 and 13 K in confined 1-propanol, by 9.5 and 19 K in confined 2-ethyl-1-hexanol, and by 9 and 23 K in confined 4-methyl-3-heptanol within the same 25 nm pores. In 2-ethyl-1-hexanol, confinement reduced the number of linearly associated repeats from approximately heptamers in the bulk to dimers within 25 pores. In addition, the slower process in bulk 2-ethyl-1-hexanol and 4-methyl-3-heptanol, where the signal is dominated by ring-like supramolecular assemblies, is clearly non-Debye. The results suggest that the effect of confinement is dominant in the latter assemblies.
Collapse
Affiliation(s)
- Antonela Ananiadou
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - George Papamokos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Martin Steinhart
- Institut für Chemie neuer Materialien, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| |
Collapse
|
16
|
Richert R, Gabriel JP, Thoms E. Structural Relaxation and Recovery: A Dielectric Approach. J Phys Chem Lett 2021; 12:8465-8469. [PMID: 34449235 DOI: 10.1021/acs.jpclett.1c02539] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We compare structural relaxation and structural recovery dynamics for molecular glass-formers, both measured by dielectric techniques in the regime of linear responses. It is emphasized that structural recovery restores ergodicity, whereas structural relaxation or α-processes characterize fluctuations of the system in equilibrium (and thus do not involve a change of structure within experimental resolution). Evidence is provided that structural recovery is linked to rate exchange and thus is distinct from structural relaxation dynamics, even in the limit of small perturbations. As a consequence, structural recovery is somewhat slower and more exponential than the equilibrium dynamics as derived, for instance, from low field dielectric relaxation experiments. This contrasts the standard assumption inherent in models of physical aging, which assume the identity of both responses if measured in the limit of a small perturbation. Typical experiments associated with physical aging and scanning calorimetry involve nonlinear responses and are thus even more complex.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Jan P Gabriel
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Erik Thoms
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
17
|
Ngai KL. Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments. Phys Rev E 2021; 104:015103. [PMID: 34412284 DOI: 10.1103/physreve.104.015103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/07/2021] [Indexed: 11/07/2022]
Abstract
Traditionally the study of dynamics of glass-forming materials has been focused on the structural α relaxation. However, in recent years experimental evidence has revealed that a secondary β relaxation belonging to a special class, called the Johari-Goldstein (JG) β relaxation, has properties strongly linked to the primary α relaxation. By invoking the principle of causality, the relation implies the JG β relaxation is fundamental and indispensable for generating the α relaxation, and the properties of the latter are inherited from the former. The JG β relaxation is observed together with the α relaxation mostly by dielectric spectroscopy. The macroscopic nature of the data allows the use of arbitrary or unproven procedures to analyze the data. Thus the results characterizing the JG β relaxation and the relation of its relaxation time τ_{β} to the α-relaxation time τ_{α} obtained can be equivocal and controversial. Coming to the rescue is the nuclear resonance time-domain-interferometry (TDI) technique covering a wide time range (10^{-9}-10^{-5}s) and a scattering vector q range (9.6-40nm^{-1}). TDI experiments have been carried out on four glass formers, ortho-terphenyl [M. Saito et al., Phys. Rev. Lett. 109, 115705 (2012)10.1103/PhysRevLett.109.115705], polybutadiene [T. Kanaya et al., J. Chem. Phys. 140, 144906 (2014)10.1063/1.4869541], 5-methyl-2-hexanol [F. Caporaletti et al., Sci. Rep. 9, 14319 (2019)10.1038/s41598-019-50824-7], and 1-propanol [F. Caporaletti et al., Nat. Commun. 12, 1867 (2021)10.1038/s41467-021-22154-8]. In this paper the TDI data are reexamined in conjunction with dielectric and neutron scattering data. The results show the JG β relaxation observed by dielectric spectroscopy is heterogeneous and comprises processes with different length scales. A process with a longer length scale has a longer relaxation time. TDI data also prove the primitive relaxation time τ_{0} of the coupling model falls within the distribution of the TDI q-dependent JG β-relaxation times. This important finding explains why the experimental dielectric JG β-relaxation times τ_{β}(T,P) is approximately equal to τ_{0}(T,P) as found in many glass formers at various temperature T and pressure P. The result, τ_{β}(T,P)≈τ_{0}(T,P), in turn explains why the ratio τ_{α}(T,P)/τ_{β}(T,P) is invariant to changes of T and pressure P at constant τ_{α}(T,P), the α-relaxation time.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| |
Collapse
|
18
|
Roed LA, Dyre JC, Niss K, Hecksher T, Riechers B. Time-scale ordering in hydrogen- and van der Waals-bonded liquids. J Chem Phys 2021; 154:184508. [PMID: 34241011 DOI: 10.1063/5.0049108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The time scales of structural relaxation are investigated on the basis of five different response functions for 1,2, 6-hexanetriol, a hydrogen-bonded liquid with a minor secondary contribution, and 2,6,10,15,19,23-hexamethyl-tetracosane (squalane), a van der Waals-bonded liquid with a prominent secondary relaxation process. Time scales of structural relaxation are derived as inverse peak frequencies for each investigated response function. For 1,2,6-hexanetriol, the ratios of the time scales are temperature-independent, while a decoupling of time scales is observed for squalane in accordance with the literature. An alternative evaluation approach is made on the squalane data, extracting time scales from the terminal relaxation mode instead of the peak position, and in this case, temperature-independent time-scale ratios are also found for squalane, despite its strong secondary relaxation contribution. Interestingly, the very same ordering of response-function-specific time scales is observed for these two liquids, which is also consistent with the observation made for simple van der Waals-bonded liquids reported previously [Jakobsen et al., J. Chem. Phys. 136, 081102 (2012)]. This time-scale ordering is based on the following response functions, from fast to slow dynamics: shear modulus, bulk modulus, dielectric permittivity, longitudinal thermal expansivity coefficient, and longitudinal specific heat. These findings indicate a general relation between the time scales of different response functions and, as inter-molecular interactions apparently play a subordinate role, suggest a rather generic nature of the process of structural relaxation.
Collapse
Affiliation(s)
- Lisa Anita Roed
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jeppe C Dyre
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Kristine Niss
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Tina Hecksher
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Birte Riechers
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
19
|
|
20
|
Soszka N, Hachuła B, Tarnacka M, Kaminska E, Pawlus S, Kaminski K, Paluch M. Is a Dissociation Process Underlying the Molecular Origin of the Debye Process in Monohydroxy Alcohols? J Phys Chem B 2021; 125:2960-2967. [PMID: 33691402 PMCID: PMC8041310 DOI: 10.1021/acs.jpcb.0c10970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Indexed: 11/29/2022]
Abstract
Herein, we investigated the molecular dynamics as well as intramolecular interactions in two primary monohydroxy alcohols (MA), 2-ethyl-1-hexanol (2EHOH) and n-butanol (nBOH), by means of broad-band dielectric (BDS) and Fourier transform infrared (FTIR) spectroscopy. The modeling data obtained from dielectric studies within the Rubinstein approach [ Macromolecules 2013, 46, 7525-7541] originally developed to describe the dynamical properties of self-assembling macromolecules allowed us to calculate the energy barrier (Ea) of dissociation from the temperature dependences of relaxation times of Debye and structural processes. We found Ea ∼ 19.4 ± 0.8 and 5.3 ± 0.4 kJ/mol for the former and latter systems, respectively. On the other hand, FTIR data analyzed within the van't Hoff relationship yielded the energy barriers for dissociation Ea ∼ 20.3 ± 2.1 and 12.4 ± 1.6 kJ/mol for 2EHOH and nBOH, respectively. Hence, there was almost a perfect agreement between the values of Ea estimated from dielectric and FTIR studies for the 2EHOH, while some notable discrepancy was noted for the second alcohol. A quite significant difference in the activation barrier of dissociation indicates that there are probably supramolecular clusters of varying geometry or a ring-chain-like equilibrium is strongly affected in both alcohols. Nevertheless, our analysis showed that the association/dissociation processes undergoing within nanoassociates are one of the main factors underlying the molecular origin of the Debye process, supporting the transient chain model.
Collapse
Affiliation(s)
- N. Soszka
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
- August
Chełkowski Institute of Physics, University
of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
| | - B. Hachuła
- Institute
of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M. Tarnacka
- August
Chełkowski Institute of Physics, University
of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - E. Kaminska
- Department
of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences
in Sosnowiec, Medical University of Silesia
in Katowice, ul. Jagiellońska 4, 41-200 Sosnowiec, Poland
| | - S. Pawlus
- August
Chełkowski Institute of Physics, University
of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - K. Kaminski
- August
Chełkowski Institute of Physics, University
of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M. Paluch
- August
Chełkowski Institute of Physics, University
of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian
Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| |
Collapse
|
21
|
Integro-Differential Equation for the Non-Equilibrium Thermal Response of Glass-Forming Materials: Analytical Solutions. Symmetry (Basel) 2021. [DOI: 10.3390/sym13020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An integro-differential equation describes the non-equilibrium thermal response of glass-forming substances with a dynamic (time-dependent) heat capacity to fast thermal perturbations. We found that this heat transfer problem could be solved analytically for a heat source with an arbitrary time dependence and different geometries. The method can be used to analyze the response to local thermal perturbations in glass-forming materials, as well as temperature fluctuations during subcritical crystal nucleation and decay. The results obtained can be useful for applications and a better understanding of the thermal properties of glass-forming materials, polymers, and nanocomposites.
Collapse
|
22
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 924] [Impact Index Per Article: 184.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
23
|
Tarnacka M, Jurkiewicz K, Hachuła B, Wojnarowska Z, Wrzalik R, Bielas R, Talik A, Maksym P, Kaminski K, Paluch M. Correlation between Locally Ordered (Hydrogen-Bonded) Nanodomains and Puzzling Dynamics of Polymethysiloxane Derivative. Macromolecules 2020; 53:10225-10233. [PMID: 33250524 PMCID: PMC7690047 DOI: 10.1021/acs.macromol.0c01289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/11/2020] [Indexed: 02/08/2023]
Abstract
We examined the behavior of poly(mercaptopropyl)methylsiloxane (PMMS), characterized by a polymer chain backbone of alternate silicon and oxygen atoms substituted by a polar pendant group able to form hydrogen bonds (-SH moiety), by means of infrared (FTIR) and dielectric (BDS) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), and rheology. We observed that the examined PMMS forms relatively efficient hydrogen bonds leading to the association of chains in the form of ordered lamellar-like hydrogen-bonded nanodomains. Moreover, the recorded mechanical and dielectric spectra revealed the presence of two relaxation processes. A direct comparison of collected data and relaxation times extracted from two experimental techniques, BDS and rheology, indicates that they monitor different types of the mobility of PMMS macromolecules. Our mechanical measurements revealed the presence of Rouse modes connected to the chain dynamics (slow process) and segmental relaxation (a faster process), whereas in the dielectric loss spectra we observed two relaxation processes related most likely to either the association-dissociation phenomenon within lamellar-like self-assemblies or the sub-Rouse mode (α'-slower process) and segmental (α-faster process) dynamics. Data presented herein allow a better understanding of the peculiar dynamical properties of polysiloxanes and associating polymers having strongly polar pendant moieties.
Collapse
Affiliation(s)
- Magdalena Tarnacka
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Barbara Hachuła
- Institute of Chemistry, University
of Silesia in Katowice, ul. Szkolna 9, 40-007 Katowice, Poland
| | - Zaneta Wojnarowska
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Roman Wrzalik
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Rafał Bielas
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Agnieszka Talik
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Paulina Maksym
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Kamil Kaminski
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute of Physics, University
of Silesia in Katowice, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland
- Silesian Center
of Education and Interdisciplinary Research, University of Silesia in Katowice, ul. 75 Pułku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
24
|
Talik A, Tarnacka M, Geppert-Rybczyńska M, Hachuła B, Bernat R, Chrzanowska A, Kaminski K, Paluch M. Are hydrogen supramolecular structures being suppressed upon nanoscale confinement? The case of monohydroxy alcohols. J Colloid Interface Sci 2020; 576:217-229. [PMID: 32417683 DOI: 10.1016/j.jcis.2020.04.084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/27/2022]
Abstract
In this paper, the molecular dynamics, H-bonding pattern and wettability of the primary and secondary monohydroxyalcohols, 2-ethyl-1-hexanol (2E1H), 2-ethyl-1-butanol (2E1B) and 5-methyl-3-heptanol (5M3H) infiltrated into native and functionalized silica and alumina pores having pore diameters, d = 4 nm and d = 10 nm, have been studied with the use of Broadband Dielectric (BDS) and Fourier Transform InfraRed (FTIR) spectroscopies, as well as contact angle measurements. We found significant differences in the behavior of alcohols forming chain- (2E1H, 2E1B) or micelle-like (5M3H) supramolecular structures despite of their similarities in the wettability and interfacial energy. It turned out that nanoassociates as well as H-bonds are more or less affected by the confinement dependently on the chemical structure and alcohol order. Moreover, a peculiar behavior of the self-assemblies at the interface was noted in the latter material (5M3H). Finally, it was found that irrespectively to the sample, type of pores, functionalization, the temperature evolution of Debye relaxation times, τD, of the confined systems deviates from the bulk behavior always at similar τD due to vitrification of the interfacial layer. This finding is a clear indication that unexpectedly dynamics (mobility) of the supramolecular structures close to the hydrophilic and hydrophobic surfaces is similar in each system.
Collapse
Affiliation(s)
- Agnieszka Talik
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Magdalena Tarnacka
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | | | - Barbara Hachuła
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Roksana Bernat
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Chrzanowska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Kamil Kaminski
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1, 41-500 Chorzow, Poland; Silesian Center of Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
25
|
Berthier L, Ediger MD. How to "measure" a structural relaxation time that is too long to be measured? J Chem Phys 2020; 153:044501. [PMID: 32752666 DOI: 10.1063/5.0015227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has recently become possible to prepare ultrastable glassy materials characterized by structural relaxation times, which vastly exceed the duration of any feasible experiment. Similarly, new algorithms have led to the production of ultrastable computer glasses. Is it possible to obtain a reliable estimate of a structural relaxation time that is too long to be measured? We review, organize, and critically discuss various methods to estimate very long relaxation times. We also perform computer simulations of three dimensional ultrastable hard spheres glasses to test and quantitatively compare some of these methods for a single model system. The various estimation methods disagree significantly, and non-linear and non-equilibrium methods lead to a strong underestimate of the actual relaxation time. It is not yet clear how to accurately estimate extremely long relaxation times.
Collapse
Affiliation(s)
- L Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Density Scaling Based Detection of Thermodynamic Regions of Complex Intermolecular Interactions Characterizing Supramolecular Structures. Sci Rep 2020; 10:9316. [PMID: 32518282 PMCID: PMC7283260 DOI: 10.1038/s41598-020-66244-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/06/2020] [Indexed: 11/17/2022] Open
Abstract
In this paper, applying the density scaling idea to an associated liquid 4-methyl-2-pentanol used as an example, we identify different pressure-volume-temperature ranges within which molecular dynamics is dominated by either complex H-bonded networks most probably leading to supramolecular structures or non-specific intermolecular interactions like van der Waals forces. In this way, we show that the density scaling law for molecular dynamics near the glass transition provides a sensitive tool to detect thermodynamic regions characterized by intermolecular interactions of different type and complexity for a given material in the wide pressure-volume-temperature domain even if its typical form with constant scaling exponent is not obeyed. Moreover, we quantify the observed decoupling between dielectric and mechanical relaxations of the material in the density scaling regime. The suggested methods of analyses and their interpretations open new prospects for formulating models based on proper effective intermolecular potentials describing physicochemical phenomena near the glass transition.
Collapse
|
27
|
Viciosa MT, Moura Ramos JJ, Diogo HP. Thermal behavior and molecular mobility studies in the supercooled liquid and glassy states of carvedilol and loratadine. Int J Pharm 2020; 584:119410. [DOI: 10.1016/j.ijpharm.2020.119410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022]
|
28
|
Ni Y, Song H, Wilcox DA, Medvedev GA, Boudouris BW, Caruthers JM. Rethinking the Analysis of the Linear Viscoelastic Behavior of an Epoxy Polymer near and above the Glass Transition. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yelin Ni
- Davidson School of Chemical Engineering; Forney Hall of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - Hosup Song
- Davidson School of Chemical Engineering; Forney Hall of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - Daniel A. Wilcox
- Davidson School of Chemical Engineering; Forney Hall of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - Grigori A. Medvedev
- Davidson School of Chemical Engineering; Forney Hall of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - Bryan W. Boudouris
- Davidson School of Chemical Engineering; Forney Hall of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| | - James M. Caruthers
- Davidson School of Chemical Engineering; Forney Hall of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907-2100, United States
| |
Collapse
|
29
|
Bartoš J, Arrese-Igor S, Švajdlenková H, Kleinová A, Alegría A. Dynamics of Confined Short-Chain alkanol in MCM-41 by Dielectric Spectroscopy: Effects of matrix and system Treatments and Filling Factor. Polymers (Basel) 2020; 12:E610. [PMID: 32156023 PMCID: PMC7182830 DOI: 10.3390/polym12030610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 11/16/2022] Open
Abstract
The dynamics of n-propanol confined in regular MCM-41 matrix with the pore size Dpore = 40 Å, under various matrix conditioning and sample confining conditions, using broadband dielectric spectroscopy (BDS), is reported. First, various drying procedures with the capacitor filling under air or N2 influence the BDS spectra of the empty MCM-41 and the confined n-PrOH/MCM-41 systems, but have a little effect on the maximum relaxation time of the main process. Finally, various filling factors of n-PrOH medium in the optimally treated MCM-41 system lead to unimodal or bimodal spectra interpreted in terms of the two distinct dynamic phases in the confined states.
Collapse
Affiliation(s)
- Josef Bartoš
- Polymer Institute of SAS, Dúbravská cesta, 9 845 41 Bratislava, Slovakia; (H.Š.); (A.K.)
| | - Silvia Arrese-Igor
- Centro de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; (S.A.-I.); (A.A.)
| | - Helena Švajdlenková
- Polymer Institute of SAS, Dúbravská cesta, 9 845 41 Bratislava, Slovakia; (H.Š.); (A.K.)
| | - Angela Kleinová
- Polymer Institute of SAS, Dúbravská cesta, 9 845 41 Bratislava, Slovakia; (H.Š.); (A.K.)
| | - Angel Alegría
- Centro de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; (S.A.-I.); (A.A.)
- Departamento de Física de Materiales, UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
| |
Collapse
|
30
|
Ngai K, Pawlus S, Paluch M. Explanation of the difference in temperature and pressure dependences of the Debye relaxation and the structural α-relaxation near T of monohydroxy alcohols. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Bomzon B, Khunger Y, Subramanian R. A dielectric and spectrophotometric study of the tautomerization of 2-hydroxypyridine and 2-mercaptopyridine in water. RSC Adv 2020; 10:2389-2395. [PMID: 35494609 PMCID: PMC9048638 DOI: 10.1039/c9ra08392h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
The basic ionization (pk1) and acidic ionization (pk2) constants and equilibrium constant (KT) of 2HPy and 2MPy were determined. The pk1(s) of their N- and X-methyl derivatives (X = O, S) were also determined. The equilibrium constant of 2MPy is approximately 60 times greater than its oxygen analog, 2HPy. The micro-ionization constants of the functional groups, –NH (pkA and pkC) and –XH (pkB and pkD), were determined to provide further insights into the ionization equilibria of these N-heteroaromatic XH compounds (2HPy and 2MPy). The relaxation time of water (τ) in aqueous solutions of 2HPy and 2MPy are collectively used with the KT values to determine the forward (kf) and backward (kb) rate constants of tautomerization. Subsequently, the kf and kb are used to provide the rationale for the KT and τ values. The basic ionization (pk1) and acidic ionization (pk2) constants and equilibrium constant (KT) of 2HPy and 2MPy were determined.![]()
Collapse
Affiliation(s)
- Biswadeep Bomzon
- Department of Chemistry, Indian Institute of Technology Patna 801106 India
| | - Yashita Khunger
- Department of Chemistry, Indian Institute of Technology Patna 801106 India
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna 801106 India
| |
Collapse
|
32
|
Guo Y, Jin X, Kang Z, Wang LM. Distinct changes of Debye relaxation in primary and secondary monoalcohols by carbon nano-dots. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Zhao XY, Wang LN, He YF, Zhou HW, Huang YN. Measurements and analyses of the conductivities of probe ions in monohydroxy alcohol liquids. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Böhmer T, Gabriel JP, Richter T, Pabst F, Blochowicz T. Influence of Molecular Architecture on the Dynamics of H-Bonded Supramolecular Structures in Phenyl-Propanols. J Phys Chem B 2019; 123:10959-10966. [DOI: 10.1021/acs.jpcb.9b07768] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Till Böhmer
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jan Philipp Gabriel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Timo Richter
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Florian Pabst
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
35
|
Ozawa M, Scalliet C, Ninarello A, Berthier L. Does the Adam-Gibbs relation hold in simulated supercooled liquids? J Chem Phys 2019; 151:084504. [DOI: 10.1063/1.5113477] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Misaki Ozawa
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Camille Scalliet
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | | | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
36
|
Ngai KL, Wang LM. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol. J Phys Chem B 2019; 123:714-719. [PMID: 30601008 DOI: 10.1021/acs.jpcb.8b11453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hydrogen-bonded monohydroxyl alcohols form a large class of glass formers studied more than one hundred years, and still the structure and dynamics have continued to be a research problem. Recent advance suggests a hydrogen-bonded transient supramolecular structure, which is the origin of the Debye relaxation dominating the dielectric loss spectra of many monohydroxyl alcohols. Obscured by the slower Debye relaxation, the structural α-relaxation is either not resolved or showing up as a shoulder and the supposedly universal Johari-Goldstein (JG) β-relaxation is not always observed. Thus, properties of the α-relaxation and the JG β-relaxation as well as the strong connection between the two relaxations generally observed in other classes of glass formers are not commonly known in the monohydroxyl alcohols. Notwithstanding, extremely broadband dielectric relaxation and high-precision light scattering experiments published recently have resolved the α-relaxation and a secondary relaxation in two archetypal monohydroxyl alcohols, 1-propanol and 5-methyl-2-hexanol (5M2H) by Gabriel et al. We analyzed their experimental data and applied the Coupling Model to show that the secondary relaxations in 1-propanol and 5M2H are JG β-relaxations with strong connection to the α-relaxation. The result is novel because it is not known before whether the secondary relaxations of these two monohydroxyl alcohols are JG β-relaxation involving the entire molecule or are intramolecular relaxations. On the basis of this conclusion, we predict that the secondary relaxation is pressure-dependent and the ratio τβ( T, P)/τα( T, P) is invariant to variations of P and T, whereas τα( T, P) is maintained constant and provided that the frequency dispersion of the α-relaxation is also constant. The prediction is compared with the dielectric data of 5M2H at elevated pressures. On the basis of the identification of monohydroxyl alcohols as short-chain polymeric liquids by others, an explanation of the stronger T and P dependences of τα( T, P) than the Debye relaxation time τD( T, P) is given.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Università di Pisa , Largo B. Pontecorvo 3 , I-56127 Pisa , Italy.,State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering , Yanshan University , Qinhuangdao , Hebei 066004 , China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering , Yanshan University , Qinhuangdao , Hebei 066004 , China
| |
Collapse
|
37
|
Atawa B, Correia NT, Couvrat N, Affouard F, Coquerel G, Dargent E, Saiter A. Molecular mobility of amorphous N-acetyl-α-methylbenzylamine and Debye relaxation evidenced by dielectric relaxation spectroscopy and molecular dynamics simulations. Phys Chem Chem Phys 2019; 21:702-717. [DOI: 10.1039/c8cp04880k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular mobility of NAC-MBA molecule is described by means of DRS, FSC and MD simulations.
Collapse
|
38
|
Chua YZ, Young-Gonzales AR, Richert R, Ediger MD, Schick C. Dynamics of supercooled liquid and plastic crystalline ethanol: Dielectric relaxation and AC nanocalorimetry distinguish structural α- and Debye relaxation processes. J Chem Phys 2018; 147:014502. [PMID: 28688431 DOI: 10.1063/1.4991006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Physical vapor deposition has been used to prepare glasses of ethanol. Upon heating, the glasses transformed into the supercooled liquid phase and then crystallized into the plastic crystal phase. The dynamic glass transition of the supercooled liquid is successfully measured by AC nanocalorimetry, and preliminary results for the plastic crystal are obtained. The frequency dependences of these dynamic glass transitions observed by AC nanocalorimetry are in disagreement with conclusions from previously published dielectric spectra of ethanol. Existing dielectric loss spectra have been carefully re-evaluated considering a Debye peak, which is a typical feature in the dielectric loss spectra of monohydroxy alcohols. The re-evaluated dielectric fits reveal a prominent dielectric Debye peak, a smaller and asymmetrically broadened peak, which is identified as the signature of the structural α-relaxation and a Johari-Goldstein secondary relaxation process. This new assignment of the dielectric processes is supported by the observation that the AC nanocalorimetry dynamic glass transition temperature, Tα, coincides with the dielectric structural α-relaxation process rather than the Debye process. The combined results from dielectric spectroscopy and AC nanocalorimetry on the plastic crystal of ethanol suggest the occurrence of a Debye process also in the plastic crystal phase.
Collapse
Affiliation(s)
- Y Z Chua
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| | - A R Young-Gonzales
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - C Schick
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18051 Rostock, Germany and Competence Centre CALOR, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18051 Rostock, Germany
| |
Collapse
|
39
|
Kampfrath T, Campen RK, Wolf M, Sajadi M. The Nature of the Dielectric Response of Methanol Revealed by the Terahertz Kerr Effect. J Phys Chem Lett 2018; 9:1279-1283. [PMID: 29474081 DOI: 10.1021/acs.jpclett.7b03281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The dielectric response of liquids in the terahertz (THz) and sub-THz frequency range arises from low-energy collective molecular motions, which are often strongly influenced by intermolecular interactions. To shed light on the microscopic origin of the THz dielectric response of the simplest alcohol, methanol, we resonantly excite this liquid with an intense THz electric-field pulse and monitor the relaxation of the induced optical birefringence. We find a unipolar THz-Kerr-effect signal which, in contrast to aprotic polar liquids, shows a weak coupling between the THz electric field and the permanent molecular dipole moment of the liquid. We assign this weak coupling to the restricted translational rather than rotational nature of the excited mode. Our approach opens a new avenue to the assignment of the dielectric spectrum of liquids to a microscopic origin.
Collapse
Affiliation(s)
- Tobias Kampfrath
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Berlin , Germany
- Department of Physics , Freie Universität Berlin , Berlin , Germany
| | - R Kramer Campen
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Berlin , Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Berlin , Germany
| | - Mohsen Sajadi
- Fritz-Haber-Institut der Max-Planck-Gesellschaft , Berlin , Germany
| |
Collapse
|
40
|
Interpretation of the GHz to THz dielectric relaxation dynamics of water in the framework of the Coupling Model. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Zulli F, Giordano M, Andreozzi L. Chain-Length Dependence of Relaxation and Dynamics in Poly(methyl methacrylate) from Oligomers to Polymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabio Zulli
- Department of Physics “E. Fermi”, University of Pisa and IPCF-CNR, Pisa, Italy
| | - Marco Giordano
- Department of Physics “E. Fermi”, University of Pisa and IPCF-CNR, Pisa, Italy
| | - Laura Andreozzi
- Department of Physics “E. Fermi”, University of Pisa and IPCF-CNR, Pisa, Italy
| |
Collapse
|
42
|
Yang XY, Liu SS, Korobko AV, Picken SJ, Besseling NAM. Changes of the Molecular Mobility of Poly(ε-caprolactone) upon Drawing, Studied by Dielectric Relaxation Spectroscopy. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-018-2030-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Lunkenheimer P, Emmert S, Gulich R, Köhler M, Wolf M, Schwab M, Loidl A. Electromagnetic-radiation absorption by water. Phys Rev E 2017; 96:062607. [PMID: 29347319 DOI: 10.1103/physreve.96.062607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 06/07/2023]
Abstract
Why does a microwave oven work? How does biological tissue absorb electromagnetic radiation? Astonishingly, we do not have a definite answer to these simple questions because the microscopic processes governing the absorption of electromagnetic waves by water are largely unclarified. This absorption can be quantified by dielectric loss spectra, which reveal a huge peak at a frequency of the exciting electric field of about 20 GHz and a gradual tailing off toward higher frequencies. The microscopic interpretation of such spectra is highly controversial and various superpositions of relaxation and resonance processes ascribed to single-molecule or molecule-cluster motions have been proposed for their analysis. By combining dielectric, microwave, THz, and far-infrared spectroscopy, here we provide nearly continuous temperature-dependent broadband spectra of water. Moreover, we find that corresponding spectra for aqueous solutions reveal the same features as pure water. However, in contrast to the latter, crystallization in these solutions can be avoided by supercooling. As different spectral contributions tend to disentangle at low temperatures, this enables us to deconvolute them when approaching the glass transition under cooling. We find that the overall spectral development, including the 20 GHz feature (employed for microwave heating), closely resembles the behavior known for common supercooled liquids. Thus water's absorption of electromagnetic waves at room temperature is not unusual but very similar to that of glass-forming liquids at elevated temperatures, deep in the low-viscosity liquid regime, and should be interpreted along similar lines.
Collapse
Affiliation(s)
- P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - S Emmert
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Gulich
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M Köhler
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M Wolf
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M Schwab
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
44
|
Young-Gonzales AR, Guiseppi-Elie A, Ediger MD, Richert R. Modifying hydrogen-bonded structures by physical vapor deposition: 4-methyl-3-heptanol. J Chem Phys 2017; 147:194504. [PMID: 29166100 DOI: 10.1063/1.4999300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We prepared films of 4-methyl-3-heptanol by vapor depositing onto substrates held at temperatures between Tdep = 0.6Tg and Tg, where Tg is the glass transition temperature. Using deposition rates between 0.9 and 6.0 nm/s, we prepared films about 5 μm thick and measured the dielectric properties via an interdigitated electrode cell onto which films were deposited. Samples prepared at Tdep = Tg display the dielectric behavior of the ordinary supercooled liquid. Films deposited at lower deposition temperatures show a high dielectric loss upon heating toward Tg, which decreases by a factor of about 12 by annealing at Tg = 162 K. This change is consistent with either a drop of the Kirkwood correlation factor, gk, by a factor of about 10, or an increase in the dielectric relaxation times, both being indicative of changes toward ring-like hydrogen-bonded structure characteristic of the ordinary liquid. We rationalize the high dielectric relaxation amplitude in the vapor deposited glass by suggesting that depositions at low temperature provide insufficient time for molecules to form ring-like supramolecular structures for which dipole moments cancel. Surprisingly, above Tg of the ordinary liquid, these vapor deposited films fail to completely recover the dielectric properties of the liquid obtained by supercooling. Instead, the dielectric relaxation remains slower and its amplitude much higher than that of the equilibrium liquid state, indicative of a structure that differs from the equilibrium liquid up to at least Tg + 40 K.
Collapse
Affiliation(s)
- A R Young-Gonzales
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - A Guiseppi-Elie
- Department of Biomedical Engineering, The Dwight Look College of Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - R Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
45
|
Gabriel J, Pabst F, Blochowicz T. Debye Process and β-Relaxation in 1-Propanol Probed by Dielectric Spectroscopy and Depolarized Dynamic Light Scattering. J Phys Chem B 2017; 121:8847-8853. [PMID: 28872311 DOI: 10.1021/acs.jpcb.7b06134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We revisit the reorientational dynamics of 1-propanol as a prototype of a monohydroxy alcohol and H-bonding system by dielectric spectroscopy (DS) and depolarized dynamic light scattering (DDLS). In particular, we address the question of whether the Debye relaxation, which is seen as a dominant process in DS, is visible in light scattering and discuss how the Johari-Goldstein (JG) β-process, which is also a prominent feature of the dielectric spectrum, appears in photon correlation spectroscopy. For that purpose we performed depolarized photon correlation experiments with an improved setup and performed additional time domain dielectric experiments which gives us the possibility to compare dielectric and light scattering data in a broad temperature range. It turns out that the improved setup allows to unambiguously identify the JG β-process, which shows almost identical properties in DDLS as in the dielectric spectra, but a Debye relaxation is not present in the DDLS data and can be excluded down to a level of 2.5% of the α-process amplitude.
Collapse
Affiliation(s)
- Jan Gabriel
- Institut für Festkörperphysik, Technische Universität Darmstadt , 64289 Darmstadt, Germany
| | - Florian Pabst
- Institut für Festkörperphysik, Technische Universität Darmstadt , 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt , 64289 Darmstadt, Germany
| |
Collapse
|
46
|
Ngai KL, Wang LM, Yu HB. Relating Ultrastable Glass Formation to Enhanced Surface Diffusion via the Johari-Goldstein β-Relaxation in Molecular Glasses. J Phys Chem Lett 2017; 8:2739-2744. [PMID: 28585827 DOI: 10.1021/acs.jpclett.7b01192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Glasses are materials essential for modern technology; they are usually prepared by cooling liquids. Recently, novel ultrastable glasses (SGs) with extraordinary thermodynamic and kinetic stability have been created by vapor deposition at appropriate substrate temperatures. However, the underlying mechanism for the formation of SGs is still not established. For most of the molecular SGs created so far, we demonstrate that the formation of SGs is closely related to the Johari-Goldstein β-relaxation from the fact that the lowest substrate temperatures possible for the formation of SGs match the secondary glass-transition temperatures, where the β-relaxation time reaches 103 s. Theoretically the β-relaxation time via the primitive relaxation time of the coupling model has proven capable of accounting for the enhancement of molecular mobility at the surface. Thus our findings provide evidence to support that the immense enhancement of molecular diffusion at the surface is critical for the formation of SGs. The result has implications in the design and fabrication of SGs.
Collapse
Affiliation(s)
- K L Ngai
- CNR-IPCF, Universita di Pisa , Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University , Qinhuangdao, Hebei 066004, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University , Qinhuangdao, Hebei 066004, China
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology , WuHan, Hubei 430074, China
| |
Collapse
|
47
|
Sarkar S, Saha D, Banerjee S, Mukherjee A, Mandal P. Broadband terahertz dielectric spectroscopy of alcohols. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Bernini S, Puosi F, Leporini D. Thermodynamic scaling of relaxation: insights from anharmonic elasticity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:135101. [PMID: 28102828 DOI: 10.1088/1361-648x/aa5a7e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using molecular dynamics simulations of a molecular liquid, we investigate the thermodynamic scaling (TS) of the structural relaxation time [Formula: see text] in terms of the quantity [Formula: see text], where T and ρ are the temperature and density, respectively. The liquid does not exhibit strong virial-energy correlations. We propose a method for evaluating both the characteristic exponent [Formula: see text] and the TS master curve that uses experimentally accessible quantities that characterise the anharmonic elasticity and does not use details about the microscopic interactions. In particular, we express the TS characteristic exponent [Formula: see text] in terms of the lattice Grüneisen parameter [Formula: see text] and the isochoric anharmonicity [Formula: see text]. An analytic expression of the TS master curve of [Formula: see text] with [Formula: see text] as the key adjustable parameter is found. The comparison with the experimental TS master curves and the isochoric fragilities of 34 glassformers is satisfying. In a few cases, where thermodynamic data are available, we test (i) the predicted characteristic exponent [Formula: see text] and (ii) the isochoric anharmonicity [Formula: see text], as drawn by the best fit of the TS of the structural relaxation, against the available thermodynamic data. A linear relation between the isochoric fragility and the isochoric anharmonicity [Formula: see text] is found and compared favourably with the results of experiments with no adjustable parameters. A relation between the increase of the isochoric vibrational heat capacity due to anharmonicity and the isochoric fragility is derived.
Collapse
Affiliation(s)
- S Bernini
- Dipartimento di Fisica 'Enrico Fermi', Università di Pisa, Largo B Pontecorvo 3, I-56127 Pisa, Italy. Present address: Jawaharlal Nehru Center for Advanced Scientific Research, Theoretical Sciences Unit, Jakkur Campus, Bengaluru 560064, India
| | | | | |
Collapse
|
49
|
Hoffman DJ, Sokolowsky KP, Fayer MD. Direct observation of dynamic crossover in fragile molecular glass formers with 2D IR vibrational echo spectroscopy. J Chem Phys 2017; 146:124505. [DOI: 10.1063/1.4978852] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- David J. Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
50
|
Zhavoronok ES, Senchikhin IN, Roldughin VI. Physical aging and relaxation processes in epoxy systems. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17020109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|