1
|
Sharma A, Liu C, Ozawa M. Selecting relevant structural features for glassy dynamics by information imbalance. J Chem Phys 2024; 161:184506. [PMID: 39530372 DOI: 10.1063/5.0235084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
We numerically investigate the identification of relevant structural features that contribute to the dynamical heterogeneity in a model glass-forming liquid. By employing the recently proposed information imbalance technique, we select these features from a range of physically motivated descriptors. This selection process is performed in a supervised manner (using both dynamical and structural data) and an unsupervised manner (using only structural data). We then apply the selected features to predict future dynamics using a machine learning technique. One of the advantages of the information imbalance technique is that it does not assume any model a priori, i.e., it is a non-parametric method. Finally, we discuss the potential applications of this approach in identifying the dominant mechanisms governing the glassy slow dynamics.
Collapse
Affiliation(s)
- Anand Sharma
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Chen Liu
- Innovation and Research Division, Ge-Room, Inc., 93160 Noisy le Grand, France
| | - Misaki Ozawa
- CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
2
|
Kumar S, Sarkar S, Bagchi B. Glassy dynamics in a liquid of anisotropic molecules: Bifurcation of relaxation spectrum. J Chem Phys 2024; 160:224501. [PMID: 38856065 DOI: 10.1063/5.0210699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
In experimental and theoretical studies of glass transition phenomena, one often finds a sharp crossover in dynamical properties at a temperature Tcr. A bifurcation of a relaxation spectrum is also observed at a temperature TB≈Tcr; both lie significantly above the glass transition temperature. In order to better understand these phenomena, we introduce a new model of glass-forming liquids, a binary mixture of prolate and oblate ellipsoids. This model system exhibits sharp thermodynamic and dynamic anomalies, such as the specific heat jump during heating and a sharp variation in the thermal expansion coefficient around a temperature identified as the glass transition temperature, Tg. The same temperature is obtained from the fit of the calculated relaxation times to the Vogel-Fulcher-Tammann (VFT) form. As the temperature is lowered, the calculated single peak rotational relaxation spectrum splits into two peaks at TB above the estimated Tg. Similar bifurcation is also observed in the distribution of short-to-intermediate time translational diffusion. Interrogation of the two peaks reveals a lower extent of dynamic heterogeneity in the population of the faster mode. We observe an unexpected appearance of a sharp peak in the product of rotational relaxation time τ2 and diffusion constant D at a temperature Tcr, close to TB, but above the glass transition temperature. Additionally, we coarse-grain the system into cubic boxes, each containing, on average, ∼62 particles, to study the average dynamical properties. Clear evidence of large-scale sudden changes in the diffusion coefficient and rotational correlation time signals first-order transitions between low and high-mobility domains.
Collapse
Affiliation(s)
- Shubham Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Sarmistha Sarkar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Ono J, Matsumura Y, Mori T, Saito S. Conformational Dynamics in Proteins: Entangled Slow Fluctuations and Nonequilibrium Reaction Events. J Phys Chem B 2024; 128:20-32. [PMID: 38133567 DOI: 10.1021/acs.jpcb.3c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Proteins exhibit conformational fluctuations and changes over various time scales, ranging from rapid picosecond-scale local atomic motions to slower microsecond-scale global conformational transformations. In the presence of these intricate fluctuations, chemical reactions occur and functions emerge. These conformational fluctuations of proteins are not merely stochastic random motions but possess distinct spatiotemporal characteristics. Moreover, chemical reactions do not always proceed along a single reaction coordinate in a quasi-equilibrium manner. Therefore, it is essential to understand spatiotemporal conformational fluctuations of proteins and the conformational change processes associated with reactions. In this Perspective, we shed light on the complex dynamics of proteins and their role in enzyme catalysis by presenting recent results regarding dynamic couplings and disorder in the conformational dynamics of proteins and rare but rapid enzymatic reaction events obtained from molecular dynamics simulations.
Collapse
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshihiro Matsumura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Shinji Saito
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
4
|
Kim HJ. Spectroscopic and Chemical Properties of Ionic Liquids: Computational Study. CHEM REC 2023; 23:e202300075. [PMID: 37166396 DOI: 10.1002/tcr.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/18/2023] [Indexed: 05/12/2023]
Abstract
A brief account is given of highlights of our computational efforts - often in collaboration with experimental groups - to understand spectroscopic and chemical properties of ionic liquids (ILs). Molecular dynamics, including their inhomogeneous character, responsible for key spectral features observed in dielectric absorption, infra-red (IR) and fluorescence correlation spectroscopy (FCS) measurements are elucidated. Mechanisms of chemical processes involving imidazolium-based ILs are illustrated for CO2 capture and related reactions, transesterification of cellulose, and Au nanocluster-catalyzed Suzuki cross-coupling reaction with attention paid to differing roles of IL ions. A comparison with experiments is also made.
Collapse
Affiliation(s)
- Hyung J Kim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Laudicina CCL, Luo C, Miyazaki K, Janssen LMC. Dynamical susceptibilities near ideal glass transitions. Phys Rev E 2022; 106:064136. [PMID: 36671198 DOI: 10.1103/physreve.106.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Building on the recently derived inhomogeneous mode-coupling theory, we extend the generalized mode-coupling theory of supercooled liquids to inhomogeneous environments. This provides a first-principles-based, systematic, and rigorous way of deriving high-point dynamical susceptibilities from variations of the many-body dynamic structure factors with respect to their conjugate field. This framework allows for a fully microscopic possibility to probe for collective relaxation mechanisms in supercooled liquids near the mode-coupling glass transition. The behavior of these dynamical susceptibilities is then studied in the context of simplified self-consistent relaxation models.
Collapse
Affiliation(s)
- Corentin C L Laudicina
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Chengjie Luo
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Liesbeth M C Janssen
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
6
|
Peng H, Liu H, Voigtmann T. Nonmonotonic Dynamical Correlations beneath the Surface of Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2022; 129:215501. [PMID: 36461957 DOI: 10.1103/physrevlett.129.215501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/20/2021] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Collective motion over increasing length scales is a signature of the vitrification process of liquids. We demonstrate how distinct static and dynamic length scales govern the dynamics of vitrifying films. In contrast to a monotonically growing static correlation length, the dynamical correlation length that measures the extent of surface-dynamics acceleration into the bulk displays a striking nonmonotonic temperature evolution that is robust also against changes in detailed interatomic interaction. This nonmonotonic change defines a crossover temperature T_{*} that is distinct from the critical temperature T_{c} of mode-coupling theory. We connect this nonmonotonic change to a morphological change of cooperative rearrangement regions of fast particles, and to the point where the decoupling of fast-particle motion from the bulk relaxation is most sensitive to fluctuations. We propose a rigorous definition of this new crossover temperature T_{*} within a recent extension of mode-coupling theory, the stochastic β-relaxation theory.
Collapse
Affiliation(s)
- Hailong Peng
- School of Materials Science and Engineering, Central South University, 932 South Lushan Rd, 410083 Changsha, China
| | - Huashan Liu
- School of Materials Science and Engineering, Central South University, 932 South Lushan Rd, 410083 Changsha, China
| | - Thomas Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Liu M, Liu H, Peng H. Orientational wetting and dynamical correlations toward glass transition on the surface of imidazolium-based ionic liquids. J Chem Phys 2022; 157:034701. [DOI: 10.1063/5.0099845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Surface induces many fascinating physical phenomena, such as dynamic acceleration, surface anchoring, and orientational wetting, and, thus, is of great interest to study. Here, we report classic molecular dynamics simulations on the free-standing surface of imidazolium-based ionic liquids (ILs) [C4mim][PF6] and [C10mim][PF6]. On [C10mim][PF6] surface, a significant orientational wetting is observed, with the wetting strength showing a diverging tendency. Depth of the wetting was captured from the density and orientational order profile by a static length, which remarkably increases below the temperature Tstat upon cooling down. The dynamical correlation length that measures the distance of surface-dynamics acceleration into the bulk was characterized via the spatial-dependent mobility. The translational correlation exhibits a similar drastic increment at Tstat, while the rotational correlation drastically increases at a lower temperature Trot. We connect these results to the dynamics in bulk liquids, by finding Tstat and Trot that correspond to the onset temperatures where the liquids become cooperative for translational and rotational relaxation, respectively. This signifies the importance of collective dynamics in the bulk on the orientational wetting and surface dynamics in the ILs.
Collapse
Affiliation(s)
- Min Liu
- School of Materials Science and Engineering, Central South University, 932 South Lushan Rd., 410083 Changsha, China
| | - Huashan Liu
- School of Materials Science and Engineering, Central South University, 932 South Lushan Rd., 410083 Changsha, China
| | - Hailong Peng
- School of Materials Science and Engineering, Central South University, 932 South Lushan Rd., 410083 Changsha, China
| |
Collapse
|
8
|
Li J, Madhavi M, Jeppson S, Zhong L, Dufresne EM, Aitken B, Sen S, Kukreja R. Observation of Collective Molecular Dynamics in a Chalcogenide Glass: Results from X-ray Photon Correlation Spectroscopy. J Phys Chem B 2022; 126:5320-5325. [PMID: 35730616 DOI: 10.1021/acs.jpcb.1c10267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural relaxation processes in a Ge3As52S45 molecular chalcogenide glass sample were directly studied by X-ray photon correlation spectroscopy (XPCS). XPCS was conducted at the first sharp diffraction peak at q = 1.16 Å-1 at temperatures ranging from 123 K to above the glass transition at 328 K, and the results showed two different dynamical regimes. At a low temperature, the observed glass dynamics are slow and dominated by X-ray-photon-induced effects, which are temperature independent. At a higher temperature, we observed a dramatic decrease in the fluctuation timescales, indicating that the dynamics were mainly due to the intermolecular correlation of the As4S3 molecule in the glass. The timescales in this high-temperature range agree well with those determined from measurements of the Newtonian viscosity. Our XPCS studies suggest an extended length scale of the relaxation process in glassy Ge3As52S45 from the single molecule to the intermolecular range across the glass transition, providing a unique direct probe of the dynamics beyond the length scales of the individual molecule.
Collapse
Affiliation(s)
- Jianheng Li
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Meera Madhavi
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Spencer Jeppson
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Louie Zhong
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Bruce Aitken
- Science & Technology Division, Corning Inc., Corning, New York 14831, United States
| | - Sabyasachi Sen
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| | - Roopali Kukreja
- Department of Materials Science and Engineering, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
9
|
Lim H, Jung Y. Computational investigation of dynamical heterogeneity in ionic liquids based on the restricted primitive model. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyuntae Lim
- Department of Chemistry Seoul National University Seoul Korea
| | - YounJoon Jung
- Department of Chemistry Seoul National University Seoul Korea
| |
Collapse
|
10
|
Nandi UK, Patel P, Moid M, Nandi MK, Sengupta S, Karmakar S, Maiti PK, Dasgupta C, Maitra Bhattacharyya S. Thermodynamics and its correlation with dynamics in a mean-field model and pinned systems: A comparative study using two different methods of entropy calculation. J Chem Phys 2022; 156:014503. [PMID: 34998317 DOI: 10.1063/5.0065668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A recent study introduced a novel mean-field model system where each particle over and above the interaction with its regular neighbors interacts with k extra pseudo-neighbors. Here, we present an extensive study of thermodynamics and its correlation with the dynamics of this system. We surprisingly find that the well-known thermodynamic integration (TI) method of calculating the entropy provides unphysical results. It predicts vanishing of the configurational entropy at temperatures close to the onset temperature of the system and negative values of the configurational entropy at lower temperatures. Interestingly, well below the temperature at which the configurational entropy vanishes, both the collective and the single-particle dynamics of the system show complete relaxation. Negative values of the configurational entropy are unphysical, and complete relaxation when the configurational entropy is zero violates the prediction of the random first-order transition theory (RFOT). However, the entropy calculated using the two-phase thermodynamics (2PT) method remains positive at all temperatures for which we can equilibrate the system, and its values are consistent with RFOT predictions. We find that with an increase in k, the difference in the entropy computed using the two methods increases. A similar effect is also observed for a system where a randomly selected fraction of the particles are pinned in their positions in the equilibrated liquid. We show that the difference in entropy calculated via the 2PT and TI methods increases with pinning density.
Collapse
Affiliation(s)
- Ujjwal Kumar Nandi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Palak Patel
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Mohd Moid
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli", 81031 Aversa (CE), Italy
| | - Shiladitya Sengupta
- Department of Physics, Indian Institute of Technology, Roorkee 247667, India
| | - Smarajit Karmakar
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, RR District, Hyderabad 500019, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
11
|
Rajbangshi J, Biswas R. Heterogeneous dynamics in [BMIM][PF6] + Cosolvent binary Mixtures: Does It depend upon cosolvent Polarity? J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Hodge SR, Berg MA. Nonlinear measurements of kinetics and generalized dynamical modes. I. Extracting the one-dimensional Green's function from a time series. J Chem Phys 2021; 155:024122. [PMID: 34266246 DOI: 10.1063/5.0053422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Often, a single correlation function is used to measure the kinetics of a complex system. In contrast, a large set of k-vector modes and their correlation functions are commonly defined for motion in free space. This set can be transformed to the van Hove correlation function, which is the Green's function for molecular diffusion. Here, these ideas are generalized to other observables. A set of correlation functions of nonlinear functions of an observable is used to extract the corresponding Green's function. Although this paper focuses on nonlinear correlation functions of an equilibrium time series, the results are directly connected to other types of nonlinear kinetics, including perturbation-response experiments with strong fields. Generalized modes are defined as the orthogonal polynomials associated with the equilibrium distribution. A matrix of mode-correlation functions can be transformed to the complete, single-time-interval (1D) Green's function. Diagonalizing this matrix finds the eigendecays. To understand the advantages and limitation of this approach, Green's functions are calculated for a number of models of complex dynamics within a Gaussian probability distribution. Examples of non-diffusive motion, rate heterogeneity, and range heterogeneity are examined. General arguments are made that a full set of nonlinear 1D measurements is necessary to extract all the information available in a time series. However, when a process is neither dynamically Gaussian nor Markovian, they are not sufficient. In those cases, additional multidimensional measurements are needed.
Collapse
Affiliation(s)
- Stuart R Hodge
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Mark A Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
13
|
Rajbangshi J, Mukherjee K, Biswas R. Heterogeneous Orientational Relaxations and Translation–Rotation Decoupling in (Choline Chloride + Urea) Deep Eutectic Solvents: Investigation through Molecular Dynamics Simulations and Dielectric Relaxation Measurements. J Phys Chem B 2021; 125:5920-5936. [DOI: 10.1021/acs.jpcb.1c01501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Juriti Rajbangshi
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Kallol Mukherjee
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macro-molecular Sciences, S N Bose National Centre for Basic Sciences, JD-Block, Sector-III, Kolkata 700106, India
| |
Collapse
|
14
|
Nandi UK, Kob W, Maitra Bhattacharyya S. Connecting real glasses to mean-field models. J Chem Phys 2021; 154:094506. [PMID: 33685150 DOI: 10.1063/5.0038749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We propose a novel model for a glass-forming liquid, which allows us to switch in a continuous manner from a standard three-dimensional liquid to a fully connected mean-field model. This is achieved by introducing k additional particle-particle interactions, which thus augments the effective number of neighbors of each particle. Our computer simulations of this system show that the structure of the liquid does not change with the introduction of these pseudo-neighbors and by means of analytical calculations, and we determine the structural properties related to these additional neighbors. We show that the relaxation dynamics of the system slows down very quickly with the increase in k and that the onset and the mode-coupling temperatures increase. The systems with high values of k follow the mode-coupling theory power law behavior for a larger temperature range compared to the ones with lower values of k. The dynamic susceptibility indicates that the dynamic heterogeneity decreases with the increase in k, whereas the non-Gaussian parameter is independent of it. Thus, we conclude that with the increase in the number of pseudo-neighbors, the system becomes more mean-field-like. By comparing our results with previous studies on mean-field-like systems, we come to the conclusion that the details of how the mean-field limit is approached are important since they can lead to different dynamical behavior in this limit.
Collapse
Affiliation(s)
- Ujjwal Kumar Nandi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Walter Kob
- Laboratoire Charles Coulomb and CNRS, University of Montpellier, Montpellier F-34095, France
| | | |
Collapse
|
15
|
Zheng Z, Ni R, Wang Y, Han Y. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers. SCIENCE ADVANCES 2021; 7:7/3/eabd1958. [PMID: 33523902 PMCID: PMC7810379 DOI: 10.1126/sciadv.abd1958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Critical-like behaviors have been found in translational degrees of freedom near the glass transition of spherical particle systems mainly with local polycrystalline structures, but it is not clear if criticality exists in more general glassy systems composed of nonspherical particles without crystalline structures. Here, through experiments and simulations, we show critical-like behaviors in both translational and rotational degrees of freedom in monolayers of monodisperse colloidal ellipsoids in the absence of crystalline orders. We find rich features of the Ising-like criticality in structure and slow dynamics at the ideal glass transition point ϕ0, showing the thermodynamic nature of glass transition at ϕ0 A dynamic criticality is found at the mode-coupling critical point ϕc for the fast-moving clusters whose critical exponents increase linearly with fragility, reflecting a dynamic glass transition. These results cast light on the glass transition and explain the mystery that the dynamic correlation lengths diverge at two different temperatures.
Collapse
Affiliation(s)
- Zhongyu Zheng
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ran Ni
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yuren Wang
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
16
|
Banerjee S, Ghorai PK, Das S, Rajbangshi J, Biswas R. Heterogeneous dynamics, correlated time and length scales in ionic deep eutectics: Anion and temperature dependence. J Chem Phys 2020; 153:234502. [DOI: 10.1063/5.0024355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Swarup Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Pradip Kr. Ghorai
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Kolkata, India
| | - Suman Das
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Juriti Rajbangshi
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S.N. Bose National Centre for Basic Sciences, Kolkata, India
| |
Collapse
|
17
|
Heinemann T, Jung Y. Coarse-graining strategy for modeling effective, highly diffusive fluids with reduced polydispersity: A dynamical study. J Chem Phys 2020; 153:104509. [PMID: 32933276 DOI: 10.1063/5.0009156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We present a coarse-graining strategy for reducing the number of particle species in mixtures to achieve a simpler system with higher diffusion while preserving the total particle number and characteristic dynamic features. As a system of application, we chose the bidisperse Lennard-Jones-like mixture, discovered by Kob and Andersen [Phys. Rev. Lett. 73, 1376 (1994)], possessing a slow dynamics due to the fluid's multi-component character with its apparently unconventional choice for the pair potential of the type-A-type-B arrangement. We further established in a so-formed coarse-grained and temperature-independent monodisperse system an equilibrium structure with a radial distribution function resembling its mixture counterpart. This one-component system further possesses similar dynamic features such as glass transition temperature and critical exponents while subjected to Newtonian mechanics. This strategy may finally lead to the manufacturing of new nanoparticle/colloidal fluids by experimentally modeling only the outcoming effective pair potential(s) and no other macroscopic quantity.
Collapse
Affiliation(s)
- Thomas Heinemann
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
18
|
Paret J, Jack RL, Coslovich D. Assessing the structural heterogeneity of supercooled liquids through community inference. J Chem Phys 2020; 152:144502. [DOI: 10.1063/5.0004732] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Joris Paret
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| | - Robert L. Jack
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Daniele Coslovich
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
19
|
Darvin JR, Berg MA. Micelle Heterogeneity from the 2D Kinetics of Solute Rotation. J Phys Chem Lett 2019; 10:6885-6891. [PMID: 31618033 DOI: 10.1021/acs.jpclett.9b02783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The chemical and physical properties of microstructured materials vary with position. The photophysics of solute molecules can measure these local properties, but they often show multiple rates (rate dispersion), which complicates the interpretation. In the case of micelles, rate dispersion in a solute's anisotropy decay has been assigned to either local anisotropy or heterogeneity in the local viscosity. To resolve this conflict, the rotation of PM597 molecules in SDS micelles has been measured by polarized MUPPETS (multiple population-period transient spectroscopy). This 2D technique shows that heterogeneity is strong and that local anisotropy is minimal. The results suggest that on a subnanosecond time scale, the solute sees only one strong fluctuation of the micelle structure. The anisotropic, average structure emerges on longer time scales.
Collapse
Affiliation(s)
- Jason R Darvin
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Mark A Berg
- Department of Chemistry and Biochemistry , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|
20
|
Pan D, Sun ZY. Influence of chain stiffness on the dynamical heterogeneity and fragility of polymer melts. J Chem Phys 2018; 149:234904. [DOI: 10.1063/1.5052153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Deng Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and University of Chinese Academy of Sciences, Beijing 100039, China
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
21
|
Asai M, Cacciuto A, Kumar SK. Surface Fluctuations Dominate the Slow Glassy Dynamics of Polymer-Grafted Colloid Assemblies. ACS CENTRAL SCIENCE 2018; 4:1179-1184. [PMID: 30276251 PMCID: PMC6161052 DOI: 10.1021/acscentsci.8b00352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 05/16/2023]
Abstract
Colloids grafted with a corona layer of polymers show glassy behavior that covers a wide range of fragilities, with this behavior being tunable through variations in grafting density and grafting chain length. We find that the corona roughness, which is maximized for long chain lengths and sparse grafting, is directly correlated to the concentration-dependence of the system relaxation time (fragility). Relatively rougher colloids result in stronger liquids because their rotational motions become orientationally correlated across the whole system even at low particle loadings leading to an essentially Arrhenius-like concentration-dependence of the relaxation times near the glass transition. The smoother colloids do not show as much orientational correlation except at higher densities leading to fragile behavior. We therefore propose that these materials are an ideal model to study the physical properties of the glass transition.
Collapse
Affiliation(s)
- Makoto Asai
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Angelo Cacciuto
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sanat K. Kumar
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
22
|
Pestryaev EM. Oscillating Free Induction Decay in Polymer Systems: Theoretical Analysis. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Manz AS, Paeng K, Kaufman LJ. Single molecule studies reveal temperature independence of lifetime of dynamic heterogeneity in polystyrene. J Chem Phys 2018; 148:204508. [PMID: 29865823 DOI: 10.1063/1.5031131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymeric systems close to their glass transition temperature are known to exhibit heterogeneous dynamics that evolve both over time and space, comparable to the dynamics of small molecule glass formers. It remains unclear how temperature influences the degree of heterogeneous dynamics in such systems. In the following report, a fluorescent perylene dicarboximide probe molecule that reflects the full breadth of heterogeneity of the host was used to examine the temperature dependence of the dynamic heterogeneity lifetime in polystyrene at several temperatures ranging from the glass transition to 10 K above this temperature via single molecule microscopy. Contrary to prior reports, no apparent temperature dependence of time scales associated with dynamic heterogeneity was detected; indeed, the probe molecules report characteristic dynamic heterogeneity lifetimes 100-300 times the average alpha-relaxation time (τα) of the polystyrene host at all temperatures studied.
Collapse
Affiliation(s)
- Alyssa S Manz
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Keewook Paeng
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Laura J Kaufman
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
24
|
Liu J, Willcox JAL, Kim HJ. Heterogeneous dynamics of ionic liquids: A four-point time correlation function approach. J Chem Phys 2018; 148:193830. [DOI: 10.1063/1.5016501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jiannan Liu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Jon A. L. Willcox
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, USA
| | - Hyung J. Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, Pennsylvania 15213, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, South Korea
| |
Collapse
|
25
|
Turci F, Speck T, Royall CP. Structural-dynamical transition in the Wahnström mixture. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:54. [PMID: 29700690 DOI: 10.1140/epje/i2018-11662-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
In trajectory space, dynamical heterogeneities in glass-forming liquids correspond to the emergence of a dynamical phase transition between an active phase poor in local structure and an inactive phase which is rich in local structure. We support this scenario with the study of a model additive mixture of Lennard-Jones particles, quantifying how the choice of the relevant structural and dynamical observable affects the transition in trajectory space. We find that the low mobility, structure-rich phase is dominated by icosahedral order. Applying a non-equilibrium rheological protocol, we connect local order to the emergence of mechanical rigidity.
Collapse
Affiliation(s)
- Francesco Turci
- H.H. Wills Physics Laboratory, University of Bristol, BS8 1TL, Bristol, UK.
- Centre for Nanoscience and Quantum Information, BS8 1FD, Bristol, UK.
| | - Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128, Mainz, Germany
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, University of Bristol, BS8 1TL, Bristol, UK
- Centre for Nanoscience and Quantum Information, BS8 1FD, Bristol, UK
- School of Chemistry, University of Bristol, BS8 1TS, Bristol, UK
| |
Collapse
|
26
|
Wang L, Xu N, Wang WH, Guan P. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2018; 120:125502. [PMID: 29694097 DOI: 10.1103/physrevlett.120.125502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/12/2018] [Indexed: 06/08/2023]
Abstract
Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.
Collapse
Affiliation(s)
- Lijin Wang
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - W H Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Pengfei Guan
- Beijing Computational Science Research Center, Beijing 100193, People's Republic of China
| |
Collapse
|
27
|
Furukawa A. Growing length scale accompanying vitrification: A perspective based on nonsingular density fluctuations. Phys Rev E 2018; 97:022615. [PMID: 29548253 DOI: 10.1103/physreve.97.022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/07/2022]
Abstract
A model for describing growing length scale accompanying the vitrification is introduced, in which we assume that in a subsystem whose density is above a certain threshold value, ρ_{c}, due to steric constraints, particle rearrangements are highly suppressed for a sufficiently long time period (∼structural relaxation time). We regard such a subsystem as a glassy cluster. With this assumption and without introducing any complicated thermodynamic arguments, we predict that with compression (increasing average density ρ) at a fixed temperature T in supercooled states, the characteristic length of the clusters, ξ, diverges as ξ∼(ρ_{c}-ρ)^{-2/d}, where d is the spatial dimensionality. This ξ measures the average persistence length of the steric constraints in blocking the rearrangement motions and is determined by the subsystem density. Additionally, with decreasing T at a fixed ρ, the length scale diverges in the same manner as ξ∼(T-T_{c})^{-2/d}, for which ρ is identical to ρ_{c} at T=T_{c}. The exponent describing the diverging length scale is the same as the one predicted by some theoretical models and indeed has been observed in some simulations and experiments. However, the basic mechanism for this divergence is different; that is, we do not invoke thermodynamic anomalies associated with the thermodynamic phase transition as the origin of the growing length scale. We further present arguements for the cooperative properties of the structural relaxation based on the clusters.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Nandi MK, Banerjee A, Dasgupta C, Bhattacharyya SM. Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory. PHYSICAL REVIEW LETTERS 2017; 119:265502. [PMID: 29328692 DOI: 10.1103/physrevlett.119.265502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 06/07/2023]
Abstract
In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Atreyee Banerjee
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bengaluru 560012, India
- International Centre for Theoretical Sciences, Bengaluru-560 089, India
| | | |
Collapse
|
29
|
Park Y, Kim J, Sung BJ. Translation-rotation decoupling of tracers of locally favorable structures in glass-forming liquids. J Chem Phys 2017; 147:124503. [DOI: 10.1063/1.4994643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
30
|
Kwon S, Cho HW, Kim J, Sung BJ. Fractional Viscosity Dependence of Reaction Kinetics in Glass-Forming Liquids. PHYSICAL REVIEW LETTERS 2017; 119:087801. [PMID: 28952769 DOI: 10.1103/physrevlett.119.087801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Indexed: 06/07/2023]
Abstract
The diffusion of molecules in complex systems such as glasses and cell cytoplasm is slow, heterogeneous, and sometimes nonergodic. The effects of such intriguing diffusion on the kinetics of chemical and biological reactions remain elusive. In this Letter, we report that the kinetics of the polymer loop formation reaction in a Kob-Andersen (KA) glass forming liquid is influenced significantly by the dynamic heterogeneity. The diffusion coefficient D of a KA liquid deviates from the Stokes-Einstein relation at low temperatures and D shows a fractional dependence on the solvent viscosity η_{s}, i.e., D∼η_{s}^{-ξ_{D}} with ξ_{D}=0.85. The dynamic heterogeneity of a KA liquid affects the rate constant k_{rxn} of the loop formation and leads to the identical fractional dependence of k_{rxn} on η_{s} with k_{rxn}∼η_{s}^{-ξ} and ξ=ξ_{D}, contrary to reactions in dynamically homogeneous solutions where k_{rxn}∼η_{s}^{-1}.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Hyun Woo Cho
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Jeongmin Kim
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| | - Bong June Sung
- Department of Chemistry and Research Institute for Basic Science, Sogang University, Seoul 121-742, Republic of Korea
| |
Collapse
|
31
|
Berg MA, Kaur H. Nonparametric analysis of nonexponential and multidimensional kinetics. I. Quantifying rate dispersion, rate heterogeneity, and exchange dynamics. J Chem Phys 2017; 146:054104. [DOI: 10.1063/1.4974508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Harveen Kaur
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
32
|
Li YW, Zhu YL, Sun ZY. Probing heterogeneous dynamics from spatial density correlation in glass-forming liquids. Phys Rev E 2017; 94:062601. [PMID: 28085473 DOI: 10.1103/physreve.94.062601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Indexed: 11/07/2022]
Abstract
We numerically investigate the connection between spatial density correlation and dynamical heterogeneity in glass-forming liquids. We demonstrate that the cluster size defined by the spatial aggregation of densely packed particles (DPPs) can better capture the difference between the dynamics of the Lennard-Jones glass model and the Weeks-Chandler-Andersen truncation model than the commonly used pair correlation functions. More interestingly, we compare the mobility of DPPs and loosely packed particles, and we find that high local density correlates well with slow dynamics in systems with relatively hard repulsive interactions but links to mobile ones in the system with soft repulsive interactions at one relaxation time scale. Our results show clear evidence that the above model dependence behavior stems from the hopping motion of DPPs at the end of the caging stage due to the compressive nature of soft repulsive spheres, which activates the dynamics of DPPs in the α relaxation stage.
Collapse
Affiliation(s)
- Yan-Wei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - You-Liang Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China and Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matters, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| |
Collapse
|
33
|
Furukawa A, Tanaka H. Significant difference in the dynamics between strong and fragile glass formers. Phys Rev E 2016; 94:052607. [PMID: 27967142 DOI: 10.1103/physreve.94.052607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/07/2022]
Abstract
Glass-forming liquids are often classified into strong glass formers with nearly Arrhenius behavior and fragile ones with super-Arrhenius behavior. We reveal a significant difference in the dynamics between these two types of glass formers through molecular dynamics simulations: In strong glass formers, the relaxation dynamics of density fluctuations is nondiffusive, whereas in fragile glass formers it exhibits diffusive behavior. We demonstrate that this distinction is a direct consequence of the fundamental difference in the underlying elementary relaxation process between these two dynamical classes of glass formers. For fragile glass formers, a density-exchange process proceeds the density relaxation, which takes place locally at the particle level in normal states but is increasingly cooperative and nonlocal as the temperature is lowered in supercooled states. On the other hand, in strong glass formers, such an exchange process is not necessary for density relaxation due to the presence of other local relaxation channels. Our finding provides a novel insight into Angell's classification scheme from a hydrodynamic perspective.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
34
|
Shiba H, Yamada Y, Kawasaki T, Kim K. Unveiling Dimensionality Dependence of Glassy Dynamics: 2D Infinite Fluctuation Eclipses Inherent Structural Relaxation. PHYSICAL REVIEW LETTERS 2016; 117:245701. [PMID: 28009193 DOI: 10.1103/physrevlett.117.245701] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 06/06/2023]
Abstract
By using large-scale molecular dynamics simulations, the dynamics of two-dimensional (2D) supercooled liquids turns out to be dependent on the system size, while the size dependence is not pronounced in three-dimensional (3D) systems. It is demonstrated that the strong system-size effect in 2D amorphous systems originates from the enhanced fluctuations at long wavelengths which are similar to those of 2D crystal phonons. This observation is further supported by the frequency dependence of the vibrational density of states, consisting of the Debye approximation in the low-wave-number limit. However, the system-size effect in the intermediate scattering function becomes negligible when the length scale is larger than the vibrational amplitude. This suggests that the finite-size effect in a 2D system is transient and also that the structural relaxation itself is not fundamentally different from that in a 3D system. In fact, the dynamic correlation lengths estimated from the bond-breakage function, which do not suffer from those enhanced fluctuations, are not size dependent in either 2D or 3D systems.
Collapse
Affiliation(s)
- Hayato Shiba
- Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Yasunori Yamada
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Kang Kim
- Department of Physics, Niigata University, Niigata 950-2181, Japan
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
| |
Collapse
|
35
|
Indra S, Biswas R. How Heterogeneous Are Trehalose/Glycerol Cryoprotectant Mixtures? A Combined Time-Resolved Fluorescence and Computer Simulation Investigation. J Phys Chem B 2016; 120:11214-11228. [PMID: 27723334 DOI: 10.1021/acs.jpcb.6b06511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterogeneity and molecular motions in representative cryoprotectant mixtures made of trehalose and glycerol are investigated in the temperature range 298 ≤ T (K) ≤ 353, via time-resolved fluorescence Stokes shift and anisotropy measurements, and molecular dynamics simulations of four-point density-time correlations and H-bond relaxations. Mixtures containing 5 and 20 wt % of trehalose along with neat glycerol are studied. Viscosity coefficients for these systems lie in the range 0.30 < η (P) < 23. Measured solute (Coumarin 153) rotation and solvation times reveal a substantial departure from the hydrodynamic viscosity dependence, suggesting the strong microheterogeneous nature of these systems. Fluorescence anisotropy decays are highly nonexponential, reflecting a non-Markovian character of the medium friction. A complete missing of the Stokes shift dynamics in these systems at 298 K but partial detection of it at other higher temperatures (shift magnitude being ∼400-600 cm-1) indicates rigid solute environments. An amorphous solid-like feature emerges in the simulated radial distribution functions at these temperatures. Analyses of mean squared displacements reveal rattling-in-a-cage motion, non-Gaussian displacement distributions, and strong dynamic heterogeneity features. Simulated dynamic structure factors and four-point correlations hint, respectively, at very long α-relaxation and correlated time scales at 298 K. This explains the long solute rotation times (∼80-200 ns) measured at 298 K. Stretched exponential decay of the simulated H-bond relaxations with long time scales further highlights the strong temporal heterogeneity and slow dynamics inherent to these systems. In summary, this work provides the first insight into the molecular motions and interspecies interaction in a representative cryoprotectant mixture, and stimulates further study to investigate the interconnection between cryoprotection and dynamic heterogeneity.
Collapse
Affiliation(s)
- Sandipa Indra
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| | - Ranjit Biswas
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences , Block-JD, Salt Lake, Sector-III, Kolkata 700106, India
| |
Collapse
|
36
|
Peng HL, Voigtmann T. Decoupled length scales for diffusivity and viscosity in glass-forming liquids. Phys Rev E 2016; 94:042612. [PMID: 27841604 DOI: 10.1103/physreve.94.042612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 06/06/2023]
Abstract
The growth of the characteristic length scales both for diffusion and viscosity is investigated by molecular dynamics utilizing the finite-size effect in a binary Lennard-Jones mixture. For those quantities relevant to the diffusion process (e.g., the hydrodynamic value and the spatial correlation function), a strong system-size dependence is found. In contrast, it is weak or absent for the shear relaxation process. Correlation lengths are estimated from the decay of the spatial correlation functions. We find the length scale for viscosity decouples from the one of diffusivity, featured by a saturated length even in high supercooling. This temperature-independent behavior of the length scale is reminiscent of the unapparent structure change upon supercooling, implying the manifestation of configuration entropy. Whereas for the diffusion process, it is manifested by relaxation dynamics and dynamic heterogeneity. The Stokes-Einstein relation is found to break down at the temperature where the decoupling of these lengths happens.
Collapse
Affiliation(s)
- H L Peng
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - Th Voigtmann
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Department of Physics, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Berg MA, Darvin JR. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions. J Chem Phys 2016; 145:054119. [DOI: 10.1063/1.4960186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Jason R. Darvin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
38
|
Banerjee A, Nandi MK, Sastry S, Bhattacharyya SM. Effect of total and pair configurational entropy in determining dynamics of supercooled liquids over a range of densities. J Chem Phys 2016; 145:034502. [DOI: 10.1063/1.4958627] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Atreyee Banerjee
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Manoj Kumar Nandi
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur Campus, Bengaluru 560 064, India
| | | |
Collapse
|
39
|
Kim S, Park SW, Jung Y. Heterogeneous dynamics and its length scale in simple ionic liquid models: a computational study. Phys Chem Chem Phys 2016; 18:6486-97. [DOI: 10.1039/c5cp07368e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We numerically investigate the dynamic heterogeneity and its length scale found in coarse-grained ionic liquid model systems.
Collapse
Affiliation(s)
- Soree Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Sang-Won Park
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - YounJoon Jung
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
40
|
Staley H, Flenner E, Szamel G. Reduced strength and extent of dynamic heterogeneity in a strong glass former as compared to fragile glass formers. J Chem Phys 2015; 143:244501. [DOI: 10.1063/1.4938082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hannah Staley
- Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elijah Flenner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Grzegorz Szamel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
41
|
Pal T, Biswas R. Composition Dependence of Dynamic Heterogeneity Time- and Length Scales in [Omim][BF4]/Water Binary Mixtures: Molecular Dynamics Simulation Study. J Phys Chem B 2015; 119:15683-95. [DOI: 10.1021/acs.jpcb.5b08763] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tamisra Pal
- Department of Chemical, Biological
and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| | - Ranjit Biswas
- Department of Chemical, Biological
and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098, India
| |
Collapse
|
42
|
Mukherjee B. Microscopic origin of temporal heterogeneities in translational dynamics of liquid water. J Chem Phys 2015; 143:054503. [PMID: 26254657 DOI: 10.1063/1.4927709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid water is known to reorient via a combination of large angular jumps (due to exchange of hydrogen bonding (H-bond) partners) and diffusive orientations. Translation of the molecule undergoing the orientational jump and its initial and final H-bond acceptors plays a key role in the microscopic reorientation process. Here, we partition the translational dynamics into those occurring during intervals when rotating water molecules (and their initial and final H-bonding partners) undergo orientational jump and those arising when molecules wait between consecutive orientational jumps. These intervals are chosen in such a way that none of the four possible H-bonds involving the chosen water molecule undergo an exchange process within its duration. Translational dynamics is analysed in terms of the distribution of particle displacements, van Hove functions, and its moments. We observe that the translational dynamics, calculated from molecular dynamics simulations of liquid water, is fastest during the orientational jumps and slowest during periods of waiting. The translational dynamics during all temporal intervals shows an intermediate behaviour. This is the microscopic origin of temporal dynamic heterogeneity in liquid water, which is mild at 300 K and systematically increases with supercooling. Study of such partitioned dynamics in supercooled water shows increased disparity in dynamics occurring in the two different types of intervals. Nature of the distribution of particle displacements in supercooled water is investigated and it reveals signatures non-Gaussian behaviour.
Collapse
Affiliation(s)
- Biswaroop Mukherjee
- Thematic Unit of Excellence-Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700098, India
| |
Collapse
|
43
|
Verma SD, Vanden Bout DA, Berg MA. When is a single molecule heterogeneous? A multidimensional answer and its application to dynamics near the glass transition. J Chem Phys 2015; 143:024110. [DOI: 10.1063/1.4926463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sachin Dev Verma
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - David A. Vanden Bout
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, USA
| | - Mark A. Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
44
|
Dinkgreve M, Paredes J, Michels MAJ, Bonn D. Universal rescaling of flow curves for yield-stress fluids close to jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:012305. [PMID: 26274160 DOI: 10.1103/physreve.92.012305] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 06/04/2023]
Abstract
The experimental flow curves of four different yield-stress fluids with different interparticle interactions are studied near the jamming concentration. By appropriate scaling with the distance to jamming all rheology data can be collapsed onto master curves below and above jamming that meet in the shear-thinning regime and satisfy the Herschel-Bulkley and Cross equations, respectively. In spite of differing interactions in the different systems, master curves characterized by universal scaling exponents are found for the four systems. A two-state microscopic theory of heterogeneous dynamics is presented to rationalize the observed transition from Herschel-Bulkley to Cross behavior and to connect the rheological exponents to microscopic exponents for the divergence of the length and time scales of the heterogeneous dynamics. The experimental data and the microscopic theory are compared with much of the available literature data for yield-stress systems.
Collapse
Affiliation(s)
- M Dinkgreve
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| | - J Paredes
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| | - M A J Michels
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - D Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1018 XH Amsterdam, The Netherlands
| |
Collapse
|
45
|
Choi SW, Kim S, Jung Y. Dynamic heterogeneity in crossover spin facilitated model of supercooled liquid and fractional Stokes-Einstein relation. J Chem Phys 2015; 142:244506. [PMID: 26133440 DOI: 10.1063/1.4922932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einstein relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.
Collapse
Affiliation(s)
- Seo-Woo Choi
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - Soree Kim
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| | - YounJoon Jung
- Department of Chemistry, Seoul National University, Seoul 151-747, South Korea
| |
Collapse
|
46
|
Ono J, Takada S, Saito S. Couplings between hierarchical conformational dynamics from multi-time correlation functions and two-dimensional lifetime spectra: Application to adenylate kinase. J Chem Phys 2015; 142:212404. [DOI: 10.1063/1.4914328] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Junichi Ono
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - Shoji Takada
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
47
|
Busselez R, Pezeril T, Gusev VE. Structural heterogeneities at the origin of acoustic and transport anomalies in glycerol glass-former. J Chem Phys 2015; 140:234505. [PMID: 24952550 DOI: 10.1063/1.4883504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
By means of large scale molecular dynamics simulations, we explore mesoscopic properties of prototypical glycerol glass-former above and below the glass transition. The model used, in excellent agreement with various experimental techniques, permits to carefully study the structure and the vibrational dynamics. We find that a medium range order is present in glycerol glass-former and arises from hydrogen bond network extension. The characteristic size of the structural heterogeneities is related to the anomalous properties of acoustic vibrations (Rayleigh scattering, "mode softening," and Boson Peak) in the glassy state. Finally the characteristic size of these heterogeneities, nearly constant in temperature, is also connected to the cross-over between structural relaxation and diffusion in liquid glycerol.
Collapse
Affiliation(s)
- Rémi Busselez
- Institut des Molécules et Matériaux du Mans UMR-CNRS 6283, Université du Maine, Le Mans, France
| | - Thomas Pezeril
- Institut des Molécules et Matériaux du Mans UMR-CNRS 6283, Université du Maine, Le Mans, France
| | - Vitalyi E Gusev
- Laboratoire d'Acoustique de l'Université du Maine, UMR-CNRS 6613 Université du Maine, Le Mans, France
| |
Collapse
|
48
|
Kawasaki T, Kim K, Onuki A. Dynamics in a tetrahedral network glassformer: vibrations, network rearrangements, and diffusion. J Chem Phys 2015; 140:184502. [PMID: 24832283 DOI: 10.1063/1.4873346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform molecular dynamics simulation on a tetrahedral network glassformer using a model for viscous SiO2 by Coslovich and Pastore [J. Phys.: Condens. Matter 21, 285107 (2009)]. In this system, Si and O particles form a random network at low temperature T. We attach an ellipsoid to each particle to represent its time-averaged vibration tensor. We then examine the anisotropic vibrations of Si and O, where the ellipsoid orientations are correlated with the network. The ellipsoids exhibit marked vibrational heterogeneity. The configuration changes occur as breakage and reorganization of the network, where only one or two particles undergo large jumps at each rearrangement leading to diffusion. To the time-correlation functions, however, the particles surrounding these largely displaced ones yield significantly T-dependent contributions, resulting in a weak violation of the Stokes-Einstein relation. This crossover is mild in silica due to the small Si-O bond numbers per particle, while it is strong in fragile glassformers with large coordination numbers. On long timescales, jump events tend to occur in the same regions forming marked dynamic heterogeneity. We also calculate the diffusion constants and the viscosity. The diffusion obeys activation dynamics and may be studied by short-time analysis of irreversible jumps.
Collapse
Affiliation(s)
| | - Kang Kim
- Department of Physics, Niigata University, Niigata 950-2181, Japan
| | - Akira Onuki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
49
|
Park SW, Kim S, Jung Y. Time scale of dynamic heterogeneity in model ionic liquids and its relation to static length scale and charge distribution. Phys Chem Chem Phys 2015; 17:29281-92. [DOI: 10.1039/c5cp03390j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We find a general power-law behavior: , where ζdh ≈ 1.2 for all the ionic liquid models, regardless of charges and the length scale of structural relaxation.
Collapse
Affiliation(s)
- Sang-Won Park
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - Soree Kim
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| | - YounJoon Jung
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Korea
| |
Collapse
|
50
|
Hocky GM, Coslovich D, Ikeda A, Reichman DR. Correlation of local order with particle mobility in supercooled liquids is highly system dependent. PHYSICAL REVIEW LETTERS 2014; 113:157801. [PMID: 25375744 DOI: 10.1103/physrevlett.113.157801] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 06/04/2023]
Abstract
We investigate the connection between local structure and dynamical heterogeneity in supercooled liquids. Through the study of four different models, we show that the correlation between a particle's mobility and the degree of local order in nearby regions is highly system dependent. Our results suggest that the correlation between local structure and dynamics is weak or absent in systems that conform well to the mean-field picture of glassy dynamics and strong in those that deviate from this paradigm. Finally, we investigate the role of order-agnostic point-to-set correlations and reveal that they provide similar information content to local structure measures, at least in the system where local order is most pronounced.
Collapse
Affiliation(s)
- Glen M Hocky
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Daniele Coslovich
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier 34095, France and Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier 34095, France
| | - Atsushi Ikeda
- CNRS, Laboratoire Charles Coulomb UMR 5221, Montpellier 34095, France and Université Montpellier 2, Laboratoire Charles Coulomb UMR 5221, Montpellier 34095, France
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|