1
|
Ren M, Liu D, Qin F, Chen X, Ma W, Tian R, Weng T, Wang D, Astruc D, Liang L. Single-molecule resolution of macromolecules with nanopore devices. Adv Colloid Interface Sci 2025; 338:103417. [PMID: 39889505 DOI: 10.1016/j.cis.2025.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nanopore-based electrical detection technology holds single-molecule resolution and combines the advantages of high sensitivity, high throughput, rapid analysis, and label-free detection. It is widely applied in the determination of organic and biological macromolecules, small molecules, and nanomaterials, as well as in nucleic acid and protein sequencing. There are a wide variety of organic polymers and biopolymers, and their chemical structures, and conformation in solution directly affect their ensemble properties. Currently, there is limited approach available for the analysis of single-molecule conformation and self-assembled topologies of polymers, dendrimers and biopolymers. Nanopore single-molecule platform offers unique advantages over other sensing technologies, particularly in molecular size differentiation of macromolecules and complex conformation analysis. In this review, the classification of nanopore devices, including solid-state nanopores (SSNs), biological nanopores, and hybrid nanopores is introduced. The recent developments and applications of nanopore devices are summarized, with a focus on the applications of nanopore platform in the resolution of the structures of synthetic polymer, including dendritic, star-shaped, block copolymers, as well as biopolymers, including polysaccharides, nucleic acids and proteins. The future prospects of nanopore sensing technique are ultimately discussed.
Collapse
Affiliation(s)
- Meili Ren
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China; Chongqing Jiaotong University, Chongqing 400014, PR China
| | - Daixin Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Fupeng Qin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Xun Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Wenhao Ma
- Chongqing University, Chongqing 400044, China
| | - Rong Tian
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Ting Weng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Deqang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China
| | - Didier Astruc
- University of Bordeaux, ISM UMR CNRS 5255, 33405 Talence Cedex, France.
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing 400714, PR China.
| |
Collapse
|
2
|
You SM, Jeong KB, Kang DG, Kim SM, Kim YR. Label-free detection of glutathione and glutathione disulfide in biological fluid by using an alpha-hederin nanopore. Biosens Bioelectron 2024; 262:116559. [PMID: 38981320 DOI: 10.1016/j.bios.2024.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/08/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Glutathione (GSH) is indispensable for maintaining redox homeostasis in biological fluids and serves as a key component in cellular defense mechanisms. Accurate assessment of GSH relative to its oxidized counterpart, glutathione disulfide (GSSG), is critical for the early diagnosis and understanding of conditions related to oxidative stress. Despite existing methods for their quantification, the label-free and simultaneous measurement of GSH and GSSG in biological fluid presents significant challenges. Herein, we report the use of an alpha-hederin (Ah) nanopore for the direct measurement of the GSH:GSSG ratio in simulated biological fluid, containing fetal bovine serum (FBS). This system hinges on detecting characteristic relative ion blockades (ΔI/Io) as GSH and GSSG molecules pass through the Ah nanopore under an applied electric field. The distinct current blockage signals derived from the translocation of GSH and GSSG enabled us to determine the molar ratio of GSH and its oxidized form. Notably, the interactions between the hydroxyl groups of the sugar moiety lining the nanopore's inner surface and the sulfhydryl group of GSH significantly influence the translocation dynamics, resulting in a longer translocation time for GSH compared to GSSG. The Ah nanopore technology proposed in this study offers a promising approach for real-time, single molecule-level monitoring of glutathione redox status in biological fluids, eliminating the need for labeling or extensive sample preparation.
Collapse
Affiliation(s)
- Sang-Mook You
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ki-Baek Jeong
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Dong-Gook Kang
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Sang-Min Kim
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Young-Rok Kim
- Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
3
|
Polson JM, Garcia EJ, Klotz AR. Flatness and intrinsic curvature of linked-ring membranes. SOFT MATTER 2021; 17:10505-10515. [PMID: 34755161 DOI: 10.1039/d1sm01307f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recent experiments have elucidated the physical properties of kinetoplasts, which are chain-mail-like structures found in the mitochondria of trypanosome parasites formed from catenated DNA rings. Inspired by these studies, we use Monte Carlo simulations to examine the behavior of two-dimensional networks ("membranes") of linked rings. For simplicity, we consider only identical rings that are circular and rigid and that form networks with a regular linking structure. We find that the scaling of the eigenvalues of the shape tensor with membrane size are consistent with the behavior of the flat phase observed in self-avoiding covalent membranes. Increasing ring thickness tends to swell the membrane. Remarkably, unlike covalent membranes, the linked-ring membranes tend to form concave structures with an intrinsic curvature of entropic origin associated with local excluded-volume interactions. The degree of concavity increases with increasing ring thickness and is also affected by the type of linking network. The relevance of the properties of linked-ring model membranes to those observed in kinetoplasts is discussed.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, Charlottetown, Prince Edward Island, C1A 4P3, Canada.
| | - Edgar J Garcia
- Department of Physics and Astronomy, California State University, Long Beach, California, 90840, USA
| | - Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, California, 90840, USA
| |
Collapse
|
4
|
Robertson JW, Ghimire M, Reiner JE. Nanopore sensing: A physical-chemical approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183644. [PMID: 33989531 PMCID: PMC9793329 DOI: 10.1016/j.bbamem.2021.183644] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
Protein nanopores have emerged as an important class of sensors for the understanding of biophysical processes, such as molecular transport across membranes, and for the detection and characterization of biopolymers. Here, we trace the development of these sensors from the Coulter counter and squid axon studies to the modern applications including exquisite detection of small volume changes and molecular reactions at the single molecule (or reactant) scale. This review focuses on the chemistry of biological pores, and how that influences the physical chemistry of molecular detection.
Collapse
Affiliation(s)
- Joseph W.F. Robertson
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg MD. 20899, correspondence to:
| | - Madhav Ghimire
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| | - Joseph E. Reiner
- Department of Physics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
5
|
Denton AR, Davis WJ. Influence of solvent quality on depletion potentials in colloid-polymer mixtures. J Chem Phys 2021; 155:084904. [PMID: 34470346 DOI: 10.1063/5.0061370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
As first explained by the classic Asakura-Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of nonadsorbing polymers can drive demixing of colloid-polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247 (2016); J. Chem. Phys. 144, 024904 (2016)]. We further demonstrated that the shapes of polymers in crowded environments sensitively depend on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here, we apply Monte Carlo simulation to analyze the influence of solvent quality on depletion potentials in mixtures of hard-sphere colloids and nonadsorbing polymer coils, modeled as ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion interactions are significantly influenced by aspherical polymer conformations.
Collapse
Affiliation(s)
- Alan R Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Wyatt J Davis
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
6
|
Chen J, Chen X, Sun LZ, Xu XJ, Luo MB. Translocation of a looped polymer threading through a nanopore. SOFT MATTER 2021; 17:4342-4351. [PMID: 33908563 DOI: 10.1039/d1sm00007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent experiments reported that the complicated translocation dynamics of a looped DNA chain through a nanopore can be detected by ionic current blockade profiles. Inspired by the experimental results, we systematically study the translocation dynamics of a looped polymer, formed by three building blocks of a loop in the middle and two tails of the same length connected with the loop, by using Langevin dynamics simulations. Based on two entering modes (tail-leading and loop-leading) and three translocation orders (loop-tail-tail, tail-loop-tail, and tail-tail-loop), the translocation of the looped polymer is classified into six translocation pathways, corresponding to different current blockade profiles. The probabilities of the six translocation pathways are dependent on the loop length, polymer length, and pore radius. Moreover, the translocation times of the entire polymer and the loop are investigated. We find that the two translocation times show different dependencies on the translocation pathways and on the lengths of the loop and the entire polymer.
Collapse
Affiliation(s)
- Jia Chen
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Xian Chen
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Xiao-Jun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Sun LZ, Cao WP, Wang CH, Xu X. The translocation dynamics of the polymer through a conical pore: Non-stuck, weak-stuck, and strong-stuck modes. J Chem Phys 2021; 154:054903. [PMID: 33557527 DOI: 10.1063/5.0033689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The external voltage-driven polymer translocation through a conical pore (with a large opening at the entry and a small tip at the exit) is studied by using the Langevin dynamics simulation in this paper. The entire translocation process is divided into an approaching stage and a threading stage. First, the approaching stage starts from the polymer entering the large opening and ends up at a terminal monomer reaching the pore tip. In this stage, the polymer will undergo the conformation adjustment to fit the narrowed cross-sectional area of the pore, leading to three approaching modes: the non-stuck mode with a terminal monomer arriving at the pore tip smoothly, the weak-stuck mode for the polymer stuck inside the pore for a short duration with minor conformational adjustments, and the strong-stuck mode with major conformational changes and a long duration. The approaching times (the duration of the approaching stage) of the three approaching modes show different behavior as a function of the pore apex angle. Second, the threading stage describes that the polymer threads through the pore tip with a linear fashion. In this stage, an increase in the apex angle causes the reduction of the threading time (the duration of the threading stage) due to the increase in the driving force with the apex angle at the tip. Moreover, we also find that with the increase in the apex angle or the polymer length, the polymer threading dynamics will change from the quasi-equilibrium state to the non-equilibrium state.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Wei-Ping Cao
- Institute of Optoelectronic Technology, Lishui University, Lishui 323000, China
| | - Chang-Hui Wang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|
8
|
Polson JM, Hastie CG. Free energy of a knotted polymer confined to narrow cylindrical and conical channels. Phys Rev E 2020; 102:052502. [PMID: 33327190 DOI: 10.1103/physreve.102.052502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Monte Carlo simulations are used to study the conformational behavior of a semiflexible polymer confined to cylindrical and conical channels. The channels are sufficiently narrow that the conditions for the Odijk regime are marginally satisfied. For cylindrical confinement, we examine polymers with a single knot of topology 3_{1}, 4_{1}, or 5_{1}, as well as unknotted polymers that are capable of forming S loops. We measure the variation of the free energy F with the end-to-end polymer extension length X and examine the effect of varying the polymer topology, persistence length P, and cylinder diameter D on the free-energy functions. Similarly, we characterize the behavior of the knot span along the channel. We find that increasing the knot complexity increases the typical size of the knot. In the regime of low X, where the knot/S-loop size is large, the conformational behavior is independent of polymer topology. In addition, the scaling properties of the free energy and knot span are in agreement with predictions from a theoretical model constructed using known properties of interacting polymers in the Odijk regime. We also examine the variation of F with the position of a knot in conical channels for various values of the cone angle α. The free energy decreases as the knot moves in a direction where the cone widens, and it also decreases with increasing α and with increasing knot complexity. The behavior is in agreement with predictions from a theoretical model in which the dominant contribution to the change in F is the change in the size of the hairpins as the knot moves to the wider region of the channel.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Cameron G Hastie
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
9
|
|
10
|
Polson JM, Heckbert DR. Polymer translocation into cavities: Effects of confinement geometry, crowding, and bending rigidity on the free energy. Phys Rev E 2019; 100:012504. [PMID: 31499877 DOI: 10.1103/physreve.100.012504] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Monte Carlo simulations are used to study the translocation of a polymer into a cavity. Modeling the polymer as a hard-sphere chain with a length up to N=601 monomers, we use a multiple-histogram method to measure the variation of the conformational free energy of the polymer with respect to the number of translocated monomers. The resulting free-energy functions are then used to obtain the confinement free energy for the translocated portion of the polymer. We characterize the confinement free energy for a flexible polymer in cavities with constant cross-sectional area A for various cavity shapes (cylindrical, rectangular, and triangular) as well as for tapered cavities with pyramidal and conical shape. The scaling of the free energy with cavity volume and translocated polymer subchain length is generally consistent with predictions from simple scaling arguments, with small deviations in the scaling exponents likely due to finite-size effects. The confinement free energy depends strongly on cavity shape anisometry and is a minimum for an isometric cavity shape with a length-to-width ratio of unity. Entropic depletion at the edges or vertices of the confining cavity are evident in the results for constant-A and pyramidal cavities. For translocation into infinitely long cones, the scaling of the free energy with taper angle is consistent with a theoretical prediction employing the blob model. We also examine the effects of polymer bending rigidity on the translocation free energy for cylindrical cavities. For isometric cavities, the observed scaling behavior is in partial agreement with theoretical predictions, with discrepancies arising from finite-size effects that prevent the emergence of well-defined scaling regimes. In addition, translocation into highly anisometric cylindrical cavities leads to a multistage folding process for stiff polymers. Finally, we examine the effects of crowding agents inside the cavity. We find that the confinement free energy increases with crowder density. At constant packing fraction the magnitude of this effect lessens with increasing crowder size for a crowder-to-monomer size ratio ≥1.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| | - David R Heckbert
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada C1A 4P3
| |
Collapse
|
11
|
Polson JM, McLure ZRN. Free-energy cost of localizing a single monomer of a confined polymer. Phys Rev E 2019; 99:062503. [PMID: 31330625 DOI: 10.1103/physreve.99.062503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 06/10/2023]
Abstract
We describe a simple Monte Carlo simulation method to calculate the free-energy cost of localizing a single monomer of a polymer confined to a cavity. The localization position is chosen to be on the inside surface of the confining cavity. The method is applied to a freely jointed hard-sphere polymer chain confined to cavities of spherical and cubic geometries. In the latter case, we consider localization at a corner and at the center of a face of the confining cube. We consider cases of end-monomer localization both with and without tethering of the other end monomer to a point on the surface. We also examine localization of monomers at arbitrary positions along the contour of the polymer. We characterize the dependence of the free energy on the cavity size and shape, the localization position, and the polymer length. The quantitative trends can be understood using standard scaling arguments and use of a simple theoretical model. The results are relevant to those theories of polymer translocation that focus on the importance of the free-energy barrier as the translocation process requires an initial localization of a monomer to the position of a nanopore.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| | - Zakary R N McLure
- Department of Physics, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, C1A 4P3, Canada
| |
Collapse
|
12
|
Sun LZ, Wang CH, Luo MB, Li H. Trapped and non-trapped polymer translocations through a spherical pore. J Chem Phys 2019; 150:024904. [PMID: 30646715 DOI: 10.1063/1.5063331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The polymer translocation through a spherical pore is studied using the Langevin dynamics simulation. The translocation events are classified into two types: one is the trapped translocation in which the entire polymer is trapped in the pore and the other is the non-trapped translocation where the pore cannot hold the whole polymer. We find that the trapped translocation is favored at large spheres and small external voltages. However, the monomer-pore attraction would lead to the non-monotonic behavior of the trapped translocation possibility out of all translocation events. Moreover, both the trapped and non-trapped translocation times are dependent on the polymer length, pore size, external voltage, and the monomer-pore attraction. There exist two pathways for the polymer in the trapped translocation: an actively trapped pathway for the polymer trapped in the pore before the head monomer arrives at the pore exit, and a passively trapped pathway for the polymer trapped in the pore while the head monomer is struggling to move out of the pore. The studies of trapped pathways can provide a deep understanding of the polymer translocation behavior.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Chang-Hui Wang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Haibin Li
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
13
|
Kwon S, Sung BJ. Effects of solvent quality and non-equilibrium conformations on polymer translocation. J Chem Phys 2018; 149:244907. [PMID: 30599703 DOI: 10.1063/1.5048059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The conformation and its relaxation of a single polymer depend on solvent quality in a polymer solution: a polymer collapses into a globule in a poor solvent, while the polymer swells in a good solvent. When one translocates a polymer through a narrow pore, a drastic conformational change occurs such that the kinetics of the translocation is expected to depend on the solvent quality. However, the effects of solvent quality on the translocation kinetics have been controversial. In this study, we employ a coarse-grained model for a polymer and perform Langevin dynamics simulations for the driven translocation of a polymer in various types of solvents. We estimate the free energy of polymer translocation using steered molecular dynamics simulations and Jarzynski's equality and find that the free energy barrier for the translocation increases as the solvent quality becomes poorer. The conformational entropy contributes most to the free energy barrier of the translocation in a good solvent, while a balance between entropy and energy matters in a poor solvent. Interestingly, contrary to what is expected from the free energy profile, the translocation kinetics is a non-monotonic function of the solvent quality. We find that for any type of solvent, the polymer conformation stays far away from the equilibrium conformation during translocation due to an external force and tension propagation. However, the degree of tension propagation differs depending on the solvent quality as well as the magnitude of the external force: the tension propagation is more significant in a good solvent than in a poor solvent. We illustrate that such differences in tension propagation and non-equilibrium conformations between good and poor solvents are responsible for the complicated non-monotonic effects of solvent quality on the translocation kinetics.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| | - Bong June Sung
- Department of Chemistry, Sogang University, Seoul 04107, South Korea
| |
Collapse
|
14
|
Polson JM, Kerry DRM. Segregation of polymers under cylindrical confinement: effects of polymer topology and crowding. SOFT MATTER 2018; 14:6360-6373. [PMID: 30028460 DOI: 10.1039/c8sm01062e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monte Carlo computer simulations are used to study the segregation behaviour of two polymers under cylindrical confinement. Using a multiple-histogram method, the conformational free energy, F, of the polymers was measured as a function of the centre-of-mass separation distance, λ. We examined the scaling of the free energy functions with the polymer length, the length and diameter of the confining cylinder, the polymer topology (i.e. linear vs. ring polymers), and the packing fraction and size of mobile crowding agents. In the absence of crowders, the observed scaling of F(λ) is similar to that predicted using a simple model employing the de Gennes blob model and the approximation that the free energy of overlapping chains in a tube is equal to that of two isolated chains each in a tube of half the cross-sectional area. Simulations were used to test the latter approximation and reveal that it yields poor quantitative predictions. This, along with generic finite-size effects, likely gives rise to the discrepancies between the predicted and measured values of scaling exponents for F(λ). For segregation in the presence of crowding agents, the free energy barrier generally decreases with increasing crowder packing fraction, thus reducing the entropic forces driving segregation. However, for fixed packing fraction, the barrier increases as the crowder/monomer size ratio decreases.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada.
| | | |
Collapse
|
15
|
Polson JM. Free Energy of a Folded Semiflexible Polymer Confined to a Nanochannel of Various Geometries. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
16
|
Sun LZ, Luo MB, Cao WP, Li H. Theoretical study on the polymer translocation into an attractive sphere. J Chem Phys 2018; 149:024901. [PMID: 30007381 DOI: 10.1063/1.5025609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report a non-sampling model, combining the blob method with the standard lattice-based approximation, to calculate the free energy for the polymer translocation into an attractive sphere (i.e., spherical confined trans side) through a small pore. The translocation time is then calculated by the Fokker-Planck equation based on the free energy profile. There is a competition between the confinement effect of the sphere and the polymer-sphere attraction. The translocation time is increased due to the confinement effect of the sphere, whereas it is reduced by the polymer-sphere attraction. The two effects offset each other at a special polymer-sphere attraction which is dependent on the sphere size, the polymer length, and the driving force. Moreover, the entire translocation process can be divided into an uncrowded stage where the polymer does not experience the confinement effect of the sphere and a crowded stage where the polymer is confined by the sphere. At the critical sphere radius, the durations of the two (uncrowded and crowded) stages are the same. The critical sphere radius R* has a scaling relation with the polymer length N as R* ∼ Nβ. The calculation results show that the current model can effectively treat the translocation of a three-dimensional self-avoiding polymer into the spherical confined trans side.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Meng-Bo Luo
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wei-Ping Cao
- Institute of Optoelectronic Technology, Lishui University, Lishui 323000, China
| | - Haibin Li
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
17
|
Chinappi M, Cecconi F. Protein sequencing via nanopore based devices: a nanofluidics perspective. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:204002. [PMID: 29595524 DOI: 10.1088/1361-648x/aababe] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.
Collapse
Affiliation(s)
- Mauro Chinappi
- Dipartimento di Ingegneria Industriale, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Roma, Italy
| | | |
Collapse
|
18
|
Polson JM, Tremblett AF, McLure ZRN. Free Energy of a Folded Polymer under Cylindrical Confinement. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Aidan F. Tremblett
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Zakary R. N. McLure
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
19
|
Vélez-Pérez JA, Olivares-Quiroz L. Jump transition observed in translocation time for ideal poly-X proteinogenic chains as a result of competing folding and anchoraging contributions. Phys Rev E 2017; 95:012407. [PMID: 28208414 DOI: 10.1103/physreve.95.012407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Indexed: 01/07/2023]
Abstract
In this work we analyze the translocation of homopolymer chains poly-X, where X represents any of the 20 naturally occurring amino acid residues, in terms of size N and single-helical propensity ω. We provide an analytical framework to calculate both the free energy F of translocation and the translocation time τ as a function of chain size N, energies U and ε of the unfolded and folded states, respectively. Our results show that free energy F has a characteristic bell-shaped barrier as function of the percentage of monomers translocated. Inclusion of single-helical propensity ω associated to monomer X and chain's native energy ε in the translocation model increases the energy barrier ΔF up to one order of magnitude as compared with the well-known Gaussian chain model. Computation of the mean first-passage time as function of chain size N shows that the translocation time τ exhibits a significant jump of several orders of magnitude at a critical chain size N. This jump markedly slows down translocation of chains larger than N. Existence of the transition jump of τ has been observed experimentally at least in poly(ethylene oxide) chains [R. P. Choudhury, P. Galvosas, and M. Schönhoff, J. Phys. Chem. B 112, 13245 (2008)]JPCBFK1520-610610.1021/jp804680q. Our results suggest the transition jump of τ as a function of N may be a very well spread feature throughout translocation of poly-X chains.
Collapse
Affiliation(s)
- José Antonio Vélez-Pérez
- Posgrado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del IPN, Ap. Postal 14-740, 07000 México, DF, México
| | - Luis Olivares-Quiroz
- Colegio de Ciencia y Tecnologia and Posgrado en Ciencias de la Complejidad, Universidad Autonoma de la Ciudad de México, CP 09760 México City, México
| |
Collapse
|
20
|
Sean D, Slater GW. Highly driven polymer translocation from a cylindrical cavity with a finite length. J Chem Phys 2017; 146:054903. [DOI: 10.1063/1.4975091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- David Sean
- University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | |
Collapse
|
21
|
Vollmer SC, de Haan HW. Translocation is a nonequilibrium process at all stages: Simulating the capture and translocation of a polymer by a nanopore. J Chem Phys 2016; 145:154902. [DOI: 10.1063/1.4964630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
22
|
The Semiflexible Polymer Translocation into Laterally Unbounded Region between Two Parallel Flat Membranes. Polymers (Basel) 2016; 8:polym8090332. [PMID: 30974609 PMCID: PMC6431992 DOI: 10.3390/polym8090332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Using the dynamic Monte Carlo method, we investigate dynamics of semiflexible polymer translocation through a nanopore into laterally unbounded region between two parallel flat membranes with separation R in presence of an electric field inside the pore. The average translocation time τ initially decreases rapidly with increase of R in the range of R < 10 and then almost keeps constant for R ≥ 10, and the decline range increases with increase of dimensionless bending stiffness κ. We mainly study the effect of chain length N, κ and electric field strength E on the translocation process for R = 5. The translocation dynamics is significantly altered in comparison to an unconfined environment. We find τ ~ Nα, where the exponent α increases with increase of E for small κ. α initially increases slowly with increase of E and then keeps constant for moderate κ. α decreases with increase of E for large κ. However, α decreases with increase of κ under various E. In addition, we find τ ~ κβ. β decreases with increase of N under various E. These behaviors are interpreted in terms of the probability distribution of translocation time and the waiting time of an individual monomer segment passing through the pore during translocation.
Collapse
|
23
|
|
24
|
Lim WK, Denton AR. Depletion-induced forces and crowding in polymer-nanoparticle mixtures: Role of polymer shape fluctuations and penetrability. J Chem Phys 2016; 144:024904. [DOI: 10.1063/1.4939766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Wei Kang Lim
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| | - Alan R. Denton
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050, USA
| |
Collapse
|
25
|
Polson JM. Polymer translocation into and out of an ellipsoidal cavity. J Chem Phys 2015; 142:174903. [DOI: 10.1063/1.4919642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
26
|
Polson JM, Dunn TR. Evaluating the applicability of the Fokker-Planck equation in polymer translocation: a Brownian dynamics study. J Chem Phys 2015; 140:184904. [PMID: 24832303 DOI: 10.1063/1.4874976] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Brownian dynamics (BD) simulations are used to study the translocation dynamics of a coarse-grained polymer through a cylindrical nanopore. We consider the case of short polymers, with a polymer length, N, in the range N = 21-61. The rate of translocation is controlled by a tunable friction coefficient, γ0p, for monomers inside the nanopore. In the case of unforced translocation, the mean translocation time scales with polymer length as <τ1> ∼ (N - Np)(α), where Np is the average number of monomers in the nanopore. The exponent approaches the value α = 2 when the pore friction is sufficiently high, in accord with the prediction for the case of the quasi-static regime where pore friction dominates. In the case of forced translocation, the polymer chain is stretched and compressed on the cis and trans sides, respectively, for low γ0p. However, the chain approaches conformational quasi-equilibrium for sufficiently large γ0p. In this limit the observed scaling of <τ1> with driving force and chain length supports the Fokker-Planck (FP) prediction that <τ> ∝ N/fd for sufficiently strong driving force. Monte Carlo simulations are used to calculate translocation free energy functions for the system. The free energies are used with the FP equation to calculate translocation time distributions. At sufficiently high γ0p, the predicted distributions are in excellent agreement with those calculated from the BD simulations. Thus, the FP equation provides a valid description of translocation dynamics for sufficiently high pore friction for the range of polymer lengths considered here. Increasing N will require a corresponding increase in pore friction to maintain the validity of the FP approach. Outside the regime of low N and high pore friction, the polymer is out of equilibrium, and the FP approach is not valid.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown,Prince Edward Island C1A 4P3, Canada
| | - Taylor R Dunn
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown,Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
27
|
Polson JM, Montgomery LG. Polymer segregation under confinement: Free energy calculations and segregation dynamics simulations. J Chem Phys 2014; 141:164902. [DOI: 10.1063/1.4898714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James M. Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | - Logan G. Montgomery
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
28
|
Sun LZ, Luo MB. Langevin dynamics simulation on the translocation of polymer through α-hemolysin pore. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:415101. [PMID: 25192215 DOI: 10.1088/0953-8984/26/41/415101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The forced translocation of a polymer through an α-hemolysin pore under an electrical field is studied using a Langevin dynamics simulation. The α-hemolysin pore is modelled as a connection of a spherical vestibule and a cylindrical β-barrel and polymer-pore attraction is taken into account. The results show that polymer-pore attraction can help the polymer enter the vestibule and the β-barrel as well; however, a strong attraction will slow down the translocation of the polymer through the β-barrel. The mean translocation time for the polymer to thread through the β-barrel increases linearly with the polymer length. By comparing our results with that of a simple pore without a vestibule, we find that the vestibule helps the polymer enter and thread through the β-barrel. Moreover, we find that it is easier for the polymer to thread through the β-barrel if the polymer is located closer to the surface of the vestibule. Some simulation results are explained qualitatively by theoretically analyzing the free-energy landscape of polymer translocation.
Collapse
Affiliation(s)
- Li-Zhen Sun
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China. Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | | |
Collapse
|
29
|
Wang C, Chen YC, Zhang S, Luo MB. Translocation of Diblock Copolymer through Compound Channels: A Monte Carlo Simulation Study. Macromolecules 2014. [DOI: 10.1021/ma501308h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Wang
- Department
of Physics, Zhejiang University, Hangzhou 310027, China
- Department
of Physics, Taizhou University, Taizhou 318000, China
| | - Ying-Cai Chen
- Department
of Physics, Taizhou University, Taizhou 318000, China
| | - Shuang Zhang
- Department
of Physics, Zhejiang University, Hangzhou 310027, China
| | - Meng-Bo Luo
- Department
of Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Polson JM, McCaffrey ACM. Polymer translocation dynamics in the quasi-static limit. J Chem Phys 2013; 138:174902. [PMID: 23656154 DOI: 10.1063/1.4803022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Monte Carlo (MC) simulations are used to study the dynamics of polymer translocation through a nanopore in the limit where the translocation rate is sufficiently slow that the polymer maintains a state of conformational quasi-equilibrium. The system is modeled as a flexible hard-sphere chain that translocates through a cylindrical hole in a hard flat wall. In some calculations, the nanopore is connected at one end to a spherical cavity. Translocation times are measured directly using MC dynamics simulations. For sufficiently narrow pores, translocation is sufficiently slow that the mean translocation time scales with polymer length N according to <τ> ∝ (N - N(p))(2), where N(p) is the average number of monomers in the nanopore; this scaling is an indication of a quasi-static regime in which polymer-nanopore friction dominates. We use a multiple-histogram method to calculate the variation of the free energy with Q, a coordinate used to quantify the degree of translocation. The free energy functions are used with the Fokker-Planck formalism to calculate translocation time distributions in the quasi-static regime. These calculations also require a friction coefficient, characterized by a quantity N(eff), the effective number of monomers whose dynamics are affected by the confinement of the nanopore. This was determined by fixing the mean of the theoretical distribution to that of the distribution obtained from MC dynamics simulations. The theoretical distributions are in excellent quantitative agreement with the distributions obtained directly by the MC dynamics simulations for physically meaningful values of N(eff). The free energy functions for narrow-pore systems exhibit oscillations with an amplitude that is sensitive to the nanopore length. Generally, larger oscillation amplitudes correspond to longer translocation times.
Collapse
Affiliation(s)
- James M Polson
- Department of Physics, University of Prince Edward Island, 550 University Ave., Charlottetown, Prince Edward Island C1A 4P3, Canada
| | | |
Collapse
|
31
|
Zhang S, Wang C, Sun LZ, Li CY, Luo MB. Polymer translocation through a gradient channel. J Chem Phys 2013; 139:044902. [DOI: 10.1063/1.4815918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
de Haan HW, Slater GW. Translocation of a polymer through a nanopore across a viscosity gradient. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042604. [PMID: 23679440 DOI: 10.1103/physreve.87.042604] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/21/2013] [Indexed: 06/02/2023]
Abstract
The translocation of a polymer through a pore in a membrane separating fluids of different viscosities is studied via several computational approaches. Starting with the polymer halfway, we find that as a viscosity difference across the pore is introduced, translocation will predominately occur towards one side of the membrane. These results suggest an intrinsic pumping mechanism for translocation across cell walls which could arise whenever the fluid across the membrane is inhomogeneous. Somewhat surprisingly, the sign of the preferred direction of translocation is found to be strongly dependent on the simulation algorithm: for Langevin dynamics (LD) simulations, a bias towards the low viscosity side is found while for Brownian dynamics (BD), a bias towards the high viscosity is found. Examining the translocation dynamics in detail across a wide range of viscosity gradients and developing a simple force model to estimate the magnitude of the bias, the LD results are demonstrated to be more physically realistic. The LD results are also compared to those generated from a simple, one-dimensional random walk model of translocation to investigate the role of the internal degrees of freedom of the polymer and the entropic barrier. To conclude, the scaling of the results across different polymer lengths demonstrates the saturation of the directional preference with polymer length and the nontrivial location of the maximum in the exponent corresponding to the scaling of the translocation time with polymer length.
Collapse
Affiliation(s)
- Hendrick W de Haan
- Physics Department, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5
| | | |
Collapse
|