1
|
Wells TA, Kwizera MH, Chen SM, Jemal N, Brown MD, Chen PC. Two-dimensional pattern recognition methods for rapidly recording and interpreting high resolution coherent three-dimensional spectra. J Chem Phys 2021; 154:194201. [PMID: 34240898 DOI: 10.1063/5.0047926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High resolution coherent multidimensional spectroscopy has the ability to reduce congestion and automatically sort peaks by species and quantum numbers, even for simple mixtures and molecules that are extensively perturbed. The two-dimensional version is relatively simple to carry out, and the results are easy to interpret, but its ability to deal with severe spectral congestion is limited. Three-dimensional spectroscopy is considerably more complicated and time-consuming than two-dimensional spectroscopy, but it provides the spectral resolution needed for more challenging systems. This paper describes how to design high resolution coherent 3D spectroscopy experiments so that a small number of strategically positioned 2D scans may be used instead of recording all the data required for a 3D plot. This faster and simpler approach uses new pattern recognition methods to interpret the results. Key factors that affect the resulting patterns include the scanning strategy and the four wave mixing process. Optimum four wave mixing (FWM) processes and scanning strategies have been identified, and methods for identifying the FWM process from the observed patterns have been developed. Experiments based on nonparametric FWM processes provide significant pattern recognition and efficiency advantages over those based on parametric processes. Alternative scanning strategies that use synchronous scanning and asynchronous scanning to create new kinds of patterns have also been identified. Rotating the resulting patterns in 3D space leads to an insight into similarities in the patterns produced by different FWM processes.
Collapse
Affiliation(s)
- Thresa A Wells
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Muhire H Kwizera
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Sarah M Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318, USA
| | - Nihal Jemal
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Morgan D Brown
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| | - Peter C Chen
- Department of Chemistry and Biochemistry, Spelman College, 350 Spelman Lane, Atlanta, Georgia 30314, USA
| |
Collapse
|
2
|
Bircher MP, Liberatore E, Browning NJ, Brickel S, Hofmann C, Patoz A, Unke OT, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner HJ, Vaníček J, Rothlisberger U. Nonadiabatic effects in electronic and nuclear dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061510. [PMID: 29376108 PMCID: PMC5760266 DOI: 10.1063/1.4996816] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 05/25/2023]
Abstract
Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi) static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
Collapse
Affiliation(s)
- Martin P Bircher
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Elisa Liberatore
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nicholas J Browning
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | - Aurélien Patoz
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Oliver T Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Tomáš Zimmermann
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Majed Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU) and Lausanne Centre for Ultrafast Science (LACUS), Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zürich, Switzerland
| | - Ursula Keller
- Physics Department, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Hans-Jakob Woerner
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
3
|
Drori R, Holmes-Cerfon M, Kahr B, Kohn RV, Ward MD. Dynamics and unsteady morphologies at ice interfaces driven by D 2O-H 2O exchange. Proc Natl Acad Sci U S A 2017; 114:11627-11632. [PMID: 29042511 PMCID: PMC5676873 DOI: 10.1073/pnas.1621058114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The growth dynamics of D2O ice in liquid H2O in a microfluidic device were investigated between the melting points of D2O ice (3.8 °C) and H2O ice (0 °C). As the temperature was decreased at rates between 0.002 °C/s and 0.1 °C/s, the ice front advanced but retreated immediately upon cessation of cooling, regardless of the temperature. This is a consequence of the competition between diffusion of H2O into the D2O ice, which favors melting of the interface, and the driving force for growth supplied by cooling. Raman microscopy tracked H/D exchange across the solid H2O-solid D2O interface, with diffusion coefficients consistent with transport of intact H2O molecules at the D2O ice interface. At fixed temperatures below 3 °C, the D2O ice front melted continuously, but at temperatures near 0 °C a scalloped interface morphology appeared with convex and concave sections that cycled between growth and retreat. This behavior, not observed for D2O ice in contact with D2O liquid or H2O ice in contact with H2O liquid, reflects a complex set of cooperative phenomena, including H/D exchange across the solid-liquid interface, latent heat exchange, local thermal gradients, and the Gibbs-Thomson effect on the melting points of the convex and concave features.
Collapse
Affiliation(s)
- Ran Drori
- Department of Chemistry, New York University, New York, NY 10003;
- Molecular Design Institute, New York University, New York, NY 10003
- Department of Chemistry and Biochemistry, Yeshiva University, New York, NY 10016
| | | | - Bart Kahr
- Department of Chemistry, New York University, New York, NY 10003
- Molecular Design Institute, New York University, New York, NY 10003
| | - Robert V Kohn
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012
| | - Michael D Ward
- Department of Chemistry, New York University, New York, NY 10003;
- Molecular Design Institute, New York University, New York, NY 10003
| |
Collapse
|
4
|
Kraack JP. Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods. Top Curr Chem (Cham) 2017; 375:86. [PMID: 29071445 DOI: 10.1007/s41061-017-0172-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022]
Abstract
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
Collapse
Affiliation(s)
- Jan Philip Kraack
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
5
|
Wang J. Ultrafast two-dimensional infrared spectroscopy for molecular structures and dynamics with expanding wavelength range and increasing sensitivities: from experimental and computational perspectives. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1321856] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Molecular Reaction Dynamics Laboratory, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, P.R. China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
6
|
Brown SE, Götz AW, Cheng X, Steele RP, Mandelshtam VA, Paesani F. Monitoring Water Clusters “Melt” Through Vibrational Spectroscopy. J Am Chem Soc 2017; 139:7082-7088. [DOI: 10.1021/jacs.7b03143] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Xiaolu Cheng
- Department
of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ryan P. Steele
- Department
of Chemistry and Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | |
Collapse
|
7
|
Jeon K, Yang M. Dimension of discrete variable representation for mixed quantum/classical computation of three lowest vibrational states of OH stretching in liquid water. J Chem Phys 2017; 146:054107. [PMID: 28178837 DOI: 10.1063/1.4974934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three low-lying vibrational states of molecular systems are responsible for the signals of linear and third-order nonlinear vibrational spectroscopies. Theoretical studies based on mixed quantum/classical calculations provide a powerful way to analyze those experiments. A statistically meaningful result can be obtained from the calculations by solving the vibrational Schrödinger equation over many numbers of molecular configurations. The discrete variable representation (DVR) method is a useful technique to calculate vibrational eigenstates subject to an arbitrary anharmonic potential surface. Considering the large number of molecular configurations over which the DVR calculations are repeated, the calculations are desired to be optimized in balance between the cost and accuracy. We determine a dimension of the DVR method which appears to be optimum for the calculations of the three states of molecular vibrations with anharmonic strengths often found in realistic molecular systems. We apply the numerical technique to calculate the local OH stretching frequencies of liquid water, which are well known to be widely distributed due to the inhomogeneity in molecular configuration, and found that the frequencies of the 0-1 and 1-2 transitions are highly correlated. An empirical relation between the two frequencies is suggested and compared with the experimental data of nonlinear IR spectroscopies.
Collapse
Affiliation(s)
- Kiyoung Jeon
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Mino Yang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| |
Collapse
|
8
|
Chen PC. An Introduction to Coherent Multidimensional Spectroscopy. APPLIED SPECTROSCOPY 2016; 70:1937-1951. [PMID: 27940533 DOI: 10.1177/0003702816669730] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Coherent multidimensional spectroscopy is a field that has drawn much attention as an optical analogue to multidimensional nuclear magnetic resonance imaging. Coherent multidimensional spectroscopic techniques produce spectra that show the magnitude of an optical signal as a function of two or more pulsed laser frequencies. Spectra can be collected in either the frequency or the time domain. In addition to improving resolution and overcoming spectral congestion, coherent multidimensional spectroscopy provides the ability to investigate and conduct studies based upon the relationship between different peaks. The purpose of this paper is to provide a general introduction to the area of coherent multidimensional spectroscopy, to provide a brief overview of current experimental approaches, and to discuss some emerging developments in this relatively young field.
Collapse
|
9
|
De Marco L, Fournier JA, Thämer M, Carpenter W, Tokmakoff A. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy. J Chem Phys 2016; 145:094501. [DOI: 10.1063/1.4961752] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Joseph A. Fournier
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Martin Thämer
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - William Carpenter
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute, and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Perakis F, De Marco L, Shalit A, Tang F, Kann ZR, Kühne TD, Torre R, Bonn M, Nagata Y. Vibrational Spectroscopy and Dynamics of Water. Chem Rev 2016; 116:7590-607. [DOI: 10.1021/acs.chemrev.5b00640] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fivos Perakis
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Chemistry and James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Andrey Shalit
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Fujie Tang
- International Center for Quantum Materials, Peking University, 5 Yiheyuan Road, Haidian, Beijing 100871, China
| | - Zachary R. Kann
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States,
| | - Thomas D. Kühne
- Department of Chemistry, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany
| | - Renato Torre
- European Lab for Nonlinear Spectroscopy and Dipartimento di Fisica e Astronomia, Università di Firenze, Via Nello Carrara 1, Sesto Fiorentino (Firenze) I-50019, Italy
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
11
|
Howard JC, Enyard JD, Tschumper GS. Assessing the accuracy of some popular DFT methods for computing harmonic vibrational frequencies of water clusters. J Chem Phys 2016; 143:214103. [PMID: 26646865 DOI: 10.1063/1.4936654] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A wide range of density functional theory (DFT) methods (37 altogether), including pure, hybrid, range-separated hybrid, double-hybrid, and dispersion-corrected functionals, have been employed to compute the harmonic vibrational frequencies of eight small water clusters ranging in size from the dimer to four different isomers of the hexamer. These computed harmonic frequencies have been carefully compared to recently published benchmark values that are expected to be very close to the CCSD(T) complete basis set limit. Of the DFT methods examined here, ωB97 and ωB97X are the most consistently accurate, deviating from the reference values by less than 20 cm(-1) on average and never more than 60 cm(-1). The performance of double-hybrid methods including B2PLYP and mPW2-PLYP is only slightly better than more economical approaches, such as the M06-L pure functional and the M06-2X hybrid functional. Additionally, dispersion corrections offer very little improvement in computed frequencies.
Collapse
Affiliation(s)
- J Coleman Howard
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| | - Jordan D Enyard
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| | - Gregory S Tschumper
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA
| |
Collapse
|
12
|
Mandal A, Tokmakoff A. Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy. J Chem Phys 2016; 143:194501. [PMID: 26590536 DOI: 10.1063/1.4935174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O-H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm(-1). We observe rapid vibrational relaxation processes on 150-250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1-2 ps time scales. Furthermore, the O-H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occurs in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.
Collapse
Affiliation(s)
- Aritra Mandal
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Medders GR, Paesani F. On the interplay of the potential energy and dipole moment surfaces in controlling the infrared activity of liquid water. J Chem Phys 2016; 142:212411. [PMID: 26049431 DOI: 10.1063/1.4916629] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infrared vibrational spectroscopy is a valuable tool for probing molecular structure and dynamics. However, obtaining an unambiguous molecular-level interpretation of the spectral features is made difficult, in part, due to the complex interplay of the dipole moment with the underlying vibrational structure. Here, we disentangle the contributions of the potential energy surface (PES) and dipole moment surface (DMS) to the infrared spectrum of liquid water by examining three classes of models, ranging in complexity from simple point charge models to accurate representations of the many-body interactions. By decoupling the PES from the DMS in the calculation of the infrared spectra, we demonstrate that the PES, by directly modulating the vibrational structure, primarily controls the width and position of the spectroscopic features. Due to the dependence of the molecular dipole moment on the hydration environment, many-body electrostatic effects result in a ∼100 cm(-1) redshift in the peak of the OH stretch band. Interestingly, while an accurate description of many-body collective motion is required to generate the correct (vibrational) structure of the liquid, the infrared intensity in the OH stretching region appears to be a measure of the local structure due to the dominance of the one-body and short-ranged two-body contributions to the total dipole moment.
Collapse
Affiliation(s)
- Gregory R Medders
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
14
|
Luther BM, Tracy KM, Gerrity M, Brown S, Krummel AT. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source. OPTICS EXPRESS 2016; 24:4117-4127. [PMID: 26907062 DOI: 10.1364/oe.24.004117] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz.
Collapse
|
15
|
Hamm P, Stock G. Nonadiabatic vibrational dynamics in the HCO2−⋅H2O complex. J Chem Phys 2015; 143:134308. [DOI: 10.1063/1.4932189] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Hutzler D, Werhahn JC, Heider R, Bradler M, Kienberger R, Riedle E, Iglev H. Highly Selective Relaxation of the OH Stretching Overtones in Isolated HDO Molecules Observed by Infrared Pump-Repump-Probe Spectroscopy. J Phys Chem A 2015; 119:6831-6. [PMID: 26039752 DOI: 10.1021/acs.jpca.5b05145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A quantitative investigation of the relaxation dynamics of higher-lying vibrational states is afforded by a novel method of infrared pump-repump-probe spectroscopy. The technique is used to study the dynamics of OH stretching overtones in NaClO4·HDO monohydrate. We observe a continuous decrease of the energy separation for the first four states, i.e. v01 = 3575 cm(-1), v12 = 3370 cm(-1), and v23 = 3170 cm(-1), respectively. The population lifetime of the first excited state is 7.2 ps, while the one of the second excited state is largely reduced to 1.4 ps. The relaxation of the v = 2 state proceeds nearly quantitatively to the v = 1 state. The new information on the OH stretching overtones demands improved theoretical potentials and modeling of the H bond interactions. This work shows the potential of the new technique for the precise study of complex vibrational relaxation pathways.
Collapse
Affiliation(s)
- Daniel Hutzler
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Jasper C Werhahn
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Rupert Heider
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Maximilian Bradler
- ‡Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 Munich, Germany
| | - Reinhard Kienberger
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| | - Eberhard Riedle
- ‡Lehrstuhl für BioMolekulare Optik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 Munich, Germany
| | - Hristo Iglev
- †Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748 Garching, Germany
| |
Collapse
|
17
|
Wells TA, Muthike AK, Robinson JE, Chen PC. High resolution coherent three dimensional spectroscopy of NO2. J Chem Phys 2015; 142:212426. [PMID: 26049446 DOI: 10.1063/1.4917317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Expansion from coherent 2D spectroscopy to coherent 3D spectroscopy can provide significant advantages when studying molecules that have heavily perturbed energy levels. This paper illustrates such advantages by demonstrating how high resolution coherent 3D (HRC3D) spectroscopy can be used to study a portion of the visible spectrum of nitrogen dioxide. High resolution coherent 2D spectra usually contain rotational and vibrational patterns that are easy to analyze, but severe congestion and complexity preclude its effective use for many parts of the NO2 spectrum. HRC3D spectroscopy appears to be much more effective; multidimensional rotational and vibrational patterns produced by this new technique are easy to identify even in the presence of strong perturbations. A method for assigning peaks, which is based upon analyzing the resulting multidimensional patterns, has been developed. The higher level of multidimensionality is useful for reducing uncertainty in peak assignments, improving spectral resolution, providing simultaneous information on multiple levels and states, and predicting, verifying, and categorizing peaks.
Collapse
Affiliation(s)
- Thresa A Wells
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| | | | | | - Peter C Chen
- Chemistry Department, Spelman College, Atlanta, Georgia 30314, USA
| |
Collapse
|
18
|
Abstract
Optical multdimensional coherent spectroscopy has recently been the subject of significant activity. While two-dimensional spectroscopy is most common, it is possible to extend the method into three dimensions. This perspective reviews the different approaches to three-dimensional spectroscopy and the systems that have been studied with it. The advantages of adding an additional dimension are discussed and compared to the resulting experimental challenges.
Collapse
Affiliation(s)
- Steven T Cundiff
- JILA, National Institute of Standards and Technology & University of Colorado, Boulder, Colorado, 80309-0440 USA.
| |
Collapse
|
19
|
Mandal A, Ramasesha K, De Marco L, Tokmakoff A. Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy. J Chem Phys 2015; 140:204508. [PMID: 24880302 DOI: 10.1063/1.4878490] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800 and 3500 cm(-1), which is attributed to the strong interactions of the OH(-) ion with its solvating water molecules. To provide molecular insight into the origin of the broad continuum absorption feature, we have performed ultrafast transient absorption and 2DIR experiments on aqueous NaOH by exciting the O-H stretch vibrations and probing the response from 1350 to 3800 cm(-1) using a newly developed sub-70 fs broadband mid-infrared source. These experiments, in conjunction with harmonic vibrational analysis of OH(-)(H2O)n (n = 17) clusters, reveal that O-H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. We classify the vibrations of the hydroxide complex by symmetry defined by the relative phase of vibrations of the O-H bonds hydrogen bonded to the ion. Although broad and overlapping spectral features are observed for 3- and 4-coordinate ion complexes, we find a resolvable splitting between asymmetric and symmetric stretch vibrations, and assign the 2850 cm(-1) peak infrared spectra of aqueous hydroxides to asymmetric stretch vibrations.
Collapse
Affiliation(s)
- Aritra Mandal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Krupa Ramasesha
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Andrei Tokmakoff
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Medders GR, Paesani F. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics. J Chem Theory Comput 2015; 11:1145-54. [PMID: 26579763 DOI: 10.1021/ct501131j] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.
Collapse
Affiliation(s)
- Gregory R Medders
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92037, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California, San Diego , La Jolla, California 92037, United States
| |
Collapse
|
21
|
De Marco L, Thämer M, Reppert M, Tokmakoff A. Direct observation of intermolecular interactions mediated by hydrogen bonding. J Chem Phys 2014; 141:034502. [DOI: 10.1063/1.4885145] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Luigi De Marco
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Martin Thämer
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, USA
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| | - Andrei Tokmakoff
- Department of Chemistry, James Frank Institute and The Institute for Biophysical Dynamics, The University of Chicago, 929 E 57th Street, Chicago, Illinois 60637, USA
| |
Collapse
|
22
|
Liu H, Wang Y, Bowman JM. Local-monomer calculations of the intramolecular IR spectra of the cage and prism isomers of HOD(D2O)5 and HOD and D2O ice Ih. J Phys Chem B 2014; 118:14124-31. [PMID: 25010120 DOI: 10.1021/jp5061182] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dilute mixtures of HOD in pure H2O and D2O ices and liquid have been used by experimentalists to focus on the spectrum and vibrational dynamics of the local OH and OD stretches and bend of HOD in these complex and highly heterogeneous environments. The hexamer version of the mixture is HOD(D2O)5. The cage isomer of this cluster was recently studied and analyzed theoretically using local-mode calculations of the IR spectrum by Skinner and co-workers. This and the further possibility of experimental investigation of this cluster have stimulated us to study HOD(D2O)5 using the three-mode, local-monomer model, with the ab initio WHBB dipole moment and potential energy surfaces. Both the cage and prism isomers of this cluster are considered. In addition to providing additional insight into the HOD portion of the spectrum, the spectral signatures of each D2O are also presented in the range of 1000-4000 cm(-1). The OH stretch bands of both the prism and cage isotopomers exhibit rich structures in the range of 3100-3700 cm(-1) that are indicative of the position of the HOD in these hexamers. A preliminary investigation of the site preference of the HOD is also reported for both cage and prism HOD(D2O)5 using an harmonic zero-point energy analysis of the entire cluster. This indicates that the energies of free-OH sites are lower than the ones of H-bonded OH sites. Finally, following our earlier work on the IR spectra of H2O ice models, we present IR spectra of pure D2O and HOD.
Collapse
Affiliation(s)
- Hanchao Liu
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | | | | |
Collapse
|
23
|
Testing for memory-free spectroscopic coordinates by 3D IR exchange spectroscopy. Proc Natl Acad Sci U S A 2014; 111:10462-7. [PMID: 25002483 DOI: 10.1073/pnas.1406967111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using 3D infrared (IR) exchange spectroscopy, the ultrafast hydrogen-bond forming and breaking (i.e., complexation) kinetics of phenol to benzene in a benzene/CCl4 mixture is investigated. By introducing a third time point at which the hydrogen-bonding state of phenol is measured (in comparison with 2D IR exchange spectroscopy), the spectroscopic method can serve as a critical test of whether the spectroscopic coordinate used to observe the exchange process is a memory-free, or Markovian, coordinate. For the system under investigation, the 3D IR results suggest that this is not the case. This conclusion is reconfirmed by accompanying molecular dynamics simulations, which furthermore reveal that the non-Markovian kinetics is caused by the heterogeneous structure of the mixed solvent.
Collapse
|
24
|
Shalit A, Perakis F, Hamm P. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice. J Chem Phys 2014. [DOI: 10.1063/1.4871476] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Liu H, Wang Y, Bowman JM. Ab Initio Deconstruction of the Vibrational Relaxation Pathways of Dilute HOD in Ice Ih. J Am Chem Soc 2014; 136:5888-91. [DOI: 10.1021/ja501986t] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanchao Liu
- Cherry L. Emerson Center
for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Yimin Wang
- Cherry L. Emerson Center
for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joel M. Bowman
- Cherry L. Emerson Center
for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
26
|
Smit WJ, Bakker HJ. Anomalous temperature dependence of the vibrational lifetime of the OD stretch vibration in ice and liquid water. J Chem Phys 2013; 139:204504. [DOI: 10.1063/1.4833596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Mukherjee SS, Skoff DR, Middleton CT, Zanni MT. Fully absorptive 3D IR spectroscopy using a dual mid-infrared pulse shaper. J Chem Phys 2013; 139:144205. [PMID: 24116612 PMCID: PMC4108792 DOI: 10.1063/1.4824638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/25/2013] [Indexed: 12/27/2022] Open
Abstract
This paper presents the implementation of 3D IR spectroscopy by adding a second pump beam to a two-beam 2D IR spectrometer. An independent mid-IR pulse shaper is used for each pump beam, which can be programmed to collect its corresponding dimension in either the frequency or time-domains. Due to the phase matching geometry employed here, absorptive 3D IR spectra are automatically obtained, since all four of the rephasing and non-rephasing signals necessary to generate absorptive spectra are collected simultaneously. Phase cycling is used to isolate the fifth-order from the third-order signals. The method is demonstrated on tungsten hexacarbonyl (W(CO)6) and dicarbonylacetylacetonato rhodium (I), for which the eigenstates are extracted up to the third excited state. Pulse shaping affords a high degree of control over 3D IR experiments by making possible mixed time- and frequency-domain experiments, fast data acquisition and straightforward implementation.
Collapse
Affiliation(s)
- Sudipta S Mukherjee
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|