1
|
Eltareb A, Khan BA, Lopez GE, Giovambattista N. Nuclear quantum effects on glassy water under pressure: Vitrification and pressure-induced transformations. J Chem Phys 2024; 161:234502. [PMID: 39679523 DOI: 10.1063/5.0238823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
We perform classical molecular dynamics (MD) and path-integral MD (PIMD) simulations of H2O and D2O using the q-TIP4P/F model over a wide range of temperatures and pressures to study the nuclear quantum effects (NQEs) on (i) the vitrification of liquid water upon isobaric cooling at different pressures and (ii) pressure-induced transformations at constant temperature between low-density amorphous and high-density amorphous ice (LDA and HDA) and hexagonal ice Ih and HDA. Upon isobaric cooling, classical and quantum H2O and D2O vitrify into a continuum of intermediate amorphous ices (IA), with densities in-between those of LDA and HDA (depending on pressure). Importantly, the density of the IA varies considerably if NQEs are included (similar conclusions hold for ice Ih at all pressures studied). While the structure of the IA is not very sensitive to NQE, the geometry of the hydrogen-bond (HB) is. NQE leads to longer and less linear HB in LDA, HDA, and ice Ih than found in the classical case. Interestingly, the delocalization of the H/D atoms is non-negligible and identical in LDA, HDA, and ice Ih at all pressures studied. Our isothermal compression/decompression MD/PIMD simulations show that classical and quantum H2O and D2O all exhibit LDA-HDA and ice Ih-HDA transformations, consistent with experiments. The inclusion of NQE leads to a softer HB-network, which lowers slightly the LDA/ice Ih-to-HDA transformation pressures. Interestingly, the HB in HDA is longer and less linear than in LDA, which is counterintuitive given that HDA is ≈25% denser than LDA. Overall, our results show that, while classical computer simulations provide the correct qualitative phenomenology of ice and glassy water, NQEs are necessary for a quantitative description.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Bibi A Khan
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Gustavo E Lopez
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
2
|
Eltareb A, Lopez GE, Giovambattista N. A continuum of amorphous ices between low-density and high-density amorphous ice. Commun Chem 2024; 7:36. [PMID: 38378859 PMCID: PMC10879119 DOI: 10.1038/s42004-024-01117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/01/2024] [Indexed: 02/22/2024] Open
Abstract
Amorphous ices are usually classified as belonging to low-density or high-density amorphous ice (LDA and HDA) with densities ρLDA ≈ 0.94 g/cm3 and ρHDA ≈ 1.15-1.17 g/cm3. However, a recent experiment crushing hexagonal ice (ball-milling) produced a medium-density amorphous ice (MDA, ρMDA ≈ 1.06 g/cm3) adding complexity to our understanding of amorphous ice and the phase diagram of supercooled water. Motivated by the discovery of MDA, we perform computer simulations where amorphous ices are produced by isobaric cooling and isothermal compression/decompression. Our results show that, depending on the pressure employed, isobaric cooling can generate a continuum of amorphous ices with densities that expand in between those of LDA and HDA (briefly, intermediate amorphous ices, IA). In particular, the IA generated at P ≈ 125 MPa has a remarkably similar density and average structure as MDA, implying that MDA is not unique. Using the potential energy landscape formalism, we provide an intuitive qualitative understanding of the nature of LDA, HDA, and the IA generated at different pressures. In this view, LDA and HDA occupy specific and well-separated regions of the PEL; the IA prepared at P = 125 MPa is located in the intermediate region of the PEL that separates LDA and HDA.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, NY, 10468, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY, 11210, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Eltareb A, Lopez GE, Giovambattista N. The Importance of Nuclear Quantum Effects on the Thermodynamic and Structural Properties of Low-Density Amorphous Ice: A Comparison with Hexagonal Ice. J Phys Chem B 2023; 127:4633-4645. [PMID: 37178124 DOI: 10.1021/acs.jpcb.3c01025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We study the nuclear quantum effects (NQE) on the thermodynamic properties of low-density amorphous ice (LDA) and hexagonal ice (Ih) at P = 0.1 MPa and T ≥ 25 K. Our results are based on path-integral molecular dynamics (PIMD) and classical MD simulations of H2O and D2O using the q-TIP4P/F water model. We show that the inclusion of NQE is necessary to reproduce the experimental properties of LDA and ice Ih. While MD simulations (no NQE) predict that the density ρ(T) of LDA and ice Ih increases monotonically upon cooling, PIMD simulations indicate the presence of a density maximum in LDA and ice Ih. MD and PIMD simulations also predict a qualitatively different T-dependence for the thermal expansion coefficient αP(T) and bulk modulus B(T) of both LDA and ice Ih. Remarkably, the ρ(T), αP(T), and B(T) of LDA are practically identical to those of ice Ih. The origin of the observed NQE is due to the delocalization of the H atoms, which is identical in LDA and ice Ih. H atoms delocalize considerably (over a distance ≈ 20-25% of the OH covalent-bond length) and anisotropically (preferentially perpendicular to the OH covalent bond), leading to less linear hydrogen bonds HB (larger HOO angles and longer OO separations) than observed in classical MD simulations.
Collapse
Affiliation(s)
- Ali Eltareb
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Gustavo E Lopez
- Department of Chemistry, Lehman College of the City University of New York, Bronx, New York 10468, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Dhabal D, Molinero V. Kinetics and Mechanisms of Pressure-Induced Ice Amorphization and Polyamorphic Transitions in a Machine-Learned Coarse-Grained Water Model. J Phys Chem B 2023; 127:2847-2862. [PMID: 36920450 DOI: 10.1021/acs.jpcb.3c00434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Water glasses have attracted considerable attention due to their potential connection to a liquid-liquid transition in supercooled water. Here we use molecular simulations to investigate the formation and phase behavior of water glasses using the machine-learned bond-order parameter (ML-BOP) water model. We produce glasses through hyperquenching of water, pressure-induced amorphization (PIA) of ice, and pressure-induced polyamorphic transformations. We find that PIA of polycrystalline ice occurs at a lower pressure than that of monocrystalline ice and through a different mechanism. The temperature dependence of the amorphization pressure of polycrystalline ice for ML-BOP agrees with that in experiments. We also find that ML-BOP accurately reproduces the density, coordination number, and structural features of low-density (LDA), high-density (HDA), and very high-density (VHDA) amorphous water glasses. ML-BOP accurately reproduces the experimental radial distribution function of LDA but overpredicts the minimum between the first two shells in high-density glasses. We examine the kinetics and mechanism of the transformation between low-density and high-density glasses and find that the sharp nature of these transitions in ML-BOP is similar to that in experiments and all-atom water models with a liquid-liquid transition. Transitions between ML-BOP glasses occur through a spinodal-like mechanism, similar to ice crystallization from LDA. Both glass-to-glass and glass-to-ice transformations have Avrami-Kolmogorov kinetics with exponent n = 1.5 ± 0.2 in experiments and simulations. Importantly, ML-BOP reproduces the competition between crystallization and HDA→LDA transition above the glass transition temperature Tg, and separation of their time scales below Tg, observed also in experiments. These findings demonstrate the ability of ML-BOP to accurately reproduce water properties across various regimes, making it a promising model for addressing the competition between polyamorphic transitions and crystallization in water and solutions.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
5
|
Dhabal D, Sankaranarayanan SKRS, Molinero V. Stability and Metastability of Liquid Water in a Machine-Learned Coarse-Grained Model with Short-Range Interactions. J Phys Chem B 2022; 126:9881-9892. [PMID: 36383428 DOI: 10.1021/acs.jpcb.2c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Coarse-grained water models are ∼100 times more efficient than all-atom models, enabling simulations of supercooled water and crystallization. The machine-learned monatomic model ML-BOP reproduces the experimental equation of state (EOS) and ice-liquid thermodynamics at 0.1 MPa on par with the all-atom TIP4P/2005 and TIP4P/Ice models. These all-atom models were parametrized using high-pressure experimental data and are either accurate for water's EOS (TIP4P/2005) or ice-liquid equilibrium (TIP4P/Ice). ML-BOP was parametrized from temperature-dependent ice and liquid experimental densities and melting data at 0.1 MPa; its only pressure training is from compression of TIP4P/2005 ice at 0 K. Here we investigate whether ML-BOP replicates the experimental EOS and ice-water thermodynamics along all pressures of ice I. We find that ML-BOP reproduces the temperature, enthalpy, entropy, and volume of melting of hexagonal ice up to 400 MPa and the EOS of water along the melting line with an accuracy that rivals that of both TIP4P/2005 and TIP4P/Ice. We interpret that the accuracy of ML-BOP originates from its ability to capture the shift between compact and open local structures to changes in pressure and temperature. ML-BOP reproduces the sharpening of the tetrahedral peak of the pair distribution function of water upon supercooling, and its pressure dependence. We characterize the region of metastability of liquid ML-BOP with respect to crystallization and cavitation. The accessibility of ice crystallization to simulations of ML-BOP, together with its accurate representation of the thermodynamics of water, makes it promising for investigating the interplay between anomalies, glass transition, and crystallization under conditions challenging to access through experiments.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, The University of Utah, Salt Lake City, Utah84112-0850, United States
| | - Subramanian K R S Sankaranarayanan
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois60607, United States.,Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Valeria Molinero
- Department of Chemistry, The University of Utah, Salt Lake City, Utah84112-0850, United States
| |
Collapse
|
6
|
Coexistence of vitreous and crystalline phases of H 2O at ambient temperature. Proc Natl Acad Sci U S A 2022; 119:e2117281119. [PMID: 35763575 PMCID: PMC9271169 DOI: 10.1073/pnas.2117281119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the phase behavior of H2O is essential in geoscience, extreme biology, biological imaging, chemistry, and physics. Vitreous phases of H2O are of particular importance since these phases avoid the typical expansion of H2O during ice-crystal formation. Here, we confirm the existence of vitreous ice and ice VI in mixed-phase samples of H2O at room temperature and high pressure. We show how Raman scattering and X-ray diffraction alone lead to misleading characterization and understanding of the mixed-phase material, a conclusion supported by molecular dynamics simulations. The coexistence of vitreous and crystalline components of H2O under these conditions is crucial for experimental studies of biological systems. The results have implications for related metastable transitions in other materials under pressure. Formation of vitreous ice during rapid compression of water at room temperature is important for biology and the study of biological systems. Here, we show that Raman spectra of rapidly compressed water at greater than 1 GPa at room temperature exhibits the signature of high-density amorphous ice, whereas the X-ray diffraction (XRD) pattern is dominated by crystalline ice VI. To resolve this apparent contradiction, we used molecular dynamics simulations to calculate full vibrational spectra and diffraction patterns of mixtures of vitreous ice and ice VI, including embedded interfaces between the two phases. We show quantitatively that Raman spectra, which probe the local polarizability with respect to atomic displacements, are dominated by the vitreous phase, whereas a small amount of the crystalline component is readily apparent by XRD. The results of our combined experimental and theoretical studies have implications for detecting vitreous phases of water, survival of biological systems under extreme conditions, and biological imaging. The results provide additional insight into the stable and metastable phases of H2O as a function of pressure and temperature, as well as of other materials undergoing pressure-induced amorphization and other metastable transitions.
Collapse
|
7
|
Mitev P, Briels WJ, Hermansson K. Space-Resolved OH Vibrational Spectra of the Hydration Shell around CO 2. J Phys Chem B 2021; 125:13886-13895. [PMID: 34927438 PMCID: PMC8724796 DOI: 10.1021/acs.jpcb.1c06123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/01/2021] [Indexed: 11/30/2022]
Abstract
The CO2 molecule is weakly bound in water. Here we analyze the influence of a dissolved CO2 molecule on the structure and OH vibrational spectra of the surrounding water. From the analysis of ab initio molecular dynamics simulations (BLYP-D3) we present static (structure, coordination, H-bonding, tetrahedrality) and dynamical (OH vibrational spectra) properties of the water molecules as a function of distance from the solute. We find a weakly oscillatory variation ("ABBA") in the 'solution minus bulk water' spectrum. The origin of these features can largely be traced back to solvent-solute hard-core interactions which lead to variations in density and tetrahedrality when moving from the solute's vicinity out to the bulk region. The high-frequency peak in the solute-affected spectra is specifically analyzed and found to originate from both water OH groups that fulfill the geometric H-bond criteria, and from those that do not (dangling ones). Effectively, neither is hydrogen-bonded.
Collapse
Affiliation(s)
- Pavlin
D. Mitev
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 538, S-751 21, Uppsala, Sweden
- Uppsala
Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, SE-751 05, Sweden
| | - W. J. Briels
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- IBI-4, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Kersti Hermansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, Box 538, S-751 21, Uppsala, Sweden
| |
Collapse
|
8
|
Abstract
The question of whether a first-order liquid-to-liquid transition is at the origin of water’s anomalous properties has been controversial since the pioneering experiments by Mishima et al. in 1985 and molecular simulations by Poole et al. in 1992. Since then, experiments aimed at shedding light on this question have been performed using amorphous ices made from crystalline ice, fueling criticism about their crystal-like nature. In the present study, we avoid crystalline ice at any time of the experiment yet still observe a first-order glass-to-glass transition in vitrified liquid droplets. This makes the strong case for glass polymorphism and the direct thermodynamic connection to the liquid-to-liquid transition at higher temperatures, dismissing the criticism voiced for three decades. The nature of amorphous ices has been debated for more than 35 years. In essence, the question is whether they are related to ice polymorphs or to liquids. The fact that amorphous ices are traditionally prepared from crystalline ice via pressure-induced amorphization has made a clear distinction tricky. In this work, we vitrify liquid droplets through cooling at ≥106 K ⋅ s−1 and pressurize the glassy deposit. We observe a first order–like densification upon pressurization and recover a high-density glass. The two glasses resemble low- and high-density amorphous ice in terms of both structure and thermal properties. Vitrified water shows all features that have been reported for amorphous ices made from crystalline ice. The only difference is that the hyperquenched and pressurized deposit shows slightly different crystallization kinetics to ice I upon heating at ambient pressure. This implies a thermodynamically continuous connection of amorphous ices with liquids, not crystals.
Collapse
|
9
|
Kinugawa K, Takemoto A. Quantum polyamorphism in compressed distinguishable helium-4. J Chem Phys 2021; 154:224503. [PMID: 34241222 DOI: 10.1063/5.0048539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate that two amorphous solid states can exist in 4He consisting of distinguishable Boltzmann atoms under compressed conditions. The isothermal compression of normal or supercritical fluid 4He was conducted at 3-25 K using the isobaric-isothermal path integral centroid molecular dynamics simulation. The compression of fluid first produced the low-dispersion amorphous (LDA) state possessing modest extension of atomic necklaces. Further isothermal compression up to the order of 10 kbar to 1 Mbar or an isobaric cooling of LDA induced the transition to the high-dispersion amorphous (HDA) state. The HDA was characterized by long quantum wavelengths of atoms extended over several Angstroms and the promotion of atomic residual diffusion. They were related to the quantum tunneling of atoms bestriding the potential saddle points in this glass. The change in pressure or temperature induced the LDA-HDA transition reversibly with hysteresis, while it resembled the coil-globule transition of classical polymers. The HDA had lower kinetic and higher Gibbs free energies than the LDA at close temperature. The HDA was absent at T ≥ 13 K, while the LDA-HDA transition pressure significantly decreased with lowering temperature. The LDA and HDA correspond to the trapped and tunneling regimes proposed by Markland et al. [J. Chem. Phys. 136, 074511 (2012)], respectively. The same reentrant behavior as they found was observed for the expansion factor of the quantum wavelength as well as for atomic diffusivity.
Collapse
Affiliation(s)
- Kenichi Kinugawa
- Division of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| | - Ayumi Takemoto
- Division of Chemistry, Graduate School of Humanities and Sciences, Nara Women's University, Nara 630-8506, Japan
| |
Collapse
|
10
|
Mukherjee S, Bagchi B. Theoretical analyses of pressure induced glass transition in water: Signatures of surprising diffusion-entropy scaling across the transition. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1930222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saumyak Mukherjee
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
11
|
Kim KH, Amann-Winkel K, Giovambattista N, Späh A, Perakis F, Pathak H, Parada ML, Yang C, Mariedahl D, Eklund T, Lane TJ, You S, Jeong S, Weston M, Lee JH, Eom I, Kim M, Park J, Chun SH, Poole PH, Nilsson A. Experimental observation of the liquid-liquid transition in bulk supercooled water under pressure. Science 2021; 370:978-982. [PMID: 33214280 DOI: 10.1126/science.abb9385] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/11/2020] [Accepted: 10/06/2020] [Indexed: 01/30/2023]
Abstract
We prepared bulk samples of supercooled liquid water under pressure by isochoric heating of high-density amorphous ice to temperatures of 205 ± 10 kelvin, using an infrared femtosecond laser. Because the sample density is preserved during the ultrafast heating, we could estimate an initial internal pressure of 2.5 to 3.5 kilobar in the high-density liquid phase. After heating, the sample expanded rapidly, and we captured the resulting decompression process with femtosecond x-ray laser pulses at different pump-probe delay times. A discontinuous structural change occurred in which low-density liquid domains appeared and grew on time scales between 20 nanoseconds to 3 microseconds, whereas crystallization occurs on time scales of 3 to 50 microseconds. The dynamics of the two processes being separated by more than one order of magnitude provides support for a liquid-liquid transition in bulk supercooled water.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.,Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Marjorie Ladd Parada
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Cheolhee Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Tobias Eklund
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Thomas J Lane
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.,Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Seonju You
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peter H Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden.
| |
Collapse
|
12
|
Affiliation(s)
- Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
13
|
Bachler J, Handle PH, Giovambattista N, Loerting T. Glass polymorphism and liquid-liquid phase transition in aqueous solutions: experiments and computer simulations. Phys Chem Chem Phys 2019; 21:23238-23268. [PMID: 31556899 DOI: 10.1039/c9cp02953b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One of the most intriguing anomalies of water is its ability to exist as distinct amorphous ice forms (glass polymorphism or polyamorphism). This resonates well with the possible first-order liquid-liquid phase transition (LLPT) in the supercooled state, where ice is the stable phase. In this Perspective, we review experiments and computer simulations that search for LLPT and polyamorphism in aqueous solutions containing salts and alcohols. Most studies on ionic solutes are devoted to NaCl and LiCl; studies on alcohols have mainly focused on glycerol. Less attention has been paid to protein solutions and hydrophobic solutes, even though they reveal promising avenues. While all solutions show polyamorphism and an LLPT only in dilute, sub-eutectic mixtures, there are differences regarding the nature of the transition. Isocompositional transitions for varying mole fractions are observed in alcohol but not in ionic solutions. This is because water can surround alcohol molecules either in a low- or high-density configuration whereas for ionic solutes, the water ion hydration shell is forced into high-density structures. Consequently, the polyamorphic transition and the LLPT are prevented near the ions, but take place in patches of water within the solutions. We highlight discrepancies and different interpretations within the experimental community as well as the key challenges that need consideration when comparing experiments and simulations. We point out where reinterpretation of past studies helps to draw a unified, consistent picture. In addition to the literature review, we provide original experimental results. A list of eleven open questions that need further consideration is identified.
Collapse
Affiliation(s)
- Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
14
|
Handle PH, Sciortino F, Giovambattista N. Glass polymorphism in TIP4P/2005 water: A description based on the potential energy landscape formalism. J Chem Phys 2019; 150:244506. [PMID: 31255050 DOI: 10.1063/1.5100346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The potential energy landscape (PEL) formalism is a statistical mechanical approach to describe supercooled liquids and glasses. Here, we use the PEL formalism to study the pressure-induced transformations between low-density amorphous ice (LDA) and high-density amorphous ice (HDA) using computer simulations of the TIP4P/2005 molecular model of water. We find that the properties of the PEL sampled by the system during the LDA-HDA transformation exhibit anomalous behavior. In particular, at conditions where the change in density during the LDA-HDA transformation is approximately discontinuous, reminiscent of a first-order phase transition, we find that (i) the inherent structure (IS) energy, eIS(V), is a concave function of the volume and (ii) the IS pressure, PIS(V), exhibits a van der Waals-like loop. In addition, the curvature of the PEL at the IS is anomalous, a nonmonotonic function of V. In agreement with previous studies, our work suggests that conditions (i) and (ii) are necessary (but not sufficient) signatures of the PEL for the LDA-HDA transformation to be reminiscent of a first-order phase transition. We also find that one can identify two different regions of the PEL, one associated with LDA and another with HDA. Our computer simulations are performed using a wide range of compression/decompression and cooling rates. In particular, our slowest cooling rate (0.01 K/ns) is within the experimental rates employed in hyperquenching experiments to produce LDA. Interestingly, the LDA-HDA transformation pressure that we obtain at T = 80 K and at different rates extrapolates remarkably well to the corresponding experimental pressure.
Collapse
Affiliation(s)
- Philip H Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria
| | - Francesco Sciortino
- Department of Physics, Sapienza-University of Rome, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
15
|
Giovambattista N, Starr FW, Poole PH. State variables for glasses: The case of amorphous ice. J Chem Phys 2019; 150:224502. [DOI: 10.1063/1.5092586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Peter H. Poole
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| |
Collapse
|
16
|
Huy HA, Nguyen LT, Nguyen DLT, Truong TQ, Ong LK, Van Hoang V, Nguyen GH. Novel pressure-induced topological phase transitions of supercooled liquid and amorphous silicene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:095403. [PMID: 30523966 DOI: 10.1088/1361-648x/aaf402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This molecular dynamics (MD) simulation carries a detailed analysis of a pressure-induced structural transition supercooled liquid and amorphous silicene (a-silicene). Low-density models of supercooled liquid and a-silicene containing 10 000 atoms are obtained by rapid cooling processes from the melts. Then, an a-silicene model at T = 1000 K, a supercooled liquid model at T = 1500 K and a liquid silicon model at T = 2000 K have been isothermally compressed step by step up to a high density in order to observe the pressure-induced structural changes. Specifically 'Cairo tiling' pentagonal and square lattices of silicene are discovered in our calculations. Structural properties of those penta-silicene and tetra-silicene models have been carefully analyzed through the radial distribution functions, interatomic distances, bond-angle distributions under high-pressure condition. The dependence of pressure on formation behaviors is calculated via pressure-volume and energy-density relationships. The first order transition from low-density supercooled liquid/amorphous silicene to high-density penta-silicene and continuous transition from low-density liquid to high-density tetra-silicene are discussed. Atomic mechanism and sp3/sp2 hybridization evolution are inspected whereas the role of low-membered ring defects/boundary promises remarkable application and advanced research in future.
Collapse
Affiliation(s)
- Huynh Anh Huy
- Department of Physics, College of Education, Can Tho University, Can Tho City, Vietnam
| | | | | | | | | | | | | |
Collapse
|
17
|
Guo Q, Ghaani MR, Nandi PK, English NJ. Pressure-Induced Densification of Ice I h under Triaxial Mechanical Compression: Dissociation versus Retention of Crystallinity for Intermediate States in Atomistic and Coarse-Grained Water Models. J Phys Chem Lett 2018; 9:5267-5274. [PMID: 30145899 DOI: 10.1021/acs.jpclett.8b02270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular-dynamics (MD) simulation of triaxially pressurized ice Ih up to 30 kbar at 240 K (with sudden mechanical pressurization from its ambient-pressure structure) has been carried out with both the single-particle mW and atomistic TIP4P-Ice water potentials on systems of up to ∼1 million molecules, for times of the order of 100 ns. It was found that the TIP4P-Ice systems adopted a high-density liquid state above ∼7 kbar, while densification of the mW systems retained essentially crystalline order, owing to a failure for the tetrahedral network to break down appreciably from its ice Ih lattice structure. Both are intermediate states adopted along the path toward respective thermodynamically stable states (and with pressure removal show reversion to Ih for mW and to supercooled liquid for TIP4P-Ice), similar to recent ice electro-freezing simulations in "No Man's Land". Densification kinetics showed faster mW-system adaptation.
Collapse
Affiliation(s)
- Qiang Guo
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, College of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield , Dublin 4 , Ireland
| | - Mohammad Reza Ghaani
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield , Dublin 4 , Ireland
| | - Prithwish K Nandi
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield , Dublin 4 , Ireland
- Irish Centre for High-End Computing , Grand Canal Quay , Dublin 2 , Ireland
| | - Niall J English
- School of Chemical and Bioprocess Engineering , University College Dublin , Belfield , Dublin 4 , Ireland
| |
Collapse
|
18
|
Palmer JC, Poole PH, Sciortino F, Debenedetti PG. Advances in Computational Studies of the Liquid–Liquid Transition in Water and Water-Like Models. Chem Rev 2018; 118:9129-9151. [DOI: 10.1021/acs.chemrev.8b00228] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Peter H. Poole
- Department of Physics, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Francesco Sciortino
- Dipartimento di Fisica and CNR-ISC, Sapienza Universita’ di Roma, Piazzale A. Moro 5, 00185 Rome, Italy
| | - Pablo G. Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Engstler J, Giovambattista N. Heating- and pressure-induced transformations in amorphous and hexagonal ice: A computer simulation study using the TIP4P/2005 model. J Chem Phys 2018; 147:074505. [PMID: 28830166 DOI: 10.1063/1.4998747] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We characterize the phase behavior of glassy water by performing extensive out-of-equilibrium molecular dynamics simulations using the TIP4P/2005 water model. Specifically, we study (i) the pressure-induced transformations between low-density (LDA) and high-density amorphous ice (HDA), (ii) the pressure-induced amorphization (PIA) of hexagonal ice (Ih), (iii) the heating-induced LDA-to-HDA transformation at high pressures, (iv) the heating-induced HDA-to-LDA transformation at low and negative pressures, (v) the glass transition temperatures of LDA and HDA as a function of pressure, and (vi) the limit of stability of LDA upon isobaric heating and isothermal decompression (at negative pressures). These transformations are studied systematically, over a wide range of temperatures and pressures, allowing us to construct a P-T phase diagram for glassy TIP4P/2005 water. Our results are in qualitative agreement with experimental observations and with the P-T phase diagram obtained for glassy ST2 water that exhibits a liquid-liquid phase transition and critical point. We also discuss the mechanism for PIA of ice Ih and show that this is a two-step process where first, the hydrogen-bond network (HBN) is distorted and then the HBN abruptly collapses. Remarkably, the collapse of the HB in ice Ih occurs when the average molecular orientations order, a measure of the tetrahedrality of the HBN, is of the same order as in LDA, suggesting a common mechanism for the LDA-to-HDA and Ih-to-HDA transformations.
Collapse
Affiliation(s)
- Justin Engstler
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| |
Collapse
|
20
|
Pipolo S, Salanne M, Ferlat G, Klotz S, Saitta AM, Pietrucci F. Navigating at Will on the Water Phase Diagram. PHYSICAL REVIEW LETTERS 2017; 119:245701. [PMID: 29286747 DOI: 10.1103/physrevlett.119.245701] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 06/07/2023]
Abstract
Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.
Collapse
Affiliation(s)
- S Pipolo
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, IRD UMR 206, MNHN, IMPMC, F-75005 Paris, France
| | - M Salanne
- Sorbonne Universités, UPMC Université Paris 06, CNRS, Laboratoire PHENIX, F-75005 Paris, France
| | - G Ferlat
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, IRD UMR 206, MNHN, IMPMC, F-75005 Paris, France
| | - S Klotz
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, IRD UMR 206, MNHN, IMPMC, F-75005 Paris, France
| | - A M Saitta
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, IRD UMR 206, MNHN, IMPMC, F-75005 Paris, France
| | - F Pietrucci
- Sorbonne Universités, UPMC Université Paris 06, CNRS UMR 7590, IRD UMR 206, MNHN, IMPMC, F-75005 Paris, France
| |
Collapse
|
21
|
Giovambattista N, Starr FW, Poole PH. Influence of sample preparation on the transformation of low-density to high-density amorphous ice: An explanation based on the potential energy landscape. J Chem Phys 2017; 147:044501. [DOI: 10.1063/1.4993567] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA and Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Peter H. Poole
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| |
Collapse
|
22
|
Sun G, Xu L, Giovambattista N. Relationship between the potential energy landscape and the dynamic crossover in a water-like monatomic liquid with a liquid-liquid phase transition. J Chem Phys 2017; 146:014503. [DOI: 10.1063/1.4973348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gang Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| |
Collapse
|
23
|
Giovambattista N, Sciortino F, Starr FW, Poole PH. Potential energy landscape of the apparent first-order phase transition between low-density and high-density amorphous ice. J Chem Phys 2016; 145:224501. [DOI: 10.1063/1.4968047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Francesco Sciortino
- Dipartimento di Fisica and CNR-ISC, Universita di Roma La Sapienza, Piazzale Aldo Moro 2, I-00185 Rome, Italy
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA
| | - Peter H. Poole
- Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
| |
Collapse
|
24
|
Jahn DA, Wong J, Bachler J, Loerting T, Giovambattista N. Glass polymorphism in glycerol-water mixtures: I. A computer simulation study. Phys Chem Chem Phys 2016; 18:11042-57. [PMID: 27063705 PMCID: PMC4847106 DOI: 10.1039/c6cp00075d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/11/2016] [Indexed: 01/16/2023]
Abstract
We perform out-of-equilibrium molecular dynamics (MD) simulations of water-glycerol mixtures in the glass state. Specifically, we study the transformations between low-density (LDA) and high-density amorphous (HDA) forms of these mixtures induced by compression/decompression at constant temperature. Our MD simulations reproduce qualitatively the density changes observed in experiments. Specifically, the LDA-HDA transformation becomes (i) smoother and (ii) the hysteresis in a compression/decompression cycle decreases as T and/or glycerol content increase. This is surprising given the fast compression/decompression rates (relative to experiments) accessible in MD simulations. We study mixtures with glycerol molar concentration χ(g) = 0-13% and find that, for the present mixture models and rates, the LDA-HDA transformation is detectable up to χ(g) ≈ 5%. As the concentration increases, the density of the starting glass (i.e., LDA at approximately χ(g) ≤ 5%) rapidly increases while, instead, the density of HDA remains practically constant. Accordingly, the LDA state and hence glass polymorphism become inaccessible for glassy mixtures with approximately χ(g) > 5%. We present an analysis of the molecular-level changes underlying the LDA-HDA transformation. As observed in pure glassy water, during the LDA-to-HDA transformation, water molecules within the mixture approach each other, moving from the second to the first hydration shell and filling the first interstitial shell of water molecules. Interestingly, similar changes also occur around glycerol OH groups. It follows that glycerol OH groups contribute to the density increase during the LDA-HDA transformation. An analysis of the hydrogen bond (HB)-network of the mixtures shows that the LDA-HDA transformation is accompanied by minor changes in the number of HBs of water and glycerol. Instead, large changes in glycerol and water coordination numbers occur. We also perform a detailed analysis of the effects that the glycerol force field (FF) has on our results. By comparing MD simulations using two different glycerol models, we find that glycerol conformations indeed depend on the FF employed. Yet, the thermodynamic and microscopic mechanisms accompanying the LDA-HDA transformation and hence, our main results, do not. This work is accompanied by an experimental report where we study the glass polymorphism in glycerol-water mixtures prepared by isobaric cooling at 1 bar.
Collapse
Affiliation(s)
- David A Jahn
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Jessina Wong
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA.
| | - Johannes Bachler
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, NY 11210, USA. and PhD Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
25
|
Sun G, Giovambattista N, Xu L. Confinement effects on the liquid-liquid phase transition and anomalous properties of a monatomic water-like liquid. J Chem Phys 2015; 143:244503. [DOI: 10.1063/1.4937486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Gang Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, New York 10016, USA
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| |
Collapse
|
26
|
Wong J, Jahn DA, Giovambattista N. Pressure-induced transformations in glassy water: A computer simulation study using the TIP4P/2005 model. J Chem Phys 2015; 143:074501. [PMID: 26298139 DOI: 10.1063/1.4928435] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the pressure-induced transformations between low-density amorphous (LDA) and high-density amorphous (HDA) ice by performing out-of-equilibrium molecular dynamics (MD) simulations. We employ the TIP4P/2005 water model and show that this model reproduces qualitatively the LDA-HDA transformations observed experimentally. Specifically, the TIP4P/2005 model reproduces remarkably well the (i) structure (OO, OH, and HH radial distribution functions) and (ii) densities of LDA and HDA at P = 0.1 MPa and T = 80 K, as well as (iii) the qualitative behavior of ρ(P) during compression-induced LDA-to-HDA and decompression-induced HDA-to-LDA transformations. At the rates explored, the HDA-to-LDA transformation is less pronounced than in experiments. By studying the LDA-HDA transformations for a broad range of compression/decompression temperatures, we construct a "P-T phase diagram" for glassy water that is consistent with experiments and remarkably similar to that reported previously for ST2 water. This phase diagram is not inconsistent with the possibility of TIP4P/2005 water exhibiting a liquid-liquid phase transition at low temperatures. A comparison with previous MD simulation studies of SPC/E and ST2 water as well as experiments indicates that, overall, the TIP4P/2005 model performs better than the SPC/E and ST2 models. The effects of cooling and compression rates as well as aging on our MD simulations results are also discussed. The MD results are qualitatively robust under variations of cooling/compression rates (accessible in simulations) and are not affected by aging the hyperquenched glass for at least 1 μs. A byproduct of this work is the calculation of TIP4P/2005 water's diffusion coefficient D(T) at P = 0.1 MPa. It is found that, for T ≥ 210 K, D(T) ≈ (T - T(MCT))(-γ) as predicted by mode coupling theory and in agreement with experiments. For TIP4P/2005 water, T(MCT) = 209 K and γ = 2.14, very close to the corresponding experimental values T(MCT) = 221 K and γ = 2.2.
Collapse
Affiliation(s)
- Jessina Wong
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - David A Jahn
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| | - Nicolas Giovambattista
- Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210, USA
| |
Collapse
|
27
|
Sun YY, Liu FS, Xu LH, Liu QJ, Ma XJ, Cai LC. Vibrational spectrum of condensed H 2O in hydrogen-bonding environment: an ab initiosimulation study. Mol Phys 2015. [DOI: 10.1080/00268976.2014.944237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Loerting T, Fuentes-Landete V, Handle PH, Seidl M, Amann-Winkel K, Gainaru C, Böhmer R. The glass transition in high-density amorphous ice. JOURNAL OF NON-CRYSTALLINE SOLIDS 2015; 407:423-430. [PMID: 25641986 PMCID: PMC4308024 DOI: 10.1016/j.jnoncrysol.2014.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/19/2014] [Indexed: 06/04/2023]
Abstract
There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p-T plane for LDA, HDA, and VHDA.
Collapse
Affiliation(s)
- Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Violeta Fuentes-Landete
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Philip H. Handle
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Markus Seidl
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Katrin Amann-Winkel
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, Otto-Hahn-Straße 4, D-44221 Dortmund, Germany
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, Otto-Hahn-Straße 4, D-44221 Dortmund, Germany
| |
Collapse
|
29
|
Abstract
We derive a phase diagram for amorphous solids and liquid supercooled water and explain why the amorphous solids of water exist in several different forms. Application of large-deviation theory allows us to prepare such phases in computer simulations. Along with nonequilibrium transitions between the ergodic liquid and two distinct amorphous solids, we establish coexistence between these two amorphous solids. The phase diagram we predict includes a nonequilibrium triple point where two amorphous phases and the liquid coexist. Whereas the amorphous solids are long-lived and slowly aging glasses, their melting can lead quickly to the formation of crystalline ice. Further, melting of the higher density amorphous solid at low pressures takes place in steps, transitioning to the lower-density glass before accessing a nonequilibrium liquid from which ice coarsens.
Collapse
|
30
|
Jehser M, Seidl M, Rauer C, Loerting T, Zifferer G. Simulation of high-density water: its glass transition for various water models. J Chem Phys 2014; 140:134504. [PMID: 24712798 DOI: 10.1063/1.4869861] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-density amorphous water is simulated by use of isothermal-isobaric molecular dynamics at a pressure of 0.3 GPa making use of several water models (SPC/E, TIP3P, TIP4P variants, and TIP5P). Heating/cooling cycles are performed in the temperature range 80-280 K and quantities like density, total energy, and mobility are analysed. Raw data as well as the glass transition temperatures Tg observed in our studies depend on the water model used as well as on the treatment of intramolecular bonds and angles. However, a clear-cut evidence for the occurrence of a glass-to-liquid transition is found in all cases. Thus, all models indicate that high-density amorphous ice found experimentally may be a low-temperature proxy of an ultraviscous high-density liquid.
Collapse
Affiliation(s)
- Martin Jehser
- Department of Physical Chemistry, University of Vienna, Währinger Str. 42, A-1090 Wien, Austria
| | - Markus Seidl
- Department of Physical Chemistry, University of Vienna, Währinger Str. 42, A-1090 Wien, Austria
| | - Clemens Rauer
- Department of Physical Chemistry, University of Vienna, Währinger Str. 42, A-1090 Wien, Austria
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria
| | - Gerhard Zifferer
- Department of Physical Chemistry, University of Vienna, Währinger Str. 42, A-1090 Wien, Austria
| |
Collapse
|
31
|
Chiu J, Starr FW, Giovambattista N. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water. J Chem Phys 2014; 140:114504. [DOI: 10.1063/1.4868028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|