1
|
Holzer C, Franzke YJ. A Guide to Molecular Properties from the Bethe-Salpeter Equation. J Phys Chem Lett 2025; 16:3980-3990. [PMID: 40227071 DOI: 10.1021/acs.jpclett.5c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The Bethe-Salpeter equation (BSE) combined with the Green's function GW method has been successfully transformed into a robust computational tool to describe light-matter interactions and excitation spectra for molecules, solids, and materials from first principles. Due to its ability to accurately describe charge transfer and Rydberg excitations, GW-BSE is already an established and cost-efficient alternative to time-dependent density functional theory. This raises the question whether the GW-BSE approach can become a more general framework for molecular properties beyond excitation energies. In this Mini-Review, we recapitulate recent endeavors along this point in terms of both theoretical and practical developments for quantum chemistry, physical chemistry, and related fields. In doing so, we provide guidelines for current applications to chemical challenges in collaboration with experimentalists as well as to future developments to extended the GW-BSE toolkit.
Collapse
Affiliation(s)
- Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Yannick J Franzke
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Himmelsbach P, Holzer C. Excited state properties from the Bethe-Salpeter equation: State-to-state transitions and spin-orbit coupling. J Chem Phys 2024; 161:244105. [PMID: 39714011 DOI: 10.1063/5.0244254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
The formalism to calculate excited state properties from the GW-Bethe-Salpeter equation (BSE) method is introduced, providing convenient access to excited state absorption, excited state circular dichroism, and excited state optical rotation in the framework of the GW-BSE method. This is achieved using the second-order transition density, which can be obtained by solving a set of auxiliary equations similar to time-dependent density functional theory (TD-DFT). The proposed formulation therefore leads to no increase in the formal computational complexity when compared to the corresponding ground state properties. We further outline the calculation of fully relaxed spin-orbit coupling matrix elements within the GW-BSE method, allowing us to include perturbative corrections for spin-orbit coupling in aforementioned properties. These corrections are also extended to TD-DFT. Excited state absorption and perturbative spin-orbit coupling corrections within GW-BSE are evaluated for a selected set of molecular systems, yielding promising results.
Collapse
Affiliation(s)
- Paula Himmelsbach
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Holzer C, Franzke YJ. Beyond Electrons: Correlation and Self-Energy in Multicomponent Density Functional Theory. Chemphyschem 2024; 25:e202400120. [PMID: 38456204 DOI: 10.1002/cphc.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Post-Kohn-Sham methods are used to evaluate the ground-state correlation energy and the orbital self-energy of systems consisting of multiple flavors of different fermions. Starting from multicomponent density functional theory, suitable ways to arrive at the corresponding multicomponent random-phase approximation and the multicomponent Green's functionG W ${GW}$ approximation, including relativistic effects, are outlined. Given the importance of both of this methods in the development of modern Kohn-Sham density functional approximations, this work will provide a foundation to design advanced multicomponent density functional approximations. Additionally, theG W ${GW}$ quasiparticle energies are needed to study light-matter interactions with the Bethe-Salpeter equation.
Collapse
Affiliation(s)
- Christof Holzer
- Karlsruhe Institute of Technology (KIT), Institute of Theoretical Solid State Physics, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Yannick J Franzke
- Friedrich Schiller University Jena, Otto Schott Institute of Materials Research, Löbdergraben 32, 07743, Jena, Germany
| |
Collapse
|
4
|
Mejia-Rodriguez D, Aprà E, Autschbach J, Bauman NP, Bylaska EJ, Govind N, Hammond JR, Kowalski K, Kunitsa A, Panyala A, Peng B, Rehr JJ, Song H, Tretiak S, Valiev M, Vila FD. NWChem: Recent and Ongoing Developments. J Chem Theory Comput 2023; 19:7077-7096. [PMID: 37458314 DOI: 10.1021/acs.jctc.3c00421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper summarizes developments in the NWChem computational chemistry suite since the last major release (NWChem 7.0.0). Specifically, we focus on functionality, along with input blocks, that is accessible in the current stable release (NWChem 7.2.0) and in the "master" development branch, interfaces to quantum computing simulators, interfaces to external libraries, the NWChem github repository, and containerization of NWChem executable images. Some ongoing developments that will be available in the near future are also discussed.
Collapse
Affiliation(s)
- Daniel Mejia-Rodriguez
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Edoardo Aprà
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Eric J Bylaska
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Niranjan Govind
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jeff R Hammond
- Accelerated Computing, NVIDIA Helsinki Oy, Porkkalankatu 1, 00180 Helsinki, Finland
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Alexander Kunitsa
- Zapata Computing, Inc., 100 Federal Street, Boston, Massachusetts 02110, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Marat Valiev
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Chaudhuri D, Patterson CH. TDDFT versus GW/BSE Methods for Prediction of Light Absorption and Emission in a TADF Emitter. J Phys Chem A 2022; 126:9627-9643. [PMID: 36515973 PMCID: PMC9806837 DOI: 10.1021/acs.jpca.2c06403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Design concepts for organic light emitting diode (OLED) emitters, which exhibit thermally activated delayed fluorescence (TADF) and thereby achieve quantum yields exceeding 25%, depend on singlet-triplet splitting energies of order kT to allow reverse intersystem crossing at ambient temperatures. Simulation methods for these systems must be able to treat relatively large organic molecules, as well as predict their excited state energies, transition energies, singlet-triplet splittings, and absorption and emission cross sections with reasonable accuracy, in order to prove useful in the design process. Here we compare predictions of TDDFT with M06-2X and ωB97X-D exchange-correlation functionals and a GoWo@HF/BSE method for these quantities in the well-studied DPTZ-DBTO2 TADF emitter molecule. Geometry optimization is performed for ground state (GS) and lowest donor-acceptor charge transfer (CT) state for each functional. Optical absorption and emission cross sections and energies are calculated at these geometries. Relaxation energies are on the order of 0.5 eV, and the importance of obtaining excited state equilibrium geometries in predicting delayed fluorescence is demonstrated. There are clear trends in predictions of GoWo@HF/BSE, and TDDFT/ωB97X-D and M06-2X methods in which the former method favors local exciton (LE) states while the latter favors DA CT states and ωB97X-D makes intermediate predictions. GoWo@HF/BSE suffers from triplet instability for LE states but not CT states relevant for TADF. Shifts in HOMO and LUMO levels on adding a conductor-like polarizable continuum model dielectric background are used to estimate changes in excitation energies on going from the gas phase to a solvated molecule.
Collapse
|
6
|
Li J, Golze D, Yang W. Combining Renormalized Singles GW Methods with the Bethe-Salpeter Equation for Accurate Neutral Excitation Energies. J Chem Theory Comput 2022; 18:6637-6645. [PMID: 36279250 PMCID: PMC9972216 DOI: 10.1021/acs.jctc.2c00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We apply the renormalized singles (RS) Green's function in the Bethe-Salpeter equation (BSE)/GW approach to predict accurate neutral excitation energies of molecular systems. The BSE calculations are performed on top of the GRSWRS method, which uses the RS Green's function also for the computation of the screened Coulomb interaction W. We show that the BSE/GRSWRS approach significantly outperforms BSE/G0W0 for predicting excitation energies of valence, Rydberg, and charge-transfer (CT) excitations by benchmarking the Truhlar-Gagliardi set, Stein CT set, and an atomic Rydberg test set. For the Truhlar-Gagliardi test set, BSE/GRSWRS provides comparable accuracy to time-dependent density functional theory (TDDFT) and is slightly better than BSE starting from eigenvalue self-consistent GW (evGW). For the Stein CT test set, BSE/GRSWRS significantly outperforms BSE/G0W0 and TDDFT with the accuracy comparable to BSE/evGW. We also show that BSE/GRSWRS predicts Rydberg excitation energies of atomic systems well. Besides the excellent accuracy, BSE/GRSWRS largely eliminates the dependence on the choice of the density functional approximation. This work demonstrates that the BSE/GRSWRS approach is accurate and efficient for predicting excitation energies for a broad range of systems, which expands the applicability of the BSE/GW approach.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
7
|
Förster A, Visscher L. Quasiparticle Self-Consistent GW-Bethe-Salpeter Equation Calculations for Large Chromophoric Systems. J Chem Theory Comput 2022; 18:6779-6793. [PMID: 36201788 PMCID: PMC9648197 DOI: 10.1021/acs.jctc.2c00531] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The GW-Bethe–Salpeter equation
(BSE) method
is promising for calculating the low-lying excitonic states of molecular
systems. However, so far it has only been applied to rather small
molecules and in the commonly implemented diagonal approximations
to the electronic self-energy, it depends on a mean-field starting
point. We describe here an implementation of the self-consistent and
starting-point-independent quasiparticle self-consistent (qsGW)-BSE approach, which is suitable for calculations on
large molecules. We herein show that eigenvalue-only self-consistency
can lead to an unfaithful description of some excitonic states for
chlorophyll dimers while the qsGW-BSE vertical excitation
energies (VEEs) are in excellent agreement with spectroscopic experiments
for chlorophyll monomers and dimers measured in the gas phase. Furthermore,
VEEs from time-dependent density functional theory calculations tend
to disagree with experimental values and using different range-separated
hybrid (RSH) kernels does change the VEEs by up to 0.5 eV. We use
the new qsGW-BSE implementation to calculate the
lowest excitation energies of the six chromophores of the photosystem
II (PSII) reaction center (RC) with nearly 2000 correlated electrons.
Using more than 11,000 (6000) basis functions, the calculation could
be completed in less than 5 (2) days on a single modern compute node.
In agreement with previous TD-DFT calculations using RSH kernels on
models that also do not include environmental effects, our qsGW-BSE calculations only yield states with local characters
in the low-energy spectrum of the hexameric complex. Earlier works
with RSH kernels have demonstrated that the protein environment facilitates
the experimentally observed interchromophoric charge transfer. Therefore,
future research will need to combine correlation effects beyond TD-DFT
with an explicit treatment of environmental electrostatics.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HVAmsterdam, The Netherlands
| |
Collapse
|
8
|
Tang F, Li Z, Zhang C, Louie SG, Car R, Qiu DY, Wu X. Many-body effects in the X-ray absorption spectra of liquid water. Proc Natl Acad Sci U S A 2022; 119:e2201258119. [PMID: 35561212 PMCID: PMC9171919 DOI: 10.1073/pnas.2201258119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceIn X-ray absorption spectroscopy, an electron-hole excitation probes the local atomic environment. The interpretation of the spectra requires challenging theoretical calculations, particularly in a system like liquid water, where quantum many-body effects and molecular disorder play an important role. Recent advances in theory and simulation make possible new calculations that are in good agreement with experiment, without recourse to commonly adopted approximations. Based on these calculations, the three features observed in the experimental spectra are unambiguously attributed to excitonic effects with different characteristic correlation lengths, which are distinctively affected by perturbations of the underlying H-bond structure induced by temperature changes and/or by isotopic substitution. The emerging picture of the water structure is fully consistent with the conventional tetrahedral model.
Collapse
Affiliation(s)
- Fujie Tang
- Department of Physics, Temple University, Philadelphia, PA 19122
| | - Zhenglu Li
- Department of Physics, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Chunyi Zhang
- Department of Physics, Temple University, Philadelphia, PA 19122
| | - Steven G. Louie
- Department of Physics, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Roberto Car
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Diana Y. Qiu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520
| | - Xifan Wu
- Department of Physics, Temple University, Philadelphia, PA 19122
| |
Collapse
|
9
|
Li J, Jin Y, Su NQ, Yang W. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies. J Chem Phys 2022; 156:154101. [PMID: 35459294 PMCID: PMC9033305 DOI: 10.1063/5.0087498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Abstract
We applied localized orbital scaling correction (LOSC) in Bethe-Salpeter equation (BSE) to predict accurate excitation energies for molecules. LOSC systematically eliminates the delocalization error in the density functional approximation and is capable of approximating quasiparticle (QP) energies with accuracy similar to or better than GW Green's function approach and with much less computational cost. The QP energies from LOSC, instead of commonly used G0W0 and evGW, are directly used in BSE. We show that the BSE/LOSC approach greatly outperforms the commonly used BSE/G0W0 approach for predicting excitations with different characters. For the calculations of Truhlar-Gagliardi test set containing valence, charge transfer, and Rydberg excitations, BSE/LOSC with the Tamm-Dancoff approximation provides a comparable accuracy to time-dependent density functional theory (TDDFT) and BSE/evGW. For the calculations of Stein CT test set and Rydberg excitations of atoms, BSE/LOSC considerably outperforms both BSE/G0W0 and TDDFT approaches with a reduced starting point dependence. BSE/LOSC is, thus, a promising and efficient approach to calculate excitation energies for molecular systems.
Collapse
Affiliation(s)
- Jiachen Li
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Ye Jin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Neil Qiang Su
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Weitao Yang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
10
|
Sarkar R, Loos PF, Boggio-Pasqua M, Jacquemin D. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. J Chem Theory Comput 2022; 18:2418-2436. [PMID: 35333060 DOI: 10.1021/acs.jctc.1c01197] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Methods able to simultaneously account for both static and dynamic electron correlations have often been employed, not only to model photochemical events but also to provide reference values for vertical transition energies, hence allowing benchmarking of lower-order models. In this category, both the complete-active-space second-order perturbation theory (CASPT2) and the N-electron valence state second-order perturbation theory (NEVPT2) are certainly popular, the latter presenting the advantage of not requiring the application of the empirical ionization-potential-electron-affinity (IPEA) and level shifts. However, the actual accuracy of these multiconfigurational approaches is not settled yet. In this context, to assess the performances of these approaches, the present work relies on highly accurate (±0.03 eV) aug-cc-pVTZ vertical transition energies for 284 excited states of diverse character (174 singlet, 110 triplet, 206 valence, 78 Rydberg, 78 n → π*, 119 π → π*, and 9 double excitations) determined in 35 small- to medium-sized organic molecules containing from three to six non-hydrogen atoms. The CASPT2 calculations are performed with and without IPEA shift and compared to the partially contracted (PC) and strongly contracted (SC) variants of NEVPT2. We find that both CASPT2 with IPEA shift and PC-NEVPT2 provide fairly reliable vertical transition energy estimates, with slight overestimations and mean absolute errors of 0.11 and 0.13 eV, respectively. These values are found to be rather uniform for the various subgroups of transitions. The present work completes our previous benchmarks focused on single-reference wave function methods ( J. Chem. Theory Comput. 2018, 14, 4360; J. Chem. Theory Comput. 2020, 16, 1711), hence allowing for a fair comparison between various families of electronic structure methods. In particular, we show that ADC(2), CCSD, and CASPT2 deliver similar accuracies for excited states with a dominant single-excitation character.
Collapse
Affiliation(s)
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, CNRS, UPS, Université de Toulouse, Toulouse 31062, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
11
|
Franzke YJ, Holzer C, Mack F. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the GW Approximation. J Chem Theory Comput 2022; 18:1030-1045. [PMID: 34981925 DOI: 10.1021/acs.jctc.1c00999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present the first steps to extend the Green's function GW method and the Bethe-Salpeter equation (BSE) to molecular response properties such as nuclear magnetic resonance (NMR) indirect spin-spin coupling constants. We discuss both a nonrelativistic one-component and a quasi-relativistic two-component formalism. The latter describes scalar-relativistic and spin-orbit effects and allows us to study heavy-element systems with reasonable accuracy. Efficiency is maintained by the application of the resolution of the identity approximation throughout. The performance is demonstrated using conventional central processing units (CPUs) and modern graphics processing units (GPUs) for molecules involving several thousand basis functions. Our results show that a large amount of Hartree-Fock exchange is vital to provide a sufficient Kohn-Sham starting point to compute the GW quasi-particle energies. As the GW-BSE approach is generally less accurate for triplet excitations or related properties such as the Fermi-contact interaction, the admixture of the Kohn-Sham correlation kernel through the contracted BSE (cBSE) method improves the results for NMR coupling constants. This leads to remarkable results when combined with the eigenvalue-only self-consistent variant (evGW) and Becke's half and half functional (BH&HLYP) or the CAM-QTP family. The developed methodology is used to calculate the Karplus curve of tin molecules, illustrating its applicability to extended chemically relevant molecules. Here, the GW-cBSE method improves upon the chosen BH&HLYP Kohn-Sham starting points.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| |
Collapse
|
12
|
Loos PF, Comin M, Blase X, Jacquemin D. Reference Energies for Intramolecular Charge-Transfer Excitations. J Chem Theory Comput 2021; 17:3666-3686. [DOI: 10.1021/acs.jctc.1c00226] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, F-31400 Toulouse, France
| | | | - Xavier Blase
- Univ. Grenoble Alpes, CNRS, Inst NEEL, F-38042 Grenoble, France
| | - Denis Jacquemin
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| |
Collapse
|
13
|
Förster A, Visscher L. Low-Order Scaling G0W0 by Pair Atomic Density Fitting. J Chem Theory Comput 2020; 16:7381-7399. [PMID: 33174743 PMCID: PMC7726916 DOI: 10.1021/acs.jctc.0c00693] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 12/18/2022]
Abstract
We derive a low-scaling G0W0 algorithm for molecules using pair atomic density fitting (PADF) and an imaginary time representation of the Green's function and describe its implementation in the Slater type orbital (STO)-based Amsterdam density functional (ADF) electronic structure code. We demonstrate the scalability of our algorithm on a series of water clusters with up to 432 atoms and 7776 basis functions and observe asymptotic quadratic scaling with realistic threshold qualities controlling distance effects and basis sets of triple-ζ (TZ) plus double polarization quality. Also owing to a very small prefactor, a G0W0 calculation for the largest of these clusters takes only 240 CPU hours with these settings. We assess the accuracy of our algorithm for HOMO and LUMO energies in the GW100 database. With errors of 0.24 eV for HOMO energies on the quadruple-ζ level, our implementation is less accurate than canonical all-electron implementations using the larger def2-QZVP GTO-type basis set. Apart from basis set errors, this is related to the well-known shortcomings of the GW space-time method using analytical continuation techniques as well as to numerical issues of the PADF approach of accurately representing diffuse atomic orbital (AO) products. We speculate that these difficulties might be overcome by using optimized auxiliary fit sets with more diffuse functions of higher angular momenta. Despite these shortcomings, for subsets of medium and large molecules from the GW5000 database, the error of our approach using basis sets of TZ and augmented double-ζ (DZ) quality is decreasing with system size. On the augmented DZ level, we reproduce canonical, complete basis set limit extrapolated reference values with an accuracy of 80 meV on average for a set of 20 large organic molecules. We anticipate our algorithm, in its current form, to be very useful in the study of single-particle properties of large organic systems such as chromophores and acceptor molecules.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Krumland J, Valencia AM, Pittalis S, Rozzi CA, Cocchi C. Understanding real-time time-dependent density-functional theory simulations of ultrafast laser-induced dynamics in organic molecules. J Chem Phys 2020; 153:054106. [PMID: 32770886 DOI: 10.1063/5.0008194] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Real-time time-dependent density functional theory, in conjunction with the Ehrenfest molecular dynamics scheme, is becoming a popular methodology to investigate ultrafast phenomena on the nanoscale. Thanks to recent developments, it is also possible to explicitly include in the simulations a time-dependent laser pulse, thereby accessing the transient excitation regime. However, the complexity entailed in these calculations calls for in-depth analysis of the accessible and yet approximate (either "dressed" or "bare") quantities in order to evaluate their ability to provide us with a realistic picture of the simulated processes. In this work, we analyze the ultrafast dynamics of three small molecules (ethylene, benzene, and thiophene) excited by a resonant laser pulse in the framework of the adiabatic local-density approximation. The electronic response to the laser perturbation in terms of induced dipole moment and excited-state population is compared to the results given by an exactly solvable two-level model. In this way, we can interpret the charge-carrier dynamics in terms of simple estimators, such as the number of excited electrons. From the computed transient absorption spectra, we unravel the appearance of nonlinear effects such as excited-state absorption and vibronic coupling. In this way, we observe that the laser excitation affects the vibrational spectrum by enhancing the anharmonicities therein, while the coherent vibrational motion contributes to stabilizing the electronic excitation already within a few tens of femtoseconds.
Collapse
Affiliation(s)
- Jannis Krumland
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| | - Ana M Valencia
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| | | | | | - Caterina Cocchi
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, 12489 Berlin, Germany
| |
Collapse
|
15
|
Liu C, Kloppenburg J, Yao Y, Ren X, Appel H, Kanai Y, Blum V. All-electron ab initio Bethe-Salpeter equation approach to neutral excitations in molecules with numeric atom-centered orbitals. J Chem Phys 2020; 152:044105. [DOI: 10.1063/1.5123290] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chi Liu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jan Kloppenburg
- Institute of Condensed Matter and Nanoscience, Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium
| | - Yi Yao
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Xinguo Ren
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Heiko Appel
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761 Hamburg, Germany
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
16
|
Valencia AM, Guerrini M, Cocchi C. Ab initio modelling of local interfaces in doped organic semiconductors. Phys Chem Chem Phys 2020; 22:3527-3538. [PMID: 31994551 DOI: 10.1039/c9cp06655a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Doping in organic semiconductors remains a debated issue from both an experimental and ab initio perspective. Due to the complexity of these systems, which exhibit a low degree of crystallinity and high level of disorder, modelling doped organic semiconductors from first-principles calculations is not a trivial task, as their electronic and optical properties are sensitive to the choice of initial geometries. A crucial aspect to take into account, in view of rationalizing the electronic structure of these materials through ab initio calculations, is the role of local donor/acceptor interfaces. We address this problem in the framework of state-of-the-art density-functional theory and many-body perturbation theory, investigating the structural, electronic, and optical properties of quaterthiophene and sexithiophene oligomers doped by 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane (F4TCNQ). We consider different model structures ranging from isolated dimers and trimers, to periodic stacks. Our results demonstrate that the choice of the initial geometry critically impacts the resulting electronic structure and the degree of charge transfer in the materials, depending on the amount and on the nature of the local interfaces between donor and acceptor species. The optical spectra appear less sensitive to these parameters at least from a first glance, although a quantitative analysis of the excitations reveals that their Frenkel or charge-transfer character is affected by the characteristics of the donor/acceptor interfaces as well as by the donor length. Our findings represent an important step forward towards an insightful first-principles description of the microscopic properties of doped organic semiconductors complementary to experiments.
Collapse
Affiliation(s)
- Ana M Valencia
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany.
| | - Michele Guerrini
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany.
| | - Caterina Cocchi
- Humboldt-Universität zu Berlin, Physics Department and IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany.
| |
Collapse
|
17
|
Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo MO, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, Marini A. Many-body perturbation theory calculations using the yambo code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:325902. [PMID: 30943462 DOI: 10.1088/1361-648x/ab15d0] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo's capabilities include the calculation of linear response quantities (both independent-particle and including electron-hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron-phonon interactions to the implementation of a real-time propagation scheme for simulating linear and non-linear optical properties. Improvements to numerical algorithms and the user interface are outlined. Particular emphasis is given to the new and efficient parallel structure that makes it possible to exploit modern high performance computing architectures. Finally, we demonstrate the possibility to automate workflows by interfacing with the yambopy and AiiDA software tools.
Collapse
Affiliation(s)
- D Sangalli
- Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche (CNR-ISM), Division of Ultrafast Processes in Materials (FLASHit), Via Salaria Km 29.5, CP 10, I-00016 Monterotondo Stazione, Italy. European Theoretical Spectroscopy Facility (ETSF
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ghosh S, Verma P, Cramer CJ, Gagliardi L, Truhlar DG. Combining Wave Function Methods with Density Functional Theory for Excited States. Chem Rev 2018; 118:7249-7292. [PMID: 30044618 DOI: 10.1021/acs.chemrev.8b00193] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We review state-of-the-art electronic structure methods based both on wave function theory (WFT) and density functional theory (DFT). Strengths and limitations of both the wave function and density functional based approaches are discussed, and modern attempts to combine these two methods are presented. The challenges in modeling excited-state chemistry using both single-reference and multireference methods are described. Topics covered include background, combining density functional theory with single-configuration wave function theory, generalized Kohn-Sham (KS) theory, global hybrids, range-separated hybrids, local hybrids, using KS orbitals in many-body theory (including calculations of the self-energy and the GW approximation), Bethe-Salpeter equation, algorithms to accelerate GW calculations, combining DFT with multiconfigurational WFT, orbital-dependent correlation functionals based on multiconfigurational WFT, building multiconfigurational wave functions from KS configurations, adding correlation functionals to multiconfiguration self-consistent-field (MCSCF) energies, combining DFT with configuration-interaction singles by means of time-dependent DFT, using range separation to combine DFT with MCSCF, embedding multiconfigurational WFT in DFT, and multiconfiguration pair-density functional theory.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Pragya Verma
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Christopher J Cramer
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455-0431 , United States
| |
Collapse
|
19
|
Gui X, Holzer C, Klopper W. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe–Salpeter Formalism. J Chem Theory Comput 2018; 14:2127-2136. [DOI: 10.1021/acs.jctc.8b00014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xin Gui
- Institute of Physical Chemistry, Theoretical Chemistry Group, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Theoretical Chemistry Group, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Theoretical Chemistry Group, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, D-76049 Karlsruhe, Germany
- Centre for Advanced Study (CAS) at The Norwegian Academy of Science and Letters, Drammensveien 78, N-0271 Oslo, Norway
| |
Collapse
|
20
|
van Setten MJ, Costa R, Viñes F, Illas F. Assessing GW Approaches for Predicting Core Level Binding Energies. J Chem Theory Comput 2018; 14:877-883. [PMID: 29320628 DOI: 10.1021/acs.jctc.7b01192] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we present a systematic study on the performance of different GW approaches: G0W0, G0W0 with linearized quasiparticle equation (lin-G0W0), and quasiparticle self-consistent GW (qsGW), in predicting core level binding energies (CLBEs) on a series of representative molecules comparing to Kohn-Sham (KS) orbital energy-based results. KS orbital energies obtained using the PBE functional are 20-30 eV lower in energy than experimental values obtained from X-ray photoemission spectroscopy (XPS), showing that any Koopmans-like interpretation of KS core level orbitals fails dramatically. Results from qsGW lead to CLBEs that are closer to experimental values from XPS, yet too large. For the qsGW method, the mean absolute error is about 2 eV, an order of magnitude better than plain KS PBE orbital energies and quite close to predictions from ΔSCF calculations with the same functional, which are accurate within ∼1 eV. Smaller errors of ∼0.6 eV are found for qsGW CLBE shifts, again similar to those obtained using ΔSCF PBE. The computationally more affordable G0W0 approximation leads to results less accurate than qsGW, with an error of ∼9 eV for CLBEs and ∼0.9 eV for their shifts. Interestingly, starting G0W0 from PBE0 reduces this error to ∼4 eV with a slight improvement on the shifts as well (∼0.4 eV). The validity of the G0W0 results is however questionable since only linearized quasiparticle equation results can be obtained. The present results pave the way to estimate CLBEs in periodic systems where ΔSCF calculations are not straightforward although further improvement is clearly needed.
Collapse
Affiliation(s)
- Michiel J van Setten
- Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Université catholique de Louvain , 1348 Louvain-la-Neuve, Belgium
| | - Ramon Costa
- Departament de Química Inorgànica i Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , Martí i Franqués 1, 08028 Barcelona, Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , Martí i Franqués 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència de Materials i Química Fisica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , Martí i Franqués 1, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Blase X, Duchemin I, Jacquemin D. The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chem Soc Rev 2018; 47:1022-1043. [DOI: 10.1039/c7cs00049a] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the Bethe–Salpeter formalism and analyze its performances for the calculation of the excited state properties of molecular systems.
Collapse
Affiliation(s)
- Xavier Blase
- Univ. Grenoble Alpes
- CNRS
- Inst NEEL
- F-38042 Grenoble
- France
| | - Ivan Duchemin
- Univ. Grenoble Alpes
- CEA
- INAC-MEM
- L-Sim
- F-38000 Grenoble
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|
22
|
Coccia E, Varsano D, Guidoni L. Theoretical S1 ← S0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green’s Function Theory. J Chem Theory Comput 2017; 13:4357-4367. [DOI: 10.1021/acs.jctc.7b00505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Emanuele Coccia
- S3
Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Daniele Varsano
- S3
Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | - Leonardo Guidoni
- Dipartimento
di Scienze Fisiche e Chimiche, Universitá degli Studi dell’Aquila, via Vetoio, 67100, L’Aquila, Italy
| |
Collapse
|
23
|
Azarias C, Habert C, Budzák Š, Blase X, Duchemin I, Jacquemin D. Calculations of n→π* Transition Energies: Comparisons Between TD-DFT, ADC, CC, CASPT2, and BSE/GW Descriptions. J Phys Chem A 2017; 121:6122-6134. [DOI: 10.1021/acs.jpca.7b05222] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Cloé Azarias
- CEISAM,
BP 92208, UMR CNRS 6230, Université de Nantes, 2, Rue de
la Houssiniere, 44322 Nantes, Cedex 3, France
| | - Chloé Habert
- CEISAM,
BP 92208, UMR CNRS 6230, Université de Nantes, 2, Rue de
la Houssiniere, 44322 Nantes, Cedex 3, France
| | - Šimon Budzák
- Department
of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, SK-97400 Banská Bystrica, Slovak Republic
| | - Xavier Blase
- CNRS, Inst NEEL, F-38042 Grenoble, France
- Univ.
Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
| | - Ivan Duchemin
- Univ.
Grenoble Alpes, Inst NEEL, F-38042 Grenoble, France
- Univ.
Grenobles Alpes, CEA, INAC-MEM, L_Sim, F-38000 Grenoble, France
| | - Denis Jacquemin
- CEISAM,
BP 92208, UMR CNRS 6230, Université de Nantes, 2, Rue de
la Houssiniere, 44322 Nantes, Cedex 3, France
- Institut Universitaire de France, 1, rue Descartes, F-75231 Paris Cedex 05, France
| |
Collapse
|
24
|
Marom N. Accurate description of the electronic structure of organic semiconductors by GW methods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:103003. [PMID: 28145283 DOI: 10.1088/1361-648x/29/10/103003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electronic properties associated with charged excitations, such as the ionization potential (IP), the electron affinity (EA), and the energy level alignment at interfaces, are critical parameters for the performance of organic electronic devices. To computationally design organic semiconductors and functional interfaces with tailored properties for target applications it is necessary to accurately predict these properties from first principles. Many-body perturbation theory is often used for this purpose within the GW approximation, where G is the one particle Green's function and W is the dynamically screened Coulomb interaction. Here, the formalism of GW methods at different levels of self-consistency is briefly introduced and some recent applications to organic semiconductors and interfaces are reviewed.
Collapse
Affiliation(s)
- Noa Marom
- Department of Materials Science and Engineering, Department of Chemistry, and Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| |
Collapse
|
25
|
Escudero D, Duchemin I, Blase X, Jacquemin D. Modeling the Photochrome-TiO 2 Interface with Bethe-Salpeter and Time-Dependent Density Functional Theory Methods. J Phys Chem Lett 2017; 8:936-940. [PMID: 28178780 DOI: 10.1021/acs.jpclett.7b00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hybrid organic-inorganic semiconductor systems have important applications in both molecular electronics and photoresponsive materials. The characterizations of the interface and of the electronic excited-states of these hybrid systems remain a challenge for state-of-the-art computational methods, as the systems of interest are large. In the present investigation, we present for the first time a many-body Green's function Bethe-Salpeter investigation of a series of photochromic molecules adsorbed onto TiO2 nanoclusters. On the basis of these studies, the performance of time-dependent density functional theory (TD-DFT) calculations is assessed. In addition, the photochromic properties of different hybrid systems are also evaluated. This work shows that qualitatively different conclusions can be reached with TD-DFT relying on various exchange-correlation functionals for such organic-inorganic interfaces and paves the way to more accurate simulation of many hybrid materials.
Collapse
Affiliation(s)
- Daniel Escudero
- CEISAM UMR CNRS 6230, Université de Nantes , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Ivan Duchemin
- Univ. Grenoble Alpes, CEA, INAC-MEM, L-Sim , F-38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Inst NEEL , F-38042 Grenoble, France
| | - Xavier Blase
- Univ. Grenoble Alpes, CNRS, Inst NEEL , F-38042 Grenoble, France
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230, Université de Nantes , 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
- Institut Universitaire de France , 1 rue Descartes, F-75005 Paris Cedex 05, France
| |
Collapse
|
26
|
Duchemin I, Jacquemin D, Blase X. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach. J Chem Phys 2017; 144:164106. [PMID: 27131530 DOI: 10.1063/1.4946778] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.
Collapse
Affiliation(s)
- Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France
| | - Denis Jacquemin
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | | |
Collapse
|
27
|
Jacquemin D, Duchemin I, Blondel A, Blase X. Benchmark of Bethe-Salpeter for Triplet Excited-States. J Chem Theory Comput 2017; 13:767-783. [PMID: 28107000 DOI: 10.1021/acs.jctc.6b01169] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have evaluated the accuracy of the Bethe-Salpeter singlet-triplet transition energies as well as singlet-triplet and triplet-triplet splittings for 20 organic molecules, using as reference the CC3 values determined by Thiel and co-workers with both the TZVP and aug-cc-pVTZ atomic basis sets. Our excitation energies are obtained on the basis of GW quasiparticle energy levels that are self-consistently converged with respect to the starting DFT eigenvalues. In its current form, BSE/GW is often unable to provide a balanced description of both singlet and triplet excited-states. While the singlet-singlet and triplet-triplet energy separations are obtained accurately, triplets are located too close in energy from the ground-state, by typically -0.55 eV when using standard functionals to generate the starting eigenstates. Applying the Tamm-Dancoff approximation upshifts the BSE triplet energies and allows reducing this error to ca. -0.40 eV, while using M06-HF eigenstates allows a further increase and hence a reduction of the error for triplet states, but at the cost of larger errors for the singlet excited-states. At this stage, the most accurate TD-DFT estimates therefore remain competitive for computing singlet-triplet transition energies. Indeed, with M06-2X, irrespective of the application or not of the Tamm-Dancoff approximation and of the selected atomic basis set, the deviations obtained with TD-DFT are rather small.
Collapse
Affiliation(s)
- Denis Jacquemin
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes , 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France.,Institut Universitaire de France , 103 bd St. Michel, 75005 Paris Cedex 5, France
| | - Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France.,Institut NEEL, Université Grenoble Alpes , F-38042 Grenoble, France
| | - Aymeric Blondel
- Laboratoire CEISAM - UMR CNR 6230, Université de Nantes , 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Xavier Blase
- Institut NEEL, Université Grenoble Alpes , F-38042 Grenoble, France.,CNRS, Institut NEEL, F-38042 Grenoble, France
| |
Collapse
|
28
|
Hirose D, Noguchi Y, Sugino O. Quantitative characterization of exciton fromGW+Bethe-Salpeter calculation. J Chem Phys 2017; 146:044303. [DOI: 10.1063/1.4974320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
30
|
Jacquemin D, Duchemin I, Blondel A, Blase X. Assessment of the Accuracy of the Bethe–Salpeter (BSE/GW) Oscillator Strengths. J Chem Theory Comput 2016; 12:3969-81. [DOI: 10.1021/acs.jctc.6b00419] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Denis Jacquemin
- CEISAM
Laboratory−UMRS CNR 6230, University of Nantes, 2 Rue de la
Houssinière, BP 92208, 44322 Nantes Cedex 3, France
- Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5, France
| | - Ivan Duchemin
- Institute
for Nanoscience and Cryogenics (INAC), SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France
| | - Aymeric Blondel
- CEISAM
Laboratory−UMRS CNR 6230, University of Nantes, 2 Rue de la
Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | | |
Collapse
|
31
|
Ou Q, Subotnik JE. Comparison between GW and Wave-Function-Based Approaches: Calculating the Ionization Potential and Electron Affinity for 1D Hubbard Chains. J Phys Chem A 2016; 120:4514-25. [DOI: 10.1021/acs.jpca.6b03294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qi Ou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E. Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
Kaplan F, Harding ME, Seiler C, Weigend F, Evers F, van Setten MJ. Quasi-Particle Self-Consistent GW for Molecules. J Chem Theory Comput 2016; 12:2528-41. [DOI: 10.1021/acs.jctc.5b01238] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. Kaplan
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Campus North, D-76344 Karlsruhe, Germany
| | - M. E. Harding
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Campus North, D-76344 Karlsruhe, Germany
| | - C. Seiler
- Institute
of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - F. Weigend
- Institute
of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Campus
South, D-76021 Karlsruhe, Germany
| | - F. Evers
- Institute
of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - M. J. van Setten
- Nanoscopic
Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Leng X, Jin F, Wei M, Ma Y. GW method and Bethe-Salpeter equation for calculating electronic excitations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2016. [DOI: 10.1002/wcms.1265] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xia Leng
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Fan Jin
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Min Wei
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering; Shandong University; Jinan China
| |
Collapse
|
34
|
Rebolini E, Toulouse J. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel. J Chem Phys 2016; 144:094107. [DOI: 10.1063/1.4943003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
35
|
Knight JW, Wang X, Gallandi L, Dolgounitcheva O, Ren X, Ortiz JV, Rinke P, Körzdörfer T, Marom N. Accurate Ionization Potentials and Electron Affinities of Acceptor Molecules III: A Benchmark of GW Methods. J Chem Theory Comput 2016; 12:615-26. [DOI: 10.1021/acs.jctc.5b00871] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph W. Knight
- Physics
and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Xiaopeng Wang
- Physics
and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| | - Lukas Gallandi
- Computational
Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Olga Dolgounitcheva
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Xinguo Ren
- Key
Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - J. Vincent Ortiz
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, United States
| | - Patrick Rinke
- COMP/Department
of Applied Physics, Aalto University School of Science, P.O. Box 11100, FI-00076 Aalto, Finland
| | - Thomas Körzdörfer
- Computational
Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Noa Marom
- Physics
and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
36
|
Blase X, Boulanger P, Bruneval F, Fernandez-Serra M, Duchemin I. GW and Bethe-Salpeter study of small water clusters. J Chem Phys 2016; 144:034109. [DOI: 10.1063/1.4940139] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Fabien Bruneval
- CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France
| | - Marivi Fernandez-Serra
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex 09, 38054 Grenoble, France
| |
Collapse
|
37
|
Jacquemin D, Duchemin I, Blase X. Assessment of the convergence of partially self-consistent BSE/GW calculations. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1119901] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Denis Jacquemin
- Laboratoire CEISAM – UMR CNRS 6230, Université de Nantes, Nantes, France
- Institut Universitaire de France, Paris, France
| | | | - Xavier Blase
- Institut NEEL, Université Grenoble Alpes, Grenoble, France
- Institut NEEL, CNRS, Grenoble, France
| |
Collapse
|
38
|
Kaplan F, Weigend F, Evers F, van Setten MJ. Off-Diagonal Self-Energy Terms and Partially Self-Consistency in GW Calculations for Single Molecules: Efficient Implementation and Quantitative Effects on Ionization Potentials. J Chem Theory Comput 2015; 11:5152-60. [DOI: 10.1021/acs.jctc.5b00394] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- F. Kaplan
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, Campus North, D-76344 Karlsruhe, Germany
| | - F. Weigend
- Institute
of Nanotechnology, Karlsruhe Institute of Technology, Campus North, D-76344 Karlsruhe, Germany
- Institute
of Physical Chemistry, Karlsruhe Institute of Technology, Campus
South, D-76021 Karlsruhe, Germany
| | - F. Evers
- Institute
of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - M. J. van Setten
- Nanoscopic
Physics, Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des Étoiles 8, bte
L7.03.01, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
39
|
Bruneval F, Hamed SM, Neaton JB. A systematic benchmark of the ab initio Bethe-Salpeter equation approach for low-lying optical excitations of small organic molecules. J Chem Phys 2015; 142:244101. [PMID: 26133404 DOI: 10.1063/1.4922489] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The predictive power of the ab initio Bethe-Salpeter equation (BSE) approach, rigorously based on many-body Green's function theory but incorporating information from density functional theory, has already been demonstrated for the optical gaps and spectra of solid-state systems. Interest in photoactive hybrid organic/inorganic systems has recently increased and so has the use of the BSE for computing neutral excitations of organic molecules. However, no systematic benchmarks of the BSE for neutral electronic excitations of organic molecules exist. Here, we study the performance of the BSE for the 28 small molecules in Thiel's widely used time-dependent density functional theory benchmark set [Schreiber et al., J. Chem. Phys. 128, 134110 (2008)]. We observe that the BSE produces results that depend critically on the mean-field starting point employed in the perturbative approach. We find that this starting point dependence is mainly introduced through the quasiparticle energies obtained at the intermediate GW step and that with a judicious choice of starting mean-field, singlet excitation energies obtained from BSE are in excellent quantitative agreement with higher-level wavefunction methods. The quality of the triplet excitations is slightly less satisfactory.
Collapse
Affiliation(s)
- Fabien Bruneval
- CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette, France
| | - Samia M Hamed
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jeffrey B Neaton
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
40
|
Jacquemin D, Duchemin I, Blase X. Benchmarking the Bethe-Salpeter Formalism on a Standard Organic Molecular Set. J Chem Theory Comput 2015; 11:3290-304. [PMID: 26207104 PMCID: PMC4504186 DOI: 10.1021/acs.jctc.5b00304] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 12/17/2022]
Abstract
We perform benchmark calculations of the Bethe-Salpeter vertical excitation energies for the set of 28 molecules constituting the well-known Thiel’s set, complemented by a series of small molecules representative of the dye chemistry field. We show that Bethe-Salpeter calculations based on a molecular orbital energy spectrum obtained with non-self-consistent G0W0 calculations starting from semilocal DFT functionals dramatically underestimate the transition energies. Starting from the popular PBE0 hybrid functional significantly improves the results even though this leads to an average -0.59 eV redshift compared to reference calculations for Thiel’s set. It is shown, however, that a simple self-consistent scheme at the GW level, with an update of the quasiparticle energies, not only leads to a much better agreement with reference values, but also significantly reduces the impact of the starting DFT functional. On average, the Bethe-Salpeter scheme based on self-consistent GW calculations comes close to the best time-dependent DFT calculations with the PBE0 functional with a 0.98 correlation coefficient and a 0.18 (0.25) eV mean absolute deviation compared to TD-PBE0 (theoretical best estimates) with a tendency to be red-shifted. We also observe that TD-DFT and the standard adiabatic Bethe-Salpeter implementation may differ significantly for states implying a large multiple excitation character.
Collapse
Affiliation(s)
- Denis Jacquemin
- Laboratoire
CEISAM - UMR CNR 6230, Université
de Nantes, 2 Rue de la
Houssinière, BP 92208, 44322 Nantes Cedex 3, France
- Institut
Universitaire de France, 103 bd St. Michel, 75005 Paris Cedex 5, France
| | - Ivan Duchemin
- INAC,
SP2M/L_Sim, CEA/UJF Cedex 09, Université
Grenoble Alpes, 38054 Grenoble, France
| | - Xavier Blase
- CNRS,
Inst NEEL, F-38042 Grenoble, France
- Institut
NEEL, Université Grenoble Alpes, F-38042 Grenoble, France
| |
Collapse
|
41
|
Hübener H, Giustino F. Linear optical response of finite systems using multishift linear system solvers. J Chem Phys 2014; 141:044117. [DOI: 10.1063/1.4890736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hannes Hübener
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Feliciano Giustino
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| |
Collapse
|
42
|
Varsano D, Coccia E, Pulci O, Conte AM, Guidoni L. Ground state structures and electronic excitations of biological chromophores at Quantum Monte Carlo/Many Body Green’s Function Theory level. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Boulanger P, Jacquemin D, Duchemin I, Blase X. Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe–Salpeter Approach. J Chem Theory Comput 2014; 10:1212-8. [DOI: 10.1021/ct401101u] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Denis Jacquemin
- Laboratoire CEISAM−UMR
CNRS 6230, Université de Nantes, 2 Rue de la
Houssinière, BP 92208, 44322 Nantes Cedex 3, France
- Institut Universitaire de France, 103, bd Saint-Michel, F-75005 Paris Cedex 05, France
| | - Ivan Duchemin
- INAC, SP2M/L_Sim, CEA/UJF Cedex
09, 38054 Grenoble, France
| | - Xavier Blase
- CNRS, Institut NEEL, F-38042 Grenoble, France
- University Grenoble Alpes, Institut NEEL, F-38042 Grenoble, France
| |
Collapse
|