1
|
Viani A, Bernasconi D, Zárybnická L, Zontone F, Pavese A, Dallari F. Heterogeneous dynamics in aging phosphate-based geopolymer. J Chem Phys 2025; 162:024903. [PMID: 39783978 DOI: 10.1063/5.0239498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity. The system ages through a "densification" process producing declining small angle scattered intensity, as two finely intermixed gel-like reaction products, namely, one hydrated aluminophosphate and one hydrated silica, form a percolated network possessing surface fractal scaling of progressively shorter average correlation length. In this scenario, the nominal Al/P molar ratio of the mix, being an index of network-forming ability, is positively correlated with the dynamic viscosity and the overall kinetics, whereas the contrary occurs for the fraction of water.
Collapse
Affiliation(s)
- Alberto Viani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Lucie Zárybnická
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic
| | | | | | - Francesco Dallari
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic
| |
Collapse
|
2
|
Gupta R, Verma SD. Two-Dimensional Fluctuation Correlation Spectroscopy (2D-FlucCS): A Method to Determine the Origin of Relaxation Rate Dispersion. ACS MEASUREMENT SCIENCE AU 2024; 4:153-162. [PMID: 38645580 PMCID: PMC11027202 DOI: 10.1021/acsmeasuresciau.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/23/2024]
Abstract
Relaxation rate dispersion, i.e., nonexponential or multicomponent kinetics, is observed in complex systems when measuring relaxation kinetics. Often, the origin of rate dispersion is associated with the heterogeneity in the system. However, both homogeneous (where all molecules experience the same rate but inherently nonexponential) and heterogeneous (where all molecules experience different rates) systems can exhibit rate dispersion. A multidimensional correlation analysis method has been demonstrated to detect and quantify rate dispersion observed in molecular rotation, diffusion, solvation, and reaction kinetics. One-dimensional (1D) autocorrelation function detects rate dispersion and measures its extent. Two-dimensional (2D) autocorrelation function measures the origin of rate dispersion and distinguishes homogeneous from heterogeneous. In a heterogeneous system, implicitly there exist subensembles of molecules experiencing different rates. A three-dimensional (3D) autocorrelation function measures subensemble exchange if present and reveals if the system possesses static or dynamic heterogeneity. This perspective discusses the principles, applications, and potential and also presents a future outlook of two-dimensional fluctuation correlation spectroscopy (2D-FlucCS). The method is applicable to any experiment or simulation where a time series of fluctuation in an observable (emission, scattering, current, etc.) around a mean value can be obtained in steady state (equilibrium or nonequilibrium), provided the system is ergodic.
Collapse
Affiliation(s)
- Ruchir Gupta
- Spectroscopy and Dynamics
Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Sachin Dev Verma
- Spectroscopy and Dynamics
Visualization Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
3
|
Wu D, Narayanan S, Li R, Feng Y, Akcora P. The effect of dynamically heterogeneous interphases on the particle dynamics of polymer nanocomposites. SOFT MATTER 2023; 19:2764-2770. [PMID: 36988144 DOI: 10.1039/d2sm01617f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The entanglements of dynamically asymmetric polymer layers influence relaxations of nanoparticles in polymer nanocomposites. In this work, the dynamics of polymer-adsorbed and polymer-grafted nanoparticles in a poly(methyl acrylate) matrix polymer was investigated using X-ray photon correlation spectroscopy (XPCS) to understand the role of chain rigidity and chemical heterogeneities in particle dynamics. Locations of dynamic heterogeneities close to nanoparticles and away from particle surfaces were examined with the comparison of adsorbed and grafted nanoparticles. Our results show that the chemical heterogeneities around dispersed nanoparticles transitioned the particle dynamics from Brownian diffusion into hyperdiffusion, and moreover, the high rigidity of chains in the chemically heterogeneous interfacial layers slowed down the particle dynamics. The hyperdiffusion measured both in grafted particles and adsorbed particles was attributed to the dense interfacial mixing of dynamically heterogeneous chains.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ruhao Li
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Yi Feng
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| |
Collapse
|
4
|
Begam N, Timmermann S, Ragulskaya A, Girelli A, Senft MD, Retzbach S, Anthuparambil ND, Akhundzadeh MS, Kowalski M, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Effects of temperature and ionic strength on the microscopic structure and dynamics of egg white gels. J Chem Phys 2023; 158:074903. [PMID: 36813727 DOI: 10.1063/5.0130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We investigate the thermal gelation of egg white proteins at different temperatures with varying salt concentrations using x-ray photon correlation spectroscopy in the geometry of ultra-small angle x-ray scattering. Temperature-dependent structural investigation suggests a faster network formation with increasing temperature, and the gel adopts a more compact network, which is inconsistent with the conventional understanding of thermal aggregation. The resulting gel network shows a fractal dimension δ, ranging from 1.5 to 2.2. The values of δ display a non-monotonic behavior with increasing amount of salt. The corresponding dynamics in the q range of 0.002-0.1 nm-1 is observable after major change of the gel structure. The extracted relaxation time exhibits a two-step power law growth in dynamics as a function of waiting time. In the first regime, the dynamics is associated with structural growth, whereas the second regime is associated with the aging of the gel, which is directly linked with its compactness, as quantified by the fractal dimension. The gel dynamics is characterized by a compressed exponential relaxation with a ballistic-type of motion. The addition of salt gradually makes the early stage dynamics faster. Both gelation kinetics and microscopic dynamics show that the activation energy barrier in the system systematically decreases with increasing salt concentration.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Maximilian D Senft
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Sebastian Retzbach
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | - Marvin Kowalski
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Ragulskaya A, Starostin V, Begam N, Girelli A, Rahmann H, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Reverse-engineering method for XPCS studies of non-equilibrium dynamics. IUCRJ 2022; 9:439-448. [PMID: 35844477 PMCID: PMC9252156 DOI: 10.1107/s2052252522004560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) is a powerful tool in the investigation of dynamics covering a broad time and length scale. It has been widely used to probe dynamics for systems in both equilibrium and non-equilibrium states; in particular, for systems undergoing a phase transition where the structural growth kinetics and the microscopic dynamics are strongly intertwined. The resulting time-dependent dynamic behavior can be described using the two-time correlation function (TTC), which, however, often contains more interesting features than the component along the diagonal, and cannot be easily interpreted via the classical simulation methods. Here, a reverse engineering (RE) approach is proposed based on particle-based heuristic simulations. This approach is applied to an XPCS measurement on a protein solution undergoing a liquid-liquid phase separation. It is demonstrated that the rich features of experimental TTCs can be well connected with the key control parameters including size distribution, concentration, viscosity and mobility of domains. The dynamic information obtained from this RE analysis goes beyond the existing theory. The RE approach established in this work is applicable for other processes such as film growth, coarsening or evolving systems.
Collapse
Affiliation(s)
- Anastasia Ragulskaya
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anita Girelli
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Mario Reiser
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
- European X-ray free-electron laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Fajun Zhang
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Gutt
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Torres Arango MA, Zhang Y, Li R, Doerk G, Fluerasu A, Wiegart L. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51044-51056. [PMID: 33138355 DOI: 10.1021/acsami.0c14743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
3D printing of amorphous and crystalline ceramics is of paramount importance for the fabrication of a wide range of devices with applications across different technology fields. Printed ceramics are remarkably enabled by the sol-gel synthesis method in conjunction with continuous filament direct ink writing. During printing, multiple processes contribute to the evolution of inks including shape retention, chemical conversion, solidification, and microstructure formation. Traditionally, depending on the ink composition and printing environment, several mechanisms have been associated with the shape retention and solidification of 3D printed structures: gelation, rapid solvent evaporation, energy-driven phase transformation, and chemical-driven phase transformation. Understanding the fundamental differences between these mechanisms becomes key since they strongly influence the spatiotemporal evolution of the materials, as the out-of-equilibrium processes inherent to the extrusion, relaxation, and solidification of printed materials have significant effects on the materials properties. In this work, we investigate the shape retention mechanism and the hydrolysis-induced material conversion and microstructure formation during the 3D printing of a water reactive sol-gel ink that transforms into titanium dioxide-based ceramic. This study aims at identifying characteristic mechanisms associated with the material transformation, establishing connections between the microstructure development and the timescales associated with solidification under operando 3D-printing conditions. The investigation of this material's out-of-equilibrium pathways under processing conditions is enabled by time-resolved coherent X-ray scattering, providing simultaneous access to temporospatially resolved microstructural and dynamics information. Furthermore, we explore X-ray speckle tracking as a tool to resolve deformations of the microstructure in a printed filament associated with the deposition of consecutive filaments. Through this work, we aim at providing a fundamental understanding of the relationships behind these transformative processes in 3D printing and their timescales as the basis for achieving unprecedented control over printed materials microstructure.
Collapse
Affiliation(s)
- Maria A Torres Arango
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| | - Gregory Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, 735 Brookhaven Avenue, Upton, New York 11973, United States
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, 744 Brookhaven Avenue, Upton, New York 11973, United States
| |
Collapse
|
7
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
8
|
Lhermitte JRM, Rogers MC, Manet S, Sutton M. Velocity measurement by coherent x-ray heterodyning. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:015112. [PMID: 28147652 DOI: 10.1063/1.4974099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.
Collapse
Affiliation(s)
| | - Michael C Rogers
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Sabine Manet
- Department of Physics, McGill University, Montréal, Quebec H3A 2T8, Canada
| | - Mark Sutton
- Department of Physics, McGill University, Montréal, Quebec H3A 2T8, Canada
| |
Collapse
|
9
|
Synchrotron X-ray scattering and photon correlation spectroscopy studies on thin film morphology details and structural changes of an amorphous-crystalline brush diblock copolymer. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
|
11
|
Gabriel J, Blochowicz T, Stühn B. Compressed exponential decays in correlation experiments: The influence of temperature gradients and convection. J Chem Phys 2015; 142:104902. [DOI: 10.1063/1.4914092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jan Gabriel
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Thomas Blochowicz
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Bernd Stühn
- Institut für Festkörperphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Sanz A, Ezquerra TA, Hernández R, Sprung M, Nogales A. Relaxation processes in a lower disorder order transition diblock copolymer. J Chem Phys 2015; 142:064904. [DOI: 10.1063/1.4907722] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alejandro Sanz
- Instituto de Estructura de la Materia, IEM-CSIC. C/ Serrano 121, Madrid 28006, Spain
| | - Tiberio A. Ezquerra
- Instituto de Estructura de la Materia, IEM-CSIC. C/ Serrano 121, Madrid 28006, Spain
| | - Rebeca Hernández
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC. C/ Juan de la Cierva 3, Madrid 28006, Spain
| | | | - Aurora Nogales
- Instituto de Estructura de la Materia, IEM-CSIC. C/ Serrano 121, Madrid 28006, Spain
| |
Collapse
|
13
|
Hernández R, Criado M, Nogales A, Sprung M, Mijangos C, Ezquerra TA. Deswelling of Poly(N-isopropylacrylamide) Derived Hydrogels and Their Nanocomposites with Iron Oxide Nanoparticles As Revealed by X-ray Photon Correlation Spectroscopy. Macromolecules 2015. [DOI: 10.1021/ma502118a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rebeca Hernández
- Instituto
de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Miryam Criado
- Instituto
de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Aurora Nogales
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| | - Michael Sprung
- Petra III at DESY, Notkestrasse
85, 22607 Hamburg, Germany
| | - Carmen Mijangos
- Instituto
de Ciencia y Tecnología de Polímeros, ICTP-CSIC, Juan de la
Cierva, 3, 28006 Madrid, Spain
| | - Tiberio A. Ezquerra
- Instituto
de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid, Spain
| |
Collapse
|
14
|
Shpyrko OG. X-ray photon correlation spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:1057-64. [PMID: 25177994 DOI: 10.1107/s1600577514018232] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
In recent years, X-ray photon correlation spectroscopy (XPCS) has emerged as one of the key probes of slow nanoscale fluctuations, applicable to a wide range of condensed matter and materials systems. This article briefly reviews the basic principles of XPCS as well as some of its recent applications, and discusses some novel approaches to XPCS analysis. It concludes with a discussion of the future impact of diffraction-limited storage rings on new types of XPCS experiments, pushing the temporal resolution to nanosecond and possibly even picosecond time scales.
Collapse
Affiliation(s)
- Oleg G Shpyrko
- Department of Physics, University of California San Diego, 9500 Gilman Drive, Mail Code 0319, La Jolla, CA 92093-0319, USA
| |
Collapse
|