1
|
Koopman M, Janssen L, Nollen EAA. An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans. BMC Biol 2021; 19:170. [PMID: 34429103 PMCID: PMC8386059 DOI: 10.1186/s12915-021-01085-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background Optogenetics allows the experimental manipulation of excitable cells by a light stimulus without the need for technically challenging and invasive procedures. The high degree of spatial, temporal, and intensity control that can be achieved with a light stimulus, combined with cell type-specific expression of light-sensitive ion channels, enables highly specific and precise stimulation of excitable cells. Optogenetic tools have therefore revolutionized the study of neuronal circuits in a number of models, including Caenorhabditis elegans. Despite the existence of several optogenetic systems that allow spatial and temporal photoactivation of light-sensitive actuators in C. elegans, their high costs and low flexibility have limited wide access to optogenetics. Here, we developed an inexpensive, easy-to-build, modular, and adjustable optogenetics device for use on different microscopes and worm trackers, which we called the OptoArm. Results The OptoArm allows for single- and multiple-worm illumination and is adaptable in terms of light intensity, lighting profiles, and light color. We demonstrate OptoArm’s power in a population-based multi-parameter study on the contributions of motor circuit cells to age-related motility decline. We found that individual components of the neuromuscular system display different rates of age-dependent deterioration. The functional decline of cholinergic neurons mirrors motor decline, while GABAergic neurons and muscle cells are relatively age-resilient, suggesting that rate-limiting cells exist and determine neuronal circuit ageing. Conclusion We have assembled an economical, reliable, and highly adaptable optogenetics system which can be deployed to address diverse biological questions. We provide a detailed description of the construction as well as technical and biological validation of our set-up. Importantly, use of the OptoArm is not limited to C. elegans and may benefit studies in multiple model organisms, making optogenetics more accessible to the broader research community. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01085-2.
Collapse
Affiliation(s)
- M Koopman
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - L Janssen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - E A A Nollen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Sofela S, Sahloul S, Song YA. Biophysical analysis of drug efficacy on C. elegans models for neurodegenerative and neuromuscular diseases. PLoS One 2021; 16:e0246496. [PMID: 34115761 PMCID: PMC8195402 DOI: 10.1371/journal.pone.0246496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Caenorhabditis elegans has emerged as a powerful model organism for drug screening due to its cellular simplicity, genetic amenability and homology to humans combined with its small size and low cost. Currently, high-throughput drug screening assays are mostly based on image-based phenotyping with the focus on morphological-descriptive traits not exploiting key locomotory parameters of this multicellular model with muscles such as its thrashing force, a critical biophysical parameter when screening drugs for muscle-related diseases. In this study, we demonstrated the use of a micropillar-based force assay chip in combination with a fluorescence assay to evaluate the efficacy of various drugs currently used in treatment of neurodegenerative and neuromuscular diseases. Using this two-dimensional approach, we showed that the force assay was generally more sensitive in measuring efficacy of drug treatment in Duchenne Muscular Dystrophy and Parkinson's Disease mutant worms as well as partly in Amyotrophic Lateral Sclerosis model. These results underline the potential of our force assay chip in screening of potential drug candidates for the treatment of neurodegenerative and neuromuscular diseases when combined with a fluorescence assay in a two-dimensional analysis approach.
Collapse
Affiliation(s)
- Samuel Sofela
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Tandon School of Engineering, New York University, New York, NY, United States of America
| | - Sarah Sahloul
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Tandon School of Engineering, New York University, New York, NY, United States of America
| |
Collapse
|
3
|
Sun Y, Tayagui A, Sale S, Sarkar D, Nock V, Garrill A. Platforms for High-Throughput Screening and Force Measurements on Fungi and Oomycetes. MICROMACHINES 2021; 12:mi12060639. [PMID: 34070887 PMCID: PMC8227076 DOI: 10.3390/mi12060639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/19/2023]
Abstract
Pathogenic fungi and oomycetes give rise to a significant number of animal and plant diseases. While the spread of these pathogenic microorganisms is increasing globally, emerging resistance to antifungal drugs is making associated diseases more difficult to treat. High-throughput screening (HTS) and new developments in lab-on-a-chip (LOC) platforms promise to aid the discovery of urgently required new control strategies and anti-fungal/oomycete drugs. In this review, we summarize existing HTS and emergent LOC approaches in the context of infection strategies and invasive growth exhibited by these microorganisms. To aid this, we introduce key biological aspects and review existing HTS platforms based on both conventional and LOC techniques. We then provide an in-depth discussion of more specialized LOC platforms for force measurements on hyphae and to study electro- and chemotaxis in spores, approaches which have the potential to aid the discovery of alternative drug targets on future HTS platforms. Finally, we conclude with a brief discussion of the technical developments required to improve the uptake of these platforms into the general laboratory environment.
Collapse
Affiliation(s)
- Yiling Sun
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Ayelen Tayagui
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Sarah Sale
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Debolina Sarkar
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Volker Nock
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Correspondence: (V.N.); (A.G.)
| | - Ashley Garrill
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand; (Y.S.); (A.T.); (S.S.); (D.S.)
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Correspondence: (V.N.); (A.G.)
| |
Collapse
|
4
|
Sun Y, Tayagui A, Garrill A, Nock V. Microfluidic platform for integrated compartmentalization of single zoospores, germination and measurement of protrusive force generated by germ tubes. LAB ON A CHIP 2020; 20:4141-4151. [PMID: 33057547 DOI: 10.1039/d0lc00752h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper describes the design, fabrication and characterisation of a novel monolithic lab-on-a-chip (LOC) platform combining the trapping and germination of individual zoospores of the oomycete Achlya bisexualis with elastomeric micropillar-based protrusive force sensing. The oomycetes are of significant interest due to their pathogenic capabilities, which can have profound ecological and economic impacts. Zoospore encystment and germination via a germ tube play a key role in their pathogenicity. Our platform enables the study of these processes at a single cell level through hydrodynamic trapping of zoospores and their individual compartmentalization via normally closed pneumatic membrane microvalves. Valve geometry was optimized and media exchange characterized during dynamic valve operations to enhance the capture-to-growth ratio. We demonstrate germination of A. bisexualis zoospores on the platform and report three distinct germination patterns. Once germinated, germ tubes grew down growth channels towards single elastomeric micropillars. Tracking of pillar movement allowed for the measurement of microNewton range protrusive forces imparted by the tips of the germ tubes. Results indicate that the forces generated by the germ tubes are smaller than those exerted by mature hyphae. Through the use of parallel traps, channels and pillars on the same device, the platform enables high-throughput screening (HTS) of zoospores and their generation of protrusive force, an essential component of their infective capability. Due to its versatility, it will also allow for the screening of naturally bioactive compounds and the development of new biocontrol strategies for oomycetes, and morphologically similar fungal infections, as an alternative to agrochemicals.
Collapse
Affiliation(s)
- Yiling Sun
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Ayelen Tayagui
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand and School of Biological Sciences, University of Canterbury, New Zealand
| | - Ashley Garrill
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, New Zealand. and School of Biological Sciences, University of Canterbury, New Zealand
| | - Volker Nock
- Biomolecular Interaction Centre, Department of Electrical and Computer Engineering, University of Canterbury, New Zealand. and The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| |
Collapse
|
5
|
Zhao Y, Demirci U, Chen Y, Chen P. Multiscale brain research on a microfluidic chip. LAB ON A CHIP 2020; 20:1531-1543. [PMID: 32150176 DOI: 10.1039/c9lc01010f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One major challenge in current brain research is generating an integrative understanding of the brain's functions and disorders from its multiscale neuronal architectures and connectivity. Thus, innovative neurotechnology tools are urgently required for deciphering the multiscale functional and structural organizations of the brain at hierarchical scales from the molecular to the organismal level by multiple brain research initiatives launched by the European Union, United States, Australia, Canada, China, Korea, and Japan. To meet this demand, microfluidic chips (μFCs) have rapidly evolved as a trans-scale neurotechnological toolset to enable multiscale studies of the brain due to their unique advantages in flexible microstructure design, multifunctional integration, accurate microenvironment control, and capacity for automatic sample processing. Here, we review the recent progress in applying innovative μFC-based neuro-technologies to promote multiscale brain research and uniquely focus on representative applications of μFCs to address challenges in brain research at each hierarchical level. We discuss the current trend of combinational applications of μFCs with other neuro- and biotechnologies, including optogenetics, brain organoids, and 3D bioprinting, for better multiscale brain research. In addition, we offer our insights into the existing outstanding questions at each hierarchical level of brain research that could potentially be addressed by advancing microfluidic techniques. This review will serve as a timely guide for bioengineers and neuroscientists to develop and apply μFC-based neuro-technologies for promoting basic and translational brain research.
Collapse
Affiliation(s)
- Yanan Zhao
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, 115 Donghu Road, Wuhan 430071, China.
| | | | | | | |
Collapse
|
6
|
Crawford Z, San-Miguel A. An inexpensive programmable optogenetic platform for controlled neuronal activation regimens in C. elegans. APL Bioeng 2020; 4:016101. [PMID: 31934682 PMCID: PMC6941946 DOI: 10.1063/1.5120002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
In Caenorhabditis elegans, optogenetic stimulation has been widely used to assess neuronal function, control animal movement, or assay circuit responses to controlled stimuli. Most studies are performed on single animals and require high-end components such as lasers and shutters. We present an accessible platform that enables controlled optogenetic stimulation of C. elegans in two modes: single animal stimulation with locomotion tracking and entire population stimulation for neuronal exercise regimens. The system consists of accessible electronic components: a high-power light-emitting diode, Arduino board, and relay are integrated with MATLAB to enable programmable optogenetic stimulation regimens. This system provides flexibility in optogenetic stimulation in freely moving animals while providing quantitative information of optogenetic-driven locomotion responses. We show the applicability of this platform in single animals by stimulation of cholinergic motor neurons in C. elegans and quantitative assessment of contractile responses. In addition, we tested synaptic plasticity by coupling the entire-population stimulation mode with measurements of synaptic strength using an aldicarb assay, where clear changes in synaptic strength were observed after regimens of neuronal exercise. This platform is composed of inexpensive components, while providing the illumination strength of high-end systems, which require expensive lasers, shutters, or automated stages. This platform requires no moving parts but provides flexibility in stimulation regimens.
Collapse
Affiliation(s)
- Zachary Crawford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
7
|
On-chip simultaneous rotation of large-scale cells by acoustically oscillating bubble array. Biomed Microdevices 2020; 22:13. [DOI: 10.1007/s10544-020-0470-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Sofela S, Sahloul S, Stubbs C, Orozaliev A, Refai FS, Esmaeel AM, Fahs H, Abdelgawad MO, Gunsalus KC, Song YA. Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays. LAB ON A CHIP 2019; 19:3685-3696. [PMID: 31576392 DOI: 10.1039/c9lc00660e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a simple model organism, C. elegans plays an important role in gaining insight into the relationship between bodily thrashing forces and biological effects, such as disease and aging, or physical stimuli, like touch and light. Due to their similar length scale, microfluidic chips have been extensively explored for use in various biological studies involving C. elegans. However, a formidable challenge still exists due to the complexity of integrating external stimuli (chemical, mechanical or optical) with free-moving worms and subsequent imaging on the chip. In this report, we use a microfluidic device to partially immobilize a worm, which allows for measurements of the relative changes in the thrashing force under different assay conditions. Using a device adapted to the natural escape-like coiling response of a worm to immobilization, we have quantified the relative changes in the thrashing force during different developmental stages (L1, L3, L4, and young adult) and in response to various glucose concentrations and drug treatment. Our findings showed a loss of thrashing force following the introduction of glucose into a wild type worm culture that could be reversed upon treatment with the type 2 diabetes drug metformin. A morphological study of the actin filament structures in the body wall muscles provided supporting evidence for the force measurement data. Finally, we demonstrated the multiplexing capabilities of our device through recording the thrashing activities of eight worms simultaneously. The multiplexing capabilities and facile imaging available using our device open the door for high-throughput neuromuscular studies using C. elegans.
Collapse
Affiliation(s)
- Samuel Sofela
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates. and Tandon School of Engineering, New York University, New York, USA
| | - Sarah Sahloul
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates.
| | | | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates.
| | - Fathima Shaffra Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | | | - Hala Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Mohamed Omar Abdelgawad
- Department of Mechanical Engineering, Assiut University, Egypt and Department of Mechanical Engineering, American University of Sharjah, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates. and Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|
9
|
Hewitt JE, Pollard AK, Lesanpezeshki L, Deane CS, Gaffney CJ, Etheridge T, Szewczyk NJ, Vanapalli SA. Muscle strength deficiency and mitochondrial dysfunction in a muscular dystrophy model of Caenorhabditis elegans and its functional response to drugs. Dis Model Mech 2018; 11:dmm036137. [PMID: 30396907 PMCID: PMC6307913 DOI: 10.1242/dmm.036137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/30/2018] [Indexed: 12/31/2022] Open
Abstract
Muscle strength is a key clinical parameter used to monitor the progression of human muscular dystrophies, including Duchenne and Becker muscular dystrophies. Although Caenorhabditis elegans is an established genetic model for studying the mechanisms and treatments of muscular dystrophies, analogous strength-based measurements in this disease model are lacking. Here, we describe the first demonstration of the direct measurement of muscular strength in dystrophin-deficient C. elegans mutants using a micropillar-based force measurement system called NemaFlex. We show that dys-1(eg33) mutants, but not dys-1(cx18) mutants, are significantly weaker than their wild-type counterparts in early adulthood, cannot thrash in liquid at wild-type rates, display mitochondrial network fragmentation in the body wall muscles, and have an abnormally high baseline mitochondrial respiration. Furthermore, treatment with prednisone, the standard treatment for muscular dystrophy in humans, and melatonin both improve muscular strength, thrashing rate and mitochondrial network integrity in dys-1(eg33), and prednisone treatment also returns baseline respiration to normal levels. Thus, our results demonstrate that the dys-1(eg33) strain is more clinically relevant than dys-1(cx18) for muscular dystrophy studies in C. elegans This finding, in combination with the novel NemaFlex platform, can be used as an efficient workflow for identifying candidate compounds that can improve strength in the C. elegans muscular dystrophy model. Our study also lays the foundation for further probing of the mechanism of muscle function loss in dystrophin-deficient C. elegans, leading to knowledge translatable to human muscular dystrophy.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jennifer E Hewitt
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Amelia K Pollard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Colleen S Deane
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Christopher J Gaffney
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
- Lancaster Medical School, Furness College, Lancaster University, Lancaster LA1 4YG, UK
| | - Timothy Etheridge
- Sport and Health Sciences, University of Exeter, St Luke's Campus, Exeter EX1 2LU, UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham & National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
10
|
Rahman M, Hewitt JE, Van-Bussel F, Edwards H, Blawzdziewicz J, Szewczyk NJ, Driscoll M, Vanapalli SA. NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans. LAB ON A CHIP 2018; 18:2187-2201. [PMID: 29892747 PMCID: PMC6057834 DOI: 10.1039/c8lc00103k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Muscle strength is a functional measure of quality of life in humans. Declines in muscle strength are manifested in diseases as well as during inactivity, aging, and space travel. With conserved muscle biology, the simple genetic model C. elegans is a high throughput platform in which to identify molecular mechanisms causing muscle strength loss and to develop interventions based on diet, exercise, and drugs. In the clinic, standardized strength measures are essential to quantitate changes in patients; however, analogous standards have not been recapitulated in the C. elegans model since force generation fluctuates based on animal behavior and locomotion. Here, we report a microfluidics-based system for strength measurement that we call 'NemaFlex', based on pillar deflection as the nematode crawls through a forest of pillars. We have optimized the micropillar forest design and identified robust measurement conditions that yield a measure of strength that is independent of behavior and gait. Validation studies using a muscle contracting agent and mutants confirm that NemaFlex can reliably score muscular strength in C. elegans. Additionally, we report a scaling factor to account for animal size that is consistent with a biomechanics model and enables comparative strength studies of mutants. Taken together, our findings anchor NemaFlex for applications in genetic and drug screens, for defining molecular and cellular circuits of neuromuscular function, and for dissection of degenerative processes in disuse, aging, and disease.
Collapse
Affiliation(s)
- Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hu L, Ge A, Wang X, Wang S, Gao Y, Feng X, Du W, Liu BF. An on-demand gas segmented flow generator with high spatiotemporal resolution for in vivo analysis of neuronal response in C. elegans. LAB ON A CHIP 2016; 16:4020-4027. [PMID: 27714011 DOI: 10.1039/c6lc00948d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Studies of chemo-sensing in C. elegans to fluctuating gaseous cues are limited due to the lack of a method of precise gas control. In this paper, we describe a microfluidic-based on-demand gas segmented flow generator for performing fluctuating gaseous stimulations to worms. This highly versatile and programmable micro-device integrated with pneumatic valves for flexible and stable gas flow control and worm immobilization enabled us to examine the temporal features of neuronal response to multiple gas pulses with sub-second precision. As a result, we demonstrated the capability of the micro-device to generate repetitive gaseous chemical pulses with varying durations. By characterizing intracellular calcium signals, we showed that URX sensory neurons were sensitive to O2 pulses with duration of more than 0.5 s. Furthermore, URX neuronal adaptation and recovery in response to gaseous chemical pulses were investigated by varying the durations and intervals. The developed microfluidic system is shown to be a useful tool for studying the dynamics of in vivo gas-evoked neuronal responses and revealing the temporal properties of environmental stimulations.
Collapse
Affiliation(s)
- Liang Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. and Brain Research Center, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Anle Ge
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xixian Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shanshan Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yue Gao
- Optic Information Science & Technology, School of Physics, Sun Yat-Sen University, China
| | - Xiaojun Feng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wei Du
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
12
|
Gupta BP, Rezai P. Microfluidic Approaches for Manipulating, Imaging, and Screening C. elegans. MICROMACHINES 2016; 7:E123. [PMID: 30404296 PMCID: PMC6190076 DOI: 10.3390/mi7070123] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/23/2016] [Accepted: 07/11/2016] [Indexed: 11/17/2022]
Abstract
The nematode C. elegans (worm) is a small invertebrate animal widely used in studies related to fundamental biological processes, disease modelling, and drug discovery. Due to their small size and transparent body, these worms are highly suitable for experimental manipulations. In recent years several microfluidic devices and platforms have been developed to accelerate worm handling, phenotypic studies and screens. Here we review major tools and briefly discuss their usage in C. elegans research.
Collapse
Affiliation(s)
- Bhagwati P Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
13
|
Qiu Z, Tu L, Huang L, Zhu T, Nock V, Yu E, Liu X, Wang W. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments. BIOMICROFLUIDICS 2015; 9:014123. [PMID: 25759756 PMCID: PMC4336256 DOI: 10.1063/1.4908595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 02/06/2015] [Indexed: 06/01/2023]
Abstract
Optogenetics has been recently applied to manipulate the neural circuits of Caenorhabditis elegans (C. elegans) to investigate its mechanosensation and locomotive behavior, which is a fundamental topic in model biology. In most neuron-related research, free C. elegans moves on an open area such as agar surface. However, this simple environment is different from the soil, in which C. elegans naturally dwells. To bridge up the gap, this paper presents integration of optogenetic illumination of C. elegans neural circuits and muscular force measurement in a structured microfluidic chip mimicking the C. elegans soil habitat. The microfluidic chip is essentially a ∼1 × 1 cm(2) elastomeric polydimethylsiloxane micro-pillar array, configured in either form of lattice (LC) or honeycomb (HC) to mimic the environment in which the worm dwells. The integrated system has four key modules for illumination pattern generation, pattern projection, automatic tracking of the worm, and force measurement. Specifically, two optical pathways co-exist in an inverted microscope, including built-in bright-field illumination for worm tracking and pattern generation, and added-in optogenetic illumination for pattern projection onto the worm body segment. The behavior of a freely moving worm in the chip under optogenetic manipulation can be recorded for off-line force measurements. Using wild-type N2 C. elegans, we demonstrated optical illumination of C. elegans neurons by projecting light onto its head/tail segment at 14 Hz refresh frequency. We also measured the force and observed three representative locomotion patterns of forward movement, reversal, and omega turn for LC and HC configurations. Being capable of stimulating or inhibiting worm neurons and simultaneously measuring the thrust force, this enabling platform would offer new insights into the correlation between neurons and locomotive behaviors of the nematode under a complex environment.
Collapse
Affiliation(s)
- Zhichang Qiu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Long Tu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Taoyuanmin Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| | - Volker Nock
- Department of Electrical and Computer Engineering, University of Canterbury , Christchurch, New Zealand
| | - Enchao Yu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Xiao Liu
- School of Life Sciences, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instruments, Tsinghua University , Beijing, China
| |
Collapse
|