1
|
Hu Y, Zhang S, Xu K, Zhuang X, Tang Y, Gong H, Pi Y, Tian T, Pang H. Nano-Metal-Organic Frameworks and Nano-Covalent-Organic Frameworks: Controllable Synthesis and Applications. Chem Asian J 2025; 20:e202400896. [PMID: 39384549 DOI: 10.1002/asia.202400896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Nanoscale framework materials have attracted extensive attention due to their diverse morphology and good properties, and synthesis methods of different size structures have been reported. Therefore, the relationship between different sizes and performance has become a research hotspot. This paper reviews the controllable synthesis strategies of nano-metal-organic frameworks (nano-MOFs) and nano-covalent-organic frameworks (nano-COFs). Firstly, the synthetic evolution of nano-frame materials is summarized. Due to their special surface area, regular pores and adjustable structural functions, nano-frame materials have attracted much attention. Then the preparation methods of nanostructures with different dimensions are introduced. These synthetic strategies provide the basis for the design of novel energy storage and catalytic materials. In addition, the latest advances in the field of energy storage and catalysis are reviewed, with emphasis on the application of nano-MOFs/COFs in zinc-, lithium-, and sodium-based batteries, as well as supercapacitors.
Collapse
Affiliation(s)
- Yaxun Hu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Kun Xu
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaoli Zhuang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yijian Tang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yecan Pi
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Tian Tian
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
2
|
Gao L, Kou D, Lin R, Ma W, Zhang S. Ultrathin photonic crystal based on photo-crosslinked polymer and metal-organic framework for highly sensitive detection and discrimination of benzene series vapors. J Colloid Interface Sci 2024; 666:572-584. [PMID: 38613979 DOI: 10.1016/j.jcis.2024.04.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Volatile organic compounds (VOCs) have always been a major concern as a global environmental problem. As a low-cost, high-efficiency and visual sensor, photonic crystals (PCs) have been actively studied in VOCs detection. Herein, a one-dimensional PC sensor for visual sensing of highly toxic benzene series VOC vapors is prepared for the first time by integrating a new photo-crosslinked polymer-poly(styrene-benzoylphenyl acrylate) P(St-BPA) and a high specific surface area metal-organic framework (MOF) MIL-101(Cr). The PC can detect VOCs quantitatively and visually, and clearly distinguish 7 benzene series vapors. The detection limit of the benzene series VOCs is as low as 0.06-3.45 g/m3. Meanwhile, owing to the ultra-thin layer and porous structure, the PC can reach a response equilibrium to the VOCs within 1-2.6 s. Moreover, the PC has a good organic vapor tolerance and can maintain stable optical performance after 1000 times of reuse in VOCs. Besides, 4 other PCs assembled with different aryl polymers and MOFs are first fabricated and their sensing performance to benzene series VOCs are studied and compared, which provides a valuable reference for the selection of materials for the preparation of such PC sensors.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, PR China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, PR China
| | - Ruicheng Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, PR China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, PR China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
3
|
Gao L, Kou D, Lin R, Ma W, Zhang S. Visual Recognition of Volatile Organic Compounds by Photonic Nose Integrated with Multiple Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308641. [PMID: 38282134 DOI: 10.1002/smll.202308641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/10/2024] [Indexed: 01/30/2024]
Abstract
The photonic nose inspired by the olfactory system is an integrated detection platform constructed by multiple sensing units as channels. However, in the detection of volatile organic compounds (VOCs), the sensing results that cannot be directly readable and the poor ability to distinguish analytes with similar chemical properties are the main challenges faced by this sensor. Here, 8 metal-organic frameworks (MOF)-based photonic crystals are used as the basic sensing units to construct a photonic nose detection platform. The microscopic adsorption of VOCs by MOFs enables the photonic crystals (PCs) to produce macroscopic structural color output, and further makes the photonic nose have specific color fingerprints for different VOCs, the response time of all PCs to VOCs can be within 1 s. Through the color fingerprint, the visual identification of VOCs produced by 5 common solvent vapors is realized, and 9 VOCs with similar chemical properties are further distinguished. In addition, the application potential of the photonic nose in the actual environment is verified by identifying different contents of benzene in the paint. It is envisaged that the MOF-based photonic nose has great reference value for the development of intelligent and multi-component synergistic functional gas sensors.
Collapse
Affiliation(s)
- Lei Gao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Donghui Kou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Ruicheng Lin
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, 2# Linggong Rd, Dalian, 116024, China
| |
Collapse
|
4
|
Desai AV, Seymour VR, Ettlinger R, Pramanik A, Manche AG, Rainer DN, Wheatley PS, Griffin JM, Morris RE, Armstrong AR. Azo-functionalised metal-organic framework for charge storage in sodium-ion batteries. Chem Commun (Camb) 2023; 59:1321-1324. [PMID: 36637086 DOI: 10.1039/d2cc06154f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sodium-ion batteries (NIBs) are emerging as promising devices for energy storage applications. Porous solids, such as metal-organic frameworks (MOFs), are well suited as electrode materials for technologies involving bulkier charge carriers. However, only limited progress has been made using pristine MOFs, primarily due to lack of redox-active organic groups in the materials. In this work a azo-functional MOF, namely UiO-abdc, is presented as an electrode compound for sodium-ion insertion. The MOF delivers a stable capacity (∼100 mA h g-1) over 150 cycles, and post-cycling characterisation validates the stability of the MOF and participation of the azo-group in charge storage. This study can accelerate the realisation of pristine solids, such as MOFs and other porous organic compounds, as battery materials.
Collapse
Affiliation(s)
- Aamod V Desai
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Valerie R Seymour
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK.,Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Romy Ettlinger
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Atin Pramanik
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Alexis G Manche
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - Daniel N Rainer
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - Paul S Wheatley
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| | - John M Griffin
- The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK.,Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - Russell E Morris
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| | - A Robert Armstrong
- EastChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,The Faraday Institution, Quad One, Harwell Science and Innovation Campus, Didcot, OX11 0RA, UK
| |
Collapse
|
5
|
Welgama HK, Crawley MR, McKone JR, Cook TR. Investigations of Nanoparticle Suspensions of Prussian Blue and Its Copper Analogue: Amine Functionalization and Electrochemical Studies. Inorg Chem 2023; 62:1455-1465. [PMID: 36638826 DOI: 10.1021/acs.inorgchem.2c03545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prussian blue (PB) and its analogues are promising materials for electrochemical energy storage, yet their use in flow-type devices is limited by their lack of redox responsiveness as colloidal suspensions. We have investigated the redox chemistry amine functionalization of PB along with its Cu analogue (CuPBA). No redox response of colloidal PB was observed and suspensions of CuPBA formed films on electrode surfaces with and without applied potentials; the films were redox-active but the material that remained suspended in solution did not participate in redox chemistry. Propylamine (pa), ethylenediamine (en), or tetramethylethylenediamine (TMEDA) were added in an attempt to maintain well dispersed suspensions through nanoparticle surface functionalization. Propylamine modifications resulted in a loss of the CuPBA network and subsequent precipitation of insoluble materials. Coordination of ethylenediamine prompted the formation of Cu and Fe monomers ([Cu(en)2]m+/[Fe(CN)6]n-]) that remained soluble in aqueous electrolytes. In the absence of supporting electrolytes, these monomers formed a one-dimensional (1D) polymeric structure (Cu2Fe-1D). TMEDA modification preserved the CuPBA extended structure with only modest precipitate formation over 30 min. The redox responsiveness of these suspensions depended on conditions; in 1 M KCl, no redox chemistry was observed for the CuPBA. In pH 4 potassium hydrogen phthalate buffer, a signal was observed that was attributed to the Fe centers of CuPBA. Under these conditions, the material precipitated in ∼15 min and the signal was lost. Although the Fe centers in these networks are redox-active, additional work is needed to realize longer-term redox activity and stability. Ligand modifications can alter the properties of these networks but within a given ligand class, e.g., amines, the effects can vary greatly from the deconstruction of the framework to preventing film formation.
Collapse
Affiliation(s)
- Heshali K Welgama
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Matthew R Crawley
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - James R McKone
- Department of Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
6
|
Wang S, Hu W, Ru Y, Shi Y, Guo X, Sun Y, Pang H. Synthesis Strategies and Electrochemical Research Progress of Nano/Microscale Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Shixian Wang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Wenhui Hu
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yue Ru
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yuxin Shi
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Xiaotian Guo
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225009 P. R. China
| |
Collapse
|
7
|
Gou W, Xu Z, Lin X, Sun Y, Han X, Liu M, Zhang Y. Boosting Lithium Storage of a Metal-Organic Framework via Zinc Doping. MATERIALS 2022; 15:ma15124186. [PMID: 35744243 PMCID: PMC9227496 DOI: 10.3390/ma15124186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023]
Abstract
Lithium-ion batteries (LIBs) as a predominant power source are widely used in large-scale energy storage fields. For the next-generation energy storage LIBs, it is primary to seek the high capacity and long lifespan electrode materials. Nickel and purified terephthalic acid-based MOF (Ni-PTA) with a series amounts of zinc dopant (0, 20, 50%) are successfully synthesized in this work and evaluated as anode materials for lithium-ion batteries. Among them, the 20% atom fraction Zn-doped Ni-PTA (Zn0.2-Ni-PTA) exhibits a high specific capacity of 921.4 mA h g−1 and 739.6 mA h g−1 at different current densities of 100 and 500 mA g−1 after 100 cycles. The optimized electrochemical performance of Zn0.2-Ni-PTA can be attributed to its low charge transfer resistance and high lithium-ion diffusion rate resulting from expanded interplanar spacing after moderate Zn doping. Moreover, a full cell is fabricated based on the LiFePO4 cathode and as-prepared MOF. The Zn0.2-Ni-PTA shows a reversible specific capacity of 97.9 mA h g−1 with 86.1% capacity retention (0.5 C) after 100 cycles, demonstrating the superior electrochemical performance of Zn0.2-Ni-PTA anode as a promising candidate for practical lithium-ion batteries.
Collapse
Affiliation(s)
- Wenshan Gou
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 200671, China; (W.G.); (Z.X.); (Y.S.); (X.H.); (M.L.)
| | - Zhao Xu
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 200671, China; (W.G.); (Z.X.); (Y.S.); (X.H.); (M.L.)
| | - Xueyu Lin
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Correspondence: (X.L.); (Y.Z.)
| | - Yifei Sun
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 200671, China; (W.G.); (Z.X.); (Y.S.); (X.H.); (M.L.)
| | - Xuguang Han
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 200671, China; (W.G.); (Z.X.); (Y.S.); (X.H.); (M.L.)
| | - Mengmeng Liu
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 200671, China; (W.G.); (Z.X.); (Y.S.); (X.H.); (M.L.)
| | - Yan Zhang
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 200671, China; (W.G.); (Z.X.); (Y.S.); (X.H.); (M.L.)
- Correspondence: (X.L.); (Y.Z.)
| |
Collapse
|
8
|
Mehek R, Iqbal N, Noor T, Amjad MZB, Ali G, Vignarooban K, Khan MA. Metal-organic framework based electrode materials for lithium-ion batteries: a review. RSC Adv 2021; 11:29247-29266. [PMID: 35479575 PMCID: PMC9040901 DOI: 10.1039/d1ra05073g] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/25/2022] Open
Abstract
Metal-organic frameworks (MOFs) with efficient surface and structural properties have risen as a distinctive class of porous materials through the last few decades, which has enabled MOFs to gain attention in a wide range of applications like drug delivery, gas separation and storage, catalysis and sensors. Likewise, they have also emerged as efficient active materials in energy storage devices owing to their remarkable conducting properties. Metal-organic frameworks (MOFs) have garnered great interest in high-energy-density rechargeable batteries and super-capacitors. Herein the study presents their expanding diversity, structures and chemical compositions which can be tuned at the molecular level. It also aims to evaluate their inherently porous framework and how it facilitates electronic and ionic transportation through the charging and discharging cycles of lithium-ion batteries. In this review we have summarized the various synthesis paths to achieve a particular metal-organic framework. This study focuses mainly on the implementation of metal-organic frameworks as efficient anode and cathode materials for lithium-ion batteries (LIBs) with an evaluation of their influence on cyclic stability and discharge capacity. For this purpose, a brief assessment is made of recent developments in metal-organic frameworks as anode or cathode materials for lithium-ion batteries which would provide enlightenment in optimizing the reaction conditions for designing a MOF structure for the battery community and electrochemical energy storage applications.
Collapse
Affiliation(s)
- Rimsha Mehek
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - M Zain Bin Amjad
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - Ghulam Ali
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) H-12 Campus Islamabad 44000 Pakistan +92 51 9085 5281
| | - K Vignarooban
- Department of Physics, Faculty of Science, University of Jaffna Jaffna 40000 Sri Lanka
| | - M Abdullah Khan
- Renewable Energy Advancement Laboratory (REAL), Department of Environmental Sciences, Quaid-i-Azam University Islamabad 45320 Pakistan
| |
Collapse
|
9
|
Li S, Lin J, Ding Y, Xu P, Guo X, Xiong W, Wu DY, Dong Q, Chen J, Zhang L. Defects Engineering of Lightweight Metal-Organic Frameworks-Based Electrocatalytic Membrane for High-Loading Lithium-Sulfur Batteries. ACS NANO 2021; 15:13803-13813. [PMID: 34379405 DOI: 10.1021/acsnano.1c05585] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The sluggish kinetics and shuttle effect of lithium polysulfide intermediates are the major issues that retard the practical applications of lithium-sulfur (Li-S) batteries. Herein, we introduce a defect engineering strategy to construct a defected-UiO-66-NH2-4/graphene electrocatalytic membrane (D-UiO-66-NH2-4/G EM) which could accelerate the conversion of lithium polysulfides in high sulfur loadings and low electrolyte/sulfur (E/S) ratio Li-S batteries. Metal-organic frameworks (UiO-66-NH2) can be directionally chemical engraved to form concave octahedra with abundant defects. According to electrocatalytic kinetics and DFT calculations studies, the D-UiO-66-NH2-4 architecture effectively provides ample sites to capture polysulfides via strong chemical affinity and effectively delivers electrocatalytic activity of polysulfide conversion. As a result, a Li-S battery with such an electrocatalytic membrane delivers a high capacity of 12.3 mAh cm-2 (1013 mAh g-1) at a sulfur loading up to 12.2 mg·S cm-2 under a lean electrolyte condition (E/S = 5 μL mg-1-sulfur) at 2.1 mA cm-2 (0.1 C). Moreover, a prototype soft package battery also exhibits excellent cycling stability with a maintained capacity of 996 mAh g-1 upon 100 cycles.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Jiande Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Yu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Pan Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiangyang Guo
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Weiming Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Jiajia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Li Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Tan Kah Kee Innovation Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
10
|
Li S, Lin J, Xiong W, Guo X, Wu D, Zhang Q, Zhu QL, Zhang L. Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213872] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Reddy RCK, Lin X, Zeb A, Su CY. Metal–Organic Frameworks and Their Derivatives as Cathodes for Lithium-Ion Battery Applications: A Review. ELECTROCHEM ENERGY R 2021. [DOI: 10.1007/s41918-021-00101-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Zhong M, Kong L, Zhao K, Zhang Y, Li N, Bu X. Recent Progress of Nanoscale Metal-Organic Frameworks in Synthesis and Battery Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001980. [PMID: 33643787 PMCID: PMC7887588 DOI: 10.1002/advs.202001980] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/28/2020] [Indexed: 05/21/2023]
Abstract
As one type of promising inorganic-organic hybrid crystal material, metal-organic frameworks (MOFs) have attracted widespread attention in many potential fields, particularly in energy storage and conversion. Recently, effective strategies have been developed to construct uniform nanoscale MOFs (NMOFs), which not only retain inherent advantages of MOFs but also develop some improved superiorities, including shorter diffusion pathway for guest transportation and more accessible active sites for surface adsorption and reaction. Additonally, their nanometer size provides more opportunity for post-functionalization and hybridization. In this review, recent progress on the preparation of NMOFs is summarized, primarily through bottom-up strategies including reaction parameter- and coordination-assisted synthesis, and top-down strategies such as liquid exfoliation and salt-template confinement. Additionally, recent applications of NMOFs in batteries as electrodes, separators, and electrolytes is discussed. Finally, some important issues concerning the fabrication and application are emphasized, which should be paid attention in future.
Collapse
Affiliation(s)
- Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhou730050P. R. China
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Lingjun Kong
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Kun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhou730050P. R. China
| | - Ying‐Hui Zhang
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Na Li
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Xian‐He Bu
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| |
Collapse
|
13
|
Gerasimova TP, Khrizanforov MN, Shekurov RP, Budnikova YG, Miluykov VA, Katsyuba SA. Towards the intercalation of Li cations to the Co(II) and Mn(II) ferrocenyl-phosphinic MOFs. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2020.121641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
15
|
Li X, He C, Zheng J, Wu D, Duan Y, Li Y, Rao P, Tang B, Rui Y. Flocculent Cu Caused by the Jahn-Teller Effect Improved the Performance of Mg-MOF-74 as an Anode Material for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52864-52872. [PMID: 33174724 DOI: 10.1021/acsami.0c17408] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mg-MOF-74/Cu was synthesized by a one-step method and then using the product as a lithium-ion anode material. The flocculent Cu caused by the Jahn-Teller effect conspicuously improves the electrochemical performance of Mg-MOF-74 by enhancing the conductivity of electrode materials. The as-prepared materials exhibited superior rate performance (298.3 mAh g-1 at a current density of 2000 mA g-1) and remarkable cyclability (a specific capacity of 534.5 mAh g-1 is obtained after 300 cycles at 500 mA g-1, which remains at 89.1%). In addition, an electrochemical test of coating an anode material on a stainless steel sheet has also been carried out, and the performance is comparable to that of traditional coating on copper foil (a reversible capacity of 531.7 mAh g-1 is collected, which retains 88.7% of initial capacity). The superior performance, facile one-step synthesis, and low cost of Mg-MOF-74/Cu show promise for practical applications.
Collapse
Affiliation(s)
- Xiaochun Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Changjian He
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Daoning Wu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - YuTong Duan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yifei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Pinhua Rao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| |
Collapse
|
16
|
Cheng S, Li K, Hu J, He J, Zeller M, Xu Z. Building Conjugated Donor-Acceptor Cross-Links into Metal-Organic Frameworks for Photo- and Electroactivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19201-19209. [PMID: 32216271 DOI: 10.1021/acsami.0c01634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We convert a coordination network into a covalent solid, while maintaining the crystallinity and greatly enhancing the framework rigidity and redox-active and photochemical properties. Specifically, intensely light-absorbing push-pull functions are postsynthetically installed by reacting the electrophilic TCNE (tetracyanoethylene) guests and the electron-rich alkyne side arms on a microporous Zr-organic framework, generating black microporous crystallites with a band gap smaller than 1.0 eV. The reaction proceeds in the known [2 + 2] cycloaddition-retroelectrocyclization mechanism and extensively establishes conjugated (polyene) bridges across the linker molecules. The donor (4-methoxyphenyl) and acceptor (dicyanovinyl) couples of the polyene bridges also act as an efficient fluorescent quencher and can be selectively installed in a thin outer layer of the host crystallite to form a core-shell assembly for turn-on fluorescent sensing of small amine molecules in water solutions.
Collapse
Affiliation(s)
- Shengxian Cheng
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jieying Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
|
18
|
Shrivastav V, Sundriyal S, Goel P, Kaur H, Tuteja SK, Vikrant K, Kim KH, Tiwari UK, Deep A. Metal-organic frameworks (MOFs) and their composites as electrodes for lithium battery applications: Novel means for alternative energy storage. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.05.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Saouma CT, Tsou CC, Richard S, Ameloot R, Vermoortele F, Smolders S, Bueken B, DiPasquale AG, Kaminsky W, Valdez CN, De Vos DE, Mayer JM. Sodium-coupled electron transfer reactivity of metal-organic frameworks containing titanium clusters: the importance of cations in redox chemistry. Chem Sci 2019; 10:1322-1331. [PMID: 30809347 PMCID: PMC6354900 DOI: 10.1039/c8sc04138e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/17/2018] [Indexed: 11/21/2022] Open
Abstract
Stoichiometric reduction reactions of two metal-organic frameworks (MOFs) by the solution reagents (M = Cr, Co) are described. The two MOFs contain clusters with Ti8O8 rings: Ti8O8(OH)4(bdc)6; bdc = terephthalate (MIL-125) and Ti8O8(OH)4(bdc-NH2)6; bdc-NH2 = 2-aminoterephthalate (NH2-MIL-125). The stoichiometry of the redox reactions was probed using solution NMR methods. The extent of reduction is greatly enhanced by the presence of Na+, which is incorporated into the bulk of the material. The roughly 1 : 1 stoichiometry of electrons and cations indicates that the storage of e- in the MOF is tightly coupled to a cation within the architecture, for charge balance.
Collapse
Affiliation(s)
- Caroline T Saouma
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , USA
- Department of Chemistry , University of Utah , 315 S 1400 E , Salt Lake City , Utah 84112-0850 , USA .
| | - Chih-Chin Tsou
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , USA
- Department of Chemistry , Yale University , P.O. Box 208107 , New Haven , CT 06520-8107 , USA .
| | - Sarah Richard
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , USA
| | - Rob Ameloot
- Centre for Surface Chemistry and Catalysis , KU Leuven , University of Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Frederik Vermoortele
- Centre for Surface Chemistry and Catalysis , KU Leuven , University of Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Simon Smolders
- Centre for Surface Chemistry and Catalysis , KU Leuven , University of Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Bart Bueken
- Centre for Surface Chemistry and Catalysis , KU Leuven , University of Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Antonio G DiPasquale
- Department of Chemistry , University of California , Latimer Hall , Berkeley , CA 94720 , USA
| | - Werner Kaminsky
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , USA
| | - Carolyn N Valdez
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , USA
- Department of Chemistry , Yale University , P.O. Box 208107 , New Haven , CT 06520-8107 , USA .
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis , KU Leuven , University of Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - James M Mayer
- Department of Chemistry , University of Washington , Box 351700 , Seattle , Washington 98195-1700 , USA
- Department of Chemistry , Yale University , P.O. Box 208107 , New Haven , CT 06520-8107 , USA .
| |
Collapse
|
20
|
|
21
|
Zheng JJ, Kusaka S, Matsuda R, Kitagawa S, Sakaki S. Theoretical Insight into Gate-Opening Adsorption Mechanism and Sigmoidal Adsorption Isotherm into Porous Coordination Polymer. J Am Chem Soc 2018; 140:13958-13969. [DOI: 10.1021/jacs.8b09358] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jia-Jia Zheng
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishi-hiraki cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| | - Shinpei Kusaka
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryotaro Matsuda
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigeyoshi Sakaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Nishi-hiraki cho, Takano, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
22
|
Liang Z, Qu C, Guo W, Zou R, Xu Q. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1702891. [PMID: 29164712 DOI: 10.1002/adma.201702891] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/15/2017] [Indexed: 05/18/2023]
Abstract
Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications.
Collapse
Affiliation(s)
- Zibin Liang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Chong Qu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenhan Guo
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Qiang Xu
- Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka, 563-8577, Japan
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
23
|
Li W, Yang F, Fang X, Rui Y, Tang B. Systematic post-synthetic modification of metal-organic framework (ZIF-67) with superior cyclability for lithium-ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zhou J, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev 2018; 46:6927-6945. [PMID: 28956880 DOI: 10.1039/c7cs00283a] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) are two emerging and explosively growing families of crystalline porous materials (CPMs). These robust frameworks are characterized by their extraordinary porosity, tremendous structural diversity, and versatile functional tunability with precision at the molecular level. In this review, we present recent milestones of MOFs and COFs in the fields of batteries and supercapacitors, two important technologies in electrochemical energy storage (EES), and highlight the functions that a CPM can offer in EES devices, including the storage of electrochemical energy, stabilization of electrode materials, pathways for charge transport, manipulation on mass transport, and promotion of electrochemical reactions. Key requirements for each function are discussed, with future directions provided for further development.
Collapse
Affiliation(s)
- Junwen Zhou
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | |
Collapse
|
25
|
Lou X, Ning Y, Li C, Shen M, Hu B, Hu X, Hu B. Exploring the Capacity Limit: A Layered Hexacarboxylate-Based Metal–Organic Framework for Advanced Lithium Storage. Inorg Chem 2018; 57:3126-3132. [DOI: 10.1021/acs.inorgchem.7b02939] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaobing Lou
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Yanqun Ning
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Ming Shen
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Bei Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Xiaoshi Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy, Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Materials Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
26
|
Yang F, Li W, Zhang Y, Tang B. Realizing uniform dispersion of MnO2 with the post-synthetic modification of metal–organic frameworks (MOFs) for advanced lithium ion battery anodes. Dalton Trans 2018; 47:13657-13667. [DOI: 10.1039/c8dt02330a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
MnO2 nanoparticles were uniformly loaded on the surface of zeolitic imidazolate frameworks (ZIF-67 and ZIF-8) with ligand modification via a facile method, with an average diameter of less than 10 nm.
Collapse
Affiliation(s)
- Fan Yang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Weiyang Li
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Yanfeng Zhang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| | - Bohejin Tang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- P. R. China
| |
Collapse
|
27
|
Tang B, Huang S, Fang Y, Hu J, Malonzo C, Truhlar DG, Stein A. Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. J Chem Phys 2016; 144:194702. [DOI: 10.1063/1.4948706] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Bohejin Tang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People’s Republic of China
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
| | - Shuping Huang
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455-0431, USA
| | - Yuan Fang
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
| | - Jinbo Hu
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
| | - Camille Malonzo
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
| | - Donald G. Truhlar
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455-0431, USA
| | - Andreas Stein
- Department of Chemistry, University of Minnesota, 207 Pleasant St. S.E., Minneapolis, Minnesota 55455, USA
| |
Collapse
|