1
|
Wagner R, Ilchen M, Douguet N, Schmidt P, Wieland N, Callegari C, Delk Z, Demidovich A, De Ninno G, Di Fraia M, Hofbrucker J, Manfredda M, Music V, Plekan O, Prince KC, Rivas DE, Zangrando M, Grum-Grzhimailo AN, Bartschat K, Meyer M. Circular dichroism in multiphoton ionization of resonantly excited helium ions near channel closing. Sci Rep 2024; 14:27232. [PMID: 39516212 PMCID: PMC11549313 DOI: 10.1038/s41598-024-75459-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
The circular dichroism (CD) of photoelectrons generated by near-infrared (NIR) laser pulses using multiphoton ionization of excited He+ ions in the 3p(m= +1) state is investigated. The ions were prepared by circularly polarized extreme ultraviolet (XUV) pulses. For circularly polarized NIR pulses co- and counter-rotating relative to the polarization of the XUV pulse, a complex variation of the CD is observed as a result of intensity- and polarization-dependent Freeman resonances, with and without additional dichroic AC-Stark shifts. The experimental results are compared with numerical solutions of the time-dependent Schrödinger equation to identify and interpret the pronounced variation of the experimentally observed CD.
Collapse
Affiliation(s)
- René Wagner
- European X-Ray Free-Electron Laser Facility, 22869, Schenefeld, Germany
- Department of Physics, Universität Hamburg, 22607, Hamburg, Germany
| | - Markus Ilchen
- European X-Ray Free-Electron Laser Facility, 22869, Schenefeld, Germany
- Department of Physics, Universität Hamburg, 22607, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institut für Physik und CINSaT, Universität Kassel, 34132, Kassel, Germany
| | - Nicolas Douguet
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Philipp Schmidt
- European X-Ray Free-Electron Laser Facility, 22869, Schenefeld, Germany
| | - Niclas Wieland
- Department of Physics, Universität Hamburg, 22607, Hamburg, Germany
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Zachary Delk
- Department of Physics, Kennesaw State University, Marietta, GA, 30060, USA
| | | | - Giovanni De Ninno
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Michele Di Fraia
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Jiri Hofbrucker
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743, Jena, Germany
| | - Michele Manfredda
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Valerija Music
- European X-Ray Free-Electron Laser Facility, 22869, Schenefeld, Germany
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607, Hamburg, Germany
- Institut für Physik und CINSaT, Universität Kassel, 34132, Kassel, Germany
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Kevin C Prince
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Daniel E Rivas
- European X-Ray Free-Electron Laser Facility, 22869, Schenefeld, Germany
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
- CNR Istituto Officina dei Materiali, Laboratorio TASC, 34149, Basovizza, Trieste, Italy
| | - Alexei N Grum-Grzhimailo
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Klaus Bartschat
- Department of Physics and Astronomy, Drake University, Des Moines, IA, 50311, USA
| | - Michael Meyer
- European X-Ray Free-Electron Laser Facility, 22869, Schenefeld, Germany.
| |
Collapse
|
2
|
Kittel C, Sarracini A, Augustin S, Yang N, Al Haddad A, Ferrari E, Knopp G, Knurr J, Morillo-Candas AS, Swiderska I, Prat E, Sammut N, Schmidt T, Bostedt C, Calvi M, Schnorr K. Demonstration of full polarization control of soft X-ray pulses with Apple X undulators at SwissFEL using recoil ion momentum spectroscopy. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1134-1145. [PMID: 39120914 PMCID: PMC11371041 DOI: 10.1107/s1600577524006325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
The ability to freely control the polarization of X-rays enables measurement techniques relying on circular or linear dichroism, which have become indispensable tools for characterizing the properties of chiral molecules or magnetic structures. Therefore, the demand for polarization control in X-ray free-electron lasers is increasing to enable polarization-sensitive dynamical studies on ultrafast time scales. The soft X-ray branch Athos of SwissFEL was designed with the aim of providing freely adjustable and arbitrary polarization by building its undulator solely from modules of the novel Apple X type. In this paper, the magnetic model of the linear inclined and circular Apple X polarization schemes are studied. The polarization is characterized by measuring the angular electron emission distributions of helium for various polarizations using cold target recoil ion momentum spectroscopy. The generation of fully linear polarized light of arbitrary angle, as well as elliptical polarizations of varying degree, are demonstrated.
Collapse
Affiliation(s)
- Christoph Kittel
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
- University of MaltaMSD2080MsidaMalta
| | - Antoine Sarracini
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | - Sven Augustin
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | - Ningchen Yang
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | - Andre Al Haddad
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | | | - Gregor Knopp
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | - Jonas Knurr
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | | | - Iwona Swiderska
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | - Eduard Prat
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | | | - Thomas Schmidt
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | - Christoph Bostedt
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | - Marco Calvi
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| | - Kirsten Schnorr
- Paul Scherrer Institut Forschungsstrasse 111 5232Villigen PSISwitzerland
| |
Collapse
|
3
|
Abstract
Major advances in X-ray sources including the development of circularly polarized and orbital angular momentum pulses make it possible to probe matter chirality at unprecedented energy regimes and with Ångström and femtosecond spatiotemporal resolutions. We survey the theory of stationary and time-resolved nonlinear chiral measurements that can be carried out in the X-ray regime using tabletop X-ray sources or large scale (XFEL, synchrotron) facilities. A variety of possible signals and their information content are discussed.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Université de Lyon, UJM-Saint-Etienne, CNRS, IOGS, Laboratoire Hubert Curien UMR 5516, Saint-Etienne F-42023, France
| | - Shaul Mukamel
- Department of Chemistry and Physics & Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Walter P, Osipov T, Lin MF, Cryan J, Driver T, Kamalov A, Marinelli A, Robinson J, Seaberg MH, Wolf TJA, Aldrich J, Brown N, Champenois EG, Cheng X, Cocco D, Conder A, Curiel I, Egger A, Glownia JM, Heimann P, Holmes M, Johnson T, Lee L, Li X, Moeller S, Morton DS, Ng ML, Ninh K, O’Neal JT, Obaid R, Pai A, Schlotter W, Shepard J, Shivaram N, Stefan P, Van X, Wang AL, Wang H, Yin J, Yunus S, Fritz D, James J, Castagna JC. The time-resolved atomic, molecular and optical science instrument at the Linac Coherent Light Source. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:957-968. [PMID: 35787561 PMCID: PMC9255571 DOI: 10.1107/s1600577522004283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
The newly constructed time-resolved atomic, molecular and optical science instrument (TMO) is configured to take full advantage of both linear accelerators at SLAC National Accelerator Laboratory, the copper accelerator operating at a repetition rate of 120 Hz providing high per-pulse energy as well as the superconducting accelerator operating at a repetition rate of about 1 MHz providing high average intensity. Both accelerators power a soft X-ray free-electron laser with the new variable-gap undulator section. With this flexible light source, TMO supports many experimental techniques not previously available at LCLS and will have two X-ray beam focus spots in line. Thereby, TMO supports atomic, molecular and optical, strong-field and nonlinear science and will also host a designated new dynamic reaction microscope with a sub-micrometer X-ray focus spot. The flexible instrument design is optimized for studying ultrafast electronic and molecular phenomena and can take full advantage of the sub-femtosecond soft X-ray pulse generation program.
Collapse
Affiliation(s)
- Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Timur Osipov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James Cryan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Taran Driver
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrei Kamalov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Agostino Marinelli
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Joe Robinson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matthew H. Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Thomas J. A. Wolf
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jeff Aldrich
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Nolan Brown
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Elio G. Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xinxin Cheng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniele Cocco
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Alan Conder
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan Curiel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Adam Egger
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James M. Glownia
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Heimann
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Michael Holmes
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Tyler Johnson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Lance Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xiang Li
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Stefan Moeller
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Daniel S. Morton
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - May Ling Ng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kayla Ninh
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jordan T. O’Neal
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Razib Obaid
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Allen Pai
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - William Schlotter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jackson Shepard
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Niranjan Shivaram
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Peter Stefan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xiong Van
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Anna Li Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hengzi Wang
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jing Yin
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sameen Yunus
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - David Fritz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Justin James
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jean-Charles Castagna
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
5
|
Spin Polarization of Electrons in Two-Color XUV + Optical Photoionization of Atoms. ATOMS 2022. [DOI: 10.3390/atoms10020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The spin polarization of photoelectrons in two-color XUV + optical multiphoton ionization is theoretically considered using strong field approximation. We assume that both the XUV and the optical radiation are circularly polarized. It is shown that the spin polarization is basically determined by the XUV photoabsorption and that the sidebands are spin polarized as well. Their polarization may be larger or smaller than that of the central photoelectron line depending on the helicity of the dressing field.
Collapse
|
6
|
Liu Z, Deng B, Zhang Q, Deng H, Liu B. Design, construction, and offline calibration of ARPolar prototype for SXFEL facility. RADIATION DETECTION TECHNOLOGY AND METHODS 2022. [DOI: 10.1007/s41605-022-00329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Liu Z, Deng B, Deng H, Liu B. Numerical study of transverse position monitor and compensation for x-ray polarization diagnosis. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:113104. [PMID: 34852524 DOI: 10.1063/5.0054804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Diagnosing free electron laser (FEL) polarization is critical for polarization-modulated research such as x-ray FEL diffraction imaging and probing material magnetism. In an electron time-of-flight (eTOF) polarimeter, the flight time and angular distribution of photoelectrons were designed based on x-ray polarimetry for on-site diagnosis. However, the transverse position of x-ray FEL pulses introduces error into the measured photoelectron angular distribution. This work, thus, proposes a method of compensating transverse position jitters for the polarization by the eTOF polarimeter itself without an external x-ray beam-position monitor. A comprehensive numerical model is developed to demonstrate the feasibility of the compensation method, and the results reveal that a spatial resolution of 20 μm and a polarity improved by 0.02 are possible with fully polarized FEL pulses. The impact of FEL pulses and a method to calibrate their linearity are also discussed.
Collapse
Affiliation(s)
- Zipeng Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800 Shanghai, China
| | - Bangjie Deng
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi, China
| | - Haixiao Deng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Bo Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201210 Shanghai, China
| |
Collapse
|
8
|
Walter P, Kamalov A, Gatton A, Driver T, Bhogadi D, Castagna JC, Cheng X, Shi H, Obaid R, Cryan J, Helml W, Ilchen M, Coffee RN. Multi-resolution electron spectrometer array for future free-electron laser experiments. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1364-1376. [PMID: 34475285 DOI: 10.1107/s1600577521007700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
The design of an angular array of electron time-of-flight (eToF) spectrometers is reported, intended for non-invasive spectral, temporal, and polarization characterization of single shots of high-repetition rate, quasi-continuous, short-wavelength free-electron lasers (FELs) such as the LCLS II at SLAC. This array also enables angle-resolved, high-resolution eToF spectroscopy to address a variety of scientific questions on ultrafast and nonlinear light-matter interactions at FELs. The presented device is specifically designed for the time-resolved atomic, molecular and optical science endstation (TMO) at LCLS II. In its final version, the spectrometer comprises up to 20 eToF spectrometers aligned to collect electrons from the interaction point, which is defined by the intersection of the incoming FEL radiation and a gaseous target. The full composition involves 16 spectrometers forming a circular equiangular array in the plane normal to the X-ray propagation and four spectrometers at 54.7° angle relative to the principle linear X-ray polarization axis with orientations in the forward and backward direction of the light propagation. The spectrometers are capable of independent and minimally chromatic electrostatic lensing and retardation, in order to enable simultaneous angle-resolved photo- and Auger-Meitner electron spectroscopy with high energy resolution. They are designed to ensure an energy resolution of 0.25 eV across an energy window of up to 75 eV, which can be individually centered via the adjustable retardation to cover the full range of electron kinetic energies relevant to soft X-ray methods, 0-2 keV. The full spectrometer array will enable non-invasive and online spectral-polarimetry measurements, polarization-sensitive attoclock spectroscopy for characterizing the full time-energy structure of SASE or seeded LCLS II pulses, and support emerging trends in molecular-frame spectroscopy measurements.
Collapse
Affiliation(s)
- Peter Walter
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Andrei Kamalov
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Averell Gatton
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Taran Driver
- The Stanford PULSE Institute, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dileep Bhogadi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jean Charles Castagna
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Xianchao Cheng
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Hongliang Shi
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Razib Obaid
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James Cryan
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Wolfram Helml
- Technische Universität Dortmund, Maria-Goeppert-Mayer-Strasse 2, 44227 Dortmund, Germany
| | - Markus Ilchen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Ryan N Coffee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
9
|
Ilchen M, Schmidt P, Novikovskiy NM, Hartmann G, Rupprecht P, Coffee RN, Ehresmann A, Galler A, Hartmann N, Helml W, Huang Z, Inhester L, Lutman AA, MacArthur JP, Maxwell T, Meyer M, Music V, Nuhn HD, Osipov T, Ray D, Wolf TJA, Bari S, Walter P, Li Z, Moeller S, Knie A, Demekhin PV. Site-specific interrogation of an ionic chiral fragment during photolysis using an X-ray free-electron laser. Commun Chem 2021; 4:119. [PMID: 36697819 PMCID: PMC9814667 DOI: 10.1038/s42004-021-00555-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/20/2021] [Indexed: 01/28/2023] Open
Abstract
Short-wavelength free-electron lasers with their ultrashort pulses at high intensities have originated new approaches for tracking molecular dynamics from the vista of specific sites. X-ray pump X-ray probe schemes even allow to address individual atomic constituents with a 'trigger'-event that preludes the subsequent molecular dynamics while being able to selectively probe the evolving structure with a time-delayed second X-ray pulse. Here, we use a linearly polarized X-ray photon to trigger the photolysis of a prototypical chiral molecule, namely trifluoromethyloxirane (C3H3F3O), at the fluorine K-edge at around 700 eV. The created fluorine-containing fragments are then probed by a second, circularly polarized X-ray pulse of higher photon energy in order to investigate the chemically shifted inner-shell electrons of the ionic mother-fragment for their stereochemical sensitivity. We experimentally demonstrate and theoretically support how two-color X-ray pump X-ray probe experiments with polarization control enable XFELs as tools for chiral recognition.
Collapse
Affiliation(s)
- Markus Ilchen
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany ,Stanford PULSE Institute, Menlo Park, CA USA
| | - Philipp Schmidt
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nikolay M. Novikovskiy
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.182798.d0000 0001 2172 8170Institute of Physics, Southern Federal University, Rostov-on-Don, Russia
| | - Gregor Hartmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.424048.e0000 0001 1090 3682Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | - Patrick Rupprecht
- grid.419604.e0000 0001 2288 6103Max-Planck-Institut für Kernphysik Heidelberg, Heidelberg, Germany
| | - Ryan N. Coffee
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Arno Ehresmann
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Andreas Galler
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Nick Hartmann
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Wolfram Helml
- grid.5675.10000 0001 0416 9637Fakultät für Physik, Technische Universität Dortmund, Dortmund, Germany
| | - Zhirong Huang
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Ludger Inhester
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Alberto A. Lutman
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - James P. MacArthur
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timothy Maxwell
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Meyer
- grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Valerija Music
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany ,grid.434729.f0000 0004 0590 2900European XFEL GmbH, Schenefeld, Germany
| | - Heinz-Dieter Nuhn
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Timur Osipov
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Dipanwita Ray
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Thomas J. A. Wolf
- Stanford PULSE Institute, Menlo Park, CA USA ,grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Sadia Bari
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Peter Walter
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Zheng Li
- grid.7683.a0000 0004 0492 0453Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ,grid.11135.370000 0001 2256 9319State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Stefan Moeller
- grid.445003.60000 0001 0725 7771SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - André Knie
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| | - Philipp V. Demekhin
- grid.5155.40000 0001 1089 1036Institut für Physik und CINSaT, Universität Kassel, Kassel, Germany
| |
Collapse
|
10
|
Laksman J, Buck J, Glaser L, Planas M, Dietrich F, Liu J, Maltezopoulos T, Scholz F, Seltmann J, Hartmann G, Ilchen M, Freund W, Kujala N, Viefhaus J, Grünert J. Commissioning of a photoelectron spectrometer for soft X-ray photon diagnostics at the European XFEL. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1010-1016. [PMID: 31274422 DOI: 10.1107/s1600577519003552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Commissioning and first operation of an angle-resolved photoelectron spectrometer for non-invasive shot-to-shot diagnostics at the European XFEL soft X-ray beamline are described. The objective with the instrument is to provide the users and operators with reliable pulse-resolved information regarding photon energy and polarization that opens up a variety of applications for novel experiments but also hardware optimization.
Collapse
Affiliation(s)
| | - Jens Buck
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Leif Glaser
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Marc Planas
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Jia Liu
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Frank Scholz
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jörn Seltmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Gregor Hartmann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Ilchen
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Naresh Kujala
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jens Viefhaus
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jan Grünert
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
11
|
Chao YC, Qin W, Ding Y, Lutman AA, Maxwell T. Control of the Lasing Slice by Transverse Mismatch in an X-Ray Free-Electron Laser. PHYSICAL REVIEW LETTERS 2018; 121:064802. [PMID: 30141681 DOI: 10.1103/physrevlett.121.064802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 05/23/2023]
Abstract
We demonstrated selective slice-dependent lasing by controlling the matching to the undulator of different slices within an electron bunch. The slice-dependent mismatch was realized through quadrupole wakefield generated in a corrugated structure. A deterministic procedure based on empirical beam transport and phase space information is used to match selected slices by turns to lase in the undulator while keeping all other slices from lasing, thus staying fresh. Measurements of time-resolved electron bunch energy loss by a transverse deflecting cavity confirmed the predicted behavior.
Collapse
Affiliation(s)
- Yu-Chiu Chao
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Weilun Qin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
- Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yuantao Ding
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Alberto A Lutman
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Timothy Maxwell
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
12
|
Zhou X, He S, Liu G, Zhao L, Yu L, Zhang W. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:062101. [PMID: 29460857 DOI: 10.1088/1361-6633/aab0cc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The significant progress in angle-resolved photoemission spectroscopy (ARPES) in last three decades has elevated it from a traditional band mapping tool to a precise probe of many-body interactions and dynamics of quasiparticles in complex quantum systems. The recent developments of deep ultraviolet (DUV, including ultraviolet and vacuum ultraviolet) laser-based ARPES have further pushed this technique to a new level. In this paper, we review some latest developments in DUV laser-based photoemission systems, including the super-high energy and momentum resolution ARPES, the spin-resolved ARPES, the time-of-flight ARPES, and the time-resolved ARPES. We also highlight some scientific applications in the study of electronic structure in unconventional superconductors and topological materials using these state-of-the-art DUV laser-based ARPES. Finally we provide our perspectives on the future directions in the development of laser-based photoemission systems.
Collapse
Affiliation(s)
- Xingjiang Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Müller L, Hartmann G, Schleitzer S, Berntsen MH, Walther M, Rysov R, Roseker W, Scholz F, Seltmann J, Glaser L, Viefhaus J, Mertens K, Bagschik K, Frömter R, De Fanis A, Shevchuk I, Medjanik K, Öhrwall G, Oepen HP, Martins M, Meyer M, Grübel G. Note: Soft X-ray transmission polarizer based on ferromagnetic thin films. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:036103. [PMID: 29604789 DOI: 10.1063/1.5018396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A transmission polarizer for producing elliptically polarized soft X-ray radiation from linearly polarized light is presented. The setup is intended for use at synchrotron and free-electron laser beamlines that do not directly offer circularly polarized light for, e.g., X-ray magnetic circular dichroism (XMCD) measurements or holographic imaging. Here, we investigate the degree of ellipticity upon transmission of linearly polarized radiation through a cobalt thin film. The experiment was performed at a photon energy resonant to the Co L3-edge, i.e., 778 eV, and the polarization of the transmitted radiation was determined using a polarization analyzer that measures the directional dependence of photo electrons emitted from a gas target. Elliptically polarized radiation can be created at any absorption edge showing the XMCD effect by using the respective magnetic element.
Collapse
Affiliation(s)
- L Müller
- Deutsches Elektronen-Synchrotron DESY, FS-CXS, 22607 Hamburg, Germany
| | - G Hartmann
- Deutsches Elektronen-Synchrotron DESY, FS-PE, 22607 Hamburg, Germany
| | - S Schleitzer
- Deutsches Elektronen-Synchrotron DESY, FS-CXS, 22607 Hamburg, Germany
| | - M H Berntsen
- SCI Materials Physics, KTH Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden
| | - M Walther
- Deutsches Elektronen-Synchrotron DESY, FS-CXS, 22607 Hamburg, Germany
| | - R Rysov
- Deutsches Elektronen-Synchrotron DESY, FS-CXS, 22607 Hamburg, Germany
| | - W Roseker
- Deutsches Elektronen-Synchrotron DESY, FS-CXS, 22607 Hamburg, Germany
| | - F Scholz
- Deutsches Elektronen-Synchrotron DESY, FS-PE, 22607 Hamburg, Germany
| | - J Seltmann
- Deutsches Elektronen-Synchrotron DESY, FS-PE, 22607 Hamburg, Germany
| | - L Glaser
- Deutsches Elektronen-Synchrotron DESY, FS-PE, 22607 Hamburg, Germany
| | - J Viefhaus
- Deutsches Elektronen-Synchrotron DESY, FS-PE, 22607 Hamburg, Germany
| | - K Mertens
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - K Bagschik
- Universität Hamburg, Center for Hybrid Nanostructures, 22761 Hamburg, Germany
| | - R Frömter
- Universität Hamburg, Center for Hybrid Nanostructures, 22761 Hamburg, Germany
| | - A De Fanis
- European XFEL, 22869 Schenefeld, Germany
| | - I Shevchuk
- European XFEL, 22869 Schenefeld, Germany
| | - K Medjanik
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - G Öhrwall
- MAX IV Laboratory, Lund University, 22100 Lund, Sweden
| | - H P Oepen
- Universität Hamburg, Center for Hybrid Nanostructures, 22761 Hamburg, Germany
| | - M Martins
- Department of Physics, Universität Hamburg, 22761 Hamburg, Germany
| | - M Meyer
- European XFEL, 22869 Schenefeld, Germany
| | - G Grübel
- Deutsches Elektronen-Synchrotron DESY, FS-CXS, 22607 Hamburg, Germany
| |
Collapse
|
14
|
Malvestuto M, Ciprian R, Caretta A, Casarin B, Parmigiani F. Ultrafast magnetodynamics with free-electron lasers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:053002. [PMID: 29315080 DOI: 10.1088/1361-648x/aaa211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study of ultrafast magnetodynamics has entered a new era thanks to the groundbreaking technological advances in free-electron laser (FEL) light sources. The advent of these light sources has made possible unprecedented experimental schemes for time-resolved x-ray magneto-optic spectroscopies, which are now paving the road for exploring the ultimate limits of out-of-equilibrium magnetic phenomena. In particular, these studies will provide insights into elementary mechanisms governing spin and orbital dynamics, therefore contributing to the development of ultrafast devices for relevant magnetic technologies. This topical review focuses on recent advancement in the study of non-equilibrium magnetic phenomena from the perspective of time-resolved extreme ultra violet (EUV) and soft x-ray spectroscopies at FELs with highlights of some important experimental results.
Collapse
Affiliation(s)
- Marco Malvestuto
- Elettra-Sincrotrone Trieste S.C.p.A. Strada Statale 14-km 163.5 in AREA Science Park 34149 Basovizza, Trieste, Italy
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Rouxel JR, Kowalewski M, Mukamel S. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:044006. [PMID: 28191484 PMCID: PMC5291793 DOI: 10.1063/1.4974260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/26/2016] [Indexed: 05/09/2023]
Abstract
Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O) provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Department of Chemistry, University of California , Irvine, California 92697-2025, USA
| | - Markus Kowalewski
- Department of Chemistry, University of California , Irvine, California 92697-2025, USA
| | - Shaul Mukamel
- Department of Chemistry, University of California , Irvine, California 92697-2025, USA
| |
Collapse
|
17
|
von Korff Schmising C, Weder D, Noll T, Pfau B, Hennecke M, Strüber C, Radu I, Schneider M, Staeck S, Günther CM, Lüning J, Merhe AED, Buck J, Hartmann G, Viefhaus J, Treusch R, Eisebitt S. Generating circularly polarized radiation in the extreme ultraviolet spectral range at the free-electron laser FLASH. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:053903. [PMID: 28571434 DOI: 10.1063/1.4983056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new device for polarization control at the free electron laser facility FLASH1 at DESY has been commissioned for user operation. The polarizer is based on phase retardation upon reflection off metallic mirrors. Its performance is characterized in three independent measurements and confirms the theoretical predictions of efficient and broadband generation of circularly polarized radiation in the extreme ultraviolet spectral range from 35 eV to 90 eV. The degree of circular polarization reaches up to 90% while maintaining high total transmission values exceeding 30%. The simple design of the device allows straightforward alignment for user operation and rapid switching between left and right circularly polarized radiation.
Collapse
Affiliation(s)
| | - David Weder
- Max-Born-Institut Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany
| | - Tino Noll
- Max-Born-Institut Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany
| | - Bastian Pfau
- Max-Born-Institut Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany
| | - Martin Hennecke
- Max-Born-Institut Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany
| | | | - Ilie Radu
- Max-Born-Institut Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany
| | | | - Steffen Staeck
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Christian M Günther
- Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Jan Lüning
- Sorbonne Universités, UPMC Université Paris 06, UMR 7614, LCPMR, 75005 Paris, France
| | - Alaa El Dine Merhe
- Sorbonne Universités, UPMC Université Paris 06, UMR 7614, LCPMR, 75005 Paris, France
| | - Jens Buck
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Gregor Hartmann
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Jens Viefhaus
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Stefan Eisebitt
- Max-Born-Institut Berlin, Max-Born-Str. 2a, 12489 Berlin, Germany
| |
Collapse
|
18
|
|
19
|
Ilchen M, Douguet N, Mazza T, Rafipoor AJ, Callegari C, Finetti P, Plekan O, Prince KC, Demidovich A, Grazioli C, Avaldi L, Bolognesi P, Coreno M, Di Fraia M, Devetta M, Ovcharenko Y, Düsterer S, Ueda K, Bartschat K, Grum-Grzhimailo AN, Bozhevolnov AV, Kazansky AK, Kabachnik NM, Meyer M. Circular Dichroism in Multiphoton Ionization of Resonantly Excited He^{+} Ions. PHYSICAL REVIEW LETTERS 2017; 118:013002. [PMID: 28106422 DOI: 10.1103/physrevlett.118.013002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Intense, circularly polarized extreme-ultraviolet and near-infrared (NIR) laser pulses are combined to double ionize atomic helium via the oriented intermediate He^{+}(3p) resonance state. Applying angle-resolved electron spectroscopy, we find a large photon helicity dependence of the spectrum and the angular distribution of the electrons ejected from the resonance by NIR multiphoton absorption. The measured circular dichroism is unexpectedly found to vary strongly as a function of the NIR intensity. The experimental data are well described by theoretical modeling and possible mechanisms are discussed.
Collapse
Affiliation(s)
- M Ilchen
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
- PULSE at Stanford, 2575 Sand Hill Road, Menlo Park, 94025 California, USA
| | - N Douguet
- Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA
| | - T Mazza
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
| | - A J Rafipoor
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Italy
| | - P Finetti
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Italy
| | - K C Prince
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Area Science Park, I-34149 Trieste, Italy
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - A Demidovich
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Italy
| | - C Grazioli
- Elettra-Sincrotrone Trieste, I-34149 Basovizza, Italy
| | - L Avaldi
- CNR Istituto Struttura della Materia, Via del Fosso del Cavaliere, 100-00133 Roma, Italy
| | - P Bolognesi
- CNR Istituto Struttura della Materia, Via del Fosso del Cavaliere, 100-00133 Roma, Italy
| | - M Coreno
- CNR Istituto Struttura della Materia, Via del Fosso del Cavaliere, 100-00133 Roma, Italy
| | - M Di Fraia
- Department of Physics, University of Trieste, I-34128 Trieste, Italy
| | - M Devetta
- Istituto di fotonica e nanotecnologie CNR-IFN, 20133 Milano, Italy
| | - Y Ovcharenko
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
| | - S Düsterer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg, Germany
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - K Bartschat
- Department of Physics and Astronomy, Drake University, Des Moines, Iowa 50311, USA
| | - A N Grum-Grzhimailo
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - A V Bozhevolnov
- Sankt Petersburg State University, Universitetskaya nab. 7/9, Sankt Petersburg 199164, Russia
| | - A K Kazansky
- Departamento de Fisica de Materiales, UPV/EHU, E-20018 San Sebastian/Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, E-48011 Bilbao, Spain
- Donostia International Physics Center (DIPC), E-20018 San Sebastian/Donostia, Spain
| | - N M Kabachnik
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- Donostia International Physics Center (DIPC), E-20018 San Sebastian/Donostia, Spain
| | - M Meyer
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld Hamburg, Germany
| |
Collapse
|