1
|
Friedman R. Estimating the Gibbs Hydration Energies of Actinium and Trans-Plutonium Actinides. Chemphyschem 2023; 24:e202200516. [PMID: 36149643 PMCID: PMC10100388 DOI: 10.1002/cphc.202200516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
The use of actinides for medical, scientific and technological purposes has gained momentum in the recent years. This creates a need to understand their interactions with biomolecules, both at the interface and as they become complexed. Calculation of the Gibbs binding energies of the ions to biomolecules, i. e., the Gibbs energy change associated with a transfer of an ion from the water phase to its binding site, could help to understand the actinides' toxicities and to design agents that bind them with high affinities. To this end, there is a need to obtain accurate reference values for actinide hydration, that for most actinides are not available from experiment. In this study, a set of ionic radii is developed that enables future calculations of binding energies for Pu3+ and five actinides with renewed scientific and technological interest: Ac3+ , Am3+ , Cm3+ , Bk3+ and Cf3+ . Reference hydration energies were calculated using quantum chemistry and ion solvation theory and agree well for all ions except Ac3+ , where ion solvation theory seems to underestimate the magnitude of the Gibbs hydration energy. The set of radii and reference energies that are presented here provide means to calculate binding energies for actinides and biomolecules.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, SE-391 82, Sweden
| |
Collapse
|
2
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen S, Coates L, Cooper C, Demerdash O, Daidone I, Eblen J, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller D, Kovalevsky A, Larkin J, Lawrence T, LeGrand S, Liu SH, Mitchell J, Park G, Parks J, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith J, Smith M, Soto C, Tsaris A, Thavappiragasam M, Tillack A, Vermaas J, Vuong V, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. J Chem Inf Model 2020; 60:5832-5852. [PMID: 33326239 PMCID: PMC7754786 DOI: 10.1021/acs.jcim.0c01010] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A. Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - R. Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - M. Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - J. Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - D. Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - S. Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - K. G. Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - S.Y. Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - L. Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C.J. Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - O. Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - I. Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67010 L’Aquila, Italy
| | - J.D. Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - S. Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536, USA
| | - S. Forli
- Scripps Research, La Jolla, CA, 92037, USA
| | - J. Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J. C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - J. Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121, USA
| | - O. Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - D.W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - A. Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - J. Larkin
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - T.J. Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - S.-H. Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - J.C. Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - G. Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J.M. Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - A. Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - L. Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - D. Poole
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - L. Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439, USA
| | - D. Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - A. Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - Y. Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - J.C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - M.D. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - C. Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - J.V. Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - V.Q. Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - J. Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - S. Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M. Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201, USA
| | | |
Collapse
|
3
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Coates L, Chen SY, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Larkin J, Lawrence TJ, LeGrand S, Liu SH, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen S, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12725465. [PMID: 33200117 PMCID: PMC7668744 DOI: 10.26434/chemrxiv.12725465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/29/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - R Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - M Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - J Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - D Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - K G Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - L Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Y Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - C J Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - O Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - I Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67010 L'Aquila, Italy
| | - J D Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - S Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536
| | - S Forli
- Scripps Research, La Jolla, CA, 92037
| | - J Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - J C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - J Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121
| | - O Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Larkin
- NVIDIA Corporation, Santa Clara, CA 95051
| | - T J Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051
| | - S-H Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - J C Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - G Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - J M Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - A Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - L Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - D Poole
- NVIDIA Corporation, Santa Clara, CA 95051
| | - L Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439
| | - D Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - A Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - J C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - M D Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - C Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - J V Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - V Q Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - S Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - M Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201
| | | |
Collapse
|
4
|
Wang G, Zhou Y, Lin H, Jing Z, Liu H, Zhu F. Structure of aqueous sodium acetate solutions by X-Ray scattering and density functional theory. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2020-0402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The structure of aq. sodium acetate solution (CH3COONa, NaOAc) was studied by X-ray scattering and density function theory (DFT). For the first hydrated layer of Na+, coordination number (CN) between Na+ and O(W, I) decreases from 5.02 ± 0.85 at 0.976 mol/L to 3.62 ± 1.21 at 4.453 mol/L. The hydration of carbonyl oxygen (OC) and hydroxyl oxygen (OOC) of CH3COO− were investigated separately and the OC shows a stronger hydration bonds comparing with OOC. With concentrations increasing, the hydration shell structures of CH3COO− are not affected by the presence of large number of ions, each CH3COO− group binds about 6.23 ± 2.01 to 7.35 ± 1.73 water molecules, which indicates a relatively strong interaction between CH3COO− and water molecules. The larger uncertainty of the CN of Na+ and OC(OOC) reflects the relative looseness of Na-OC and Na-OOC ion pairs in aq. NaOAc solutions, even at the highest concentration (4.453 mol/L), suggesting the lack of contact ion pair (CIP) formation. In aq. NaOAc solutions, the so called “structure breaking” property of Na+ and CH3COO− become effective only for the second hydration sphere of bulk water. The DFT calculations of CH3COONa (H2O)n=5–7 clusters suggest that the solvent-shared ion pair (SIP) structures appear at n = 6 and become dominant at n = 7, which is well consistent with the result from X-ray scattering.
Collapse
Affiliation(s)
- Guangguo Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources , Chinese Academy of Sciences , Qinghai, 810008 , China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining, 810008 , China
- University of Chinese Academy of Sciences , Beijing, 100049 , China
| | - Yongquan Zhou
- Qinghai Institute of Salt Lakes , Chinese Academy of Sciences , Qinghai, 810008 , China
| | - He Lin
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai, 201204 , China
| | - Zhuanfang Jing
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources , Chinese Academy of Sciences , Qinghai, 810008 , China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining, 810008 , China
- University of Chinese Academy of Sciences , Beijing, 100049 , China
| | - Hongyan Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources , Chinese Academy of Sciences , Qinghai, 810008 , China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining, 810008 , China
- University of Chinese Academy of Sciences , Beijing, 100049 , China
| | - Fayan Zhu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources , Chinese Academy of Sciences , Qinghai, 810008 , China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining, 810008 , China
- University of Chinese Academy of Sciences , Beijing, 100049 , China
| |
Collapse
|
5
|
Friedman R. Specific Ion and Concentration Effects in Acetate Solutions with Na + , K + and Cs .. Chemphyschem 2019; 20:1006-1010. [PMID: 30817057 DOI: 10.1002/cphc.201900163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/27/2019] [Indexed: 11/10/2022]
Abstract
How salt ions affect solutes and the water beyond the solvation shell is not well understood. Molecular dynamics simulations of alkali-acetate solutions were analysed here in order to examine if, and how, different cations and solute concentrations affect the water structure and the interactions between water and acetates. The results revealed that water structure is perturbed to more than 1 nm away from the acetates and that this effect is more pronounced in physiological than in molar electrolyte concentrations. Analysis of simulations of a soluble protein revealed that the water orientation is perturbed to at least 1.5 nm from the protein structure. Furthermore, modifications to the orientation of water around carboxylate side chains were shown to depend on the local environment on the protein surface, and could extend to well over 1 nm, which may have an effect on protein dynamics during MD simulations in small water boxes.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, SE-391 82, Sweden
| |
Collapse
|
6
|
Jing Z, Liu C, Cheng SY, Qi R, Walker BD, Piquemal JP, Ren P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu Rev Biophys 2019; 48:371-394. [PMID: 30916997 DOI: 10.1146/annurev-biophys-070317-033349] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Realistic modeling of biomolecular systems requires an accurate treatment of electrostatics, including electronic polarization. Due to recent advances in physical models, simulation algorithms, and computing hardware, biomolecular simulations with advanced force fields at biologically relevant timescales are becoming increasingly promising. These advancements have not only led to new biophysical insights but also afforded opportunities to advance our understanding of fundamental intermolecular forces. This article describes the recent advances and applications, as well as future directions, of polarizable force fields in biomolecular simulations.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Sara Y Cheng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Brandon D Walker
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| | - Jean-Philip Piquemal
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA; .,Sorbonne Université, CNRS, Laboratoire de Chimie Theórique, 75252 Paris CEDEX 05, France.,Institut Universitaire de France, 75005 Paris, France
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA;
| |
Collapse
|
7
|
Friedman R. Simulations of Biomolecules in Electrolyte Solutions. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmar SE‐391 82 Sweden
| |
Collapse
|