1
|
Hu B, Guo Y, Zhao J, Ma X. Possible regulatory mechanisms of typical and atypical absence seizures through an equivalent projection from the subthalamic nucleus to the cortex: Evidence in a computational model. J Theor Biol 2025; 602-603:112059. [PMID: 39921022 DOI: 10.1016/j.jtbi.2025.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/24/2024] [Accepted: 01/28/2025] [Indexed: 02/10/2025]
Abstract
The subthalamic nucleus (STN) is an important structure that regulates basal ganglia output and has been involved in the pathophysiology of epilepsy disease. In this paper, we propose an equivalent inhibitory pathway directly projecting from the STN to the cortex and systematically study its regulatory effect on absence seizures. Interestingly, we find that this equivalent inhibitory projection is a key factor for assisting in the development of atypical absence seizures. Through computational simulation and model analysis, we find that the enhancement of coupling strength on this equivalent STN-cortex projection can effectively suppress typical and atypical spike and wave discharges (TSWDs and ASWDs) during absence seizures. Furthermore, altering the activation level of STN through external stimuli can also control seizures, and the presence of equivalent STN-cortex projection makes the control effect more easier to achieve. Several direct and indirect pathways related to the STN can achieve inhibition of SWDs by regulating the activation level of STN, and relevant control strategies have high biological plausibility. Therefore, the STN may be an effective target for the deep brain stimulation (DBS) to control absence seizures. Importantly, we observe that the control effect of DBS-STN on SWDs is significantly superior to other basal ganglia targets in this model. Moreover, we find that the parameter range and value with high biological plausibility for the coupling weight in this equivalent STN-cortex projection can be effectively estimated in this model. Our results imply that the inhibitory effect from the STN to the cortex plays a crucial role in regulating both typical and atypical SWDs, and the STN might be a potential and reasonable DBS target for the treatment of absence epilepsy.
Collapse
Affiliation(s)
- Bing Hu
- Department of Mathematics, School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Yaqi Guo
- Department of Mathematics, School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou 310023, China
| | - JinDong Zhao
- Department of Mathematics, School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xunfu Ma
- Department of Mathematics, School of Mathematical Sciences, Zhejiang University of Technology, Hangzhou 310023, China
| |
Collapse
|
2
|
Wu Q, Li R, Liu Y, Huang S, Chai Y. Propagation effect of the thalamic feed-forward and feed-back inhibition in multi-type coupling models. Neuroreport 2024; 35:1163-1172. [PMID: 39526658 DOI: 10.1097/wnr.0000000000002111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Seizure waves of epilepsy can propagate in a coupled thalamocortical model, which typically occurs in malfunctioning neuronal networks. However, it remains unclear whether thalamic feed-forward inhibition (FFI) and feed-back inhibition (FBI), the two most important microcircuits in this network, have propagation effects. In this study, we first investigated the importance of the pyramidal neuronal population-thalamic reticular nucleus and specific relay nucleus-thalamic reticular nucleus pathways in the Taylor model for seizure control as FFI and FBI, respectively. Subsequently, using the FBI as a crucial parameter, we constructed 2- and 3-compartment coupling models and evaluated their impact on seizure propagation in other chambers by varying the degree of coupling strength. Finally, we replicated the above study in a 10-compartment model to ensure the robustness of the findings. We confirmed that FBI is more effective by analyzing the combined effect of FFI and FBI, and the pathology state does advance as the coupling strength is increased. These findings elucidate the roles that these two pathways play in the propagation of epileptic seizures and may offer fresh perspectives on the clinical management of epilepsy.
Collapse
Affiliation(s)
- Quanjun Wu
- School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, China
| | | | | | | | | |
Collapse
|
3
|
Zhao J, Yu Y, Han F, Wang Q. Regulating epileptiform discharges by heterogeneous interneurons in thalamocortical model. CHAOS (WOODBURY, N.Y.) 2023; 33:083128. [PMID: 37561121 DOI: 10.1063/5.0163243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Inhibitory interneurons in the cortex are abundant and have diverse roles, classified as parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide (VIP) according to chemically defined categories. Currently, their involvement with seizures has been partially uncovered in physiological terms. Here, we propose a corticothalamic model containing heterogeneous interneurons to study the effects of various interneurons on absence seizure dynamics by means of optogenetic stimulation. First, the important role of feedforward inhibition caused by SRN→PV→PN projections on seizures is verified. Then, we demonstrate that light activation targeting either PV or SOM INs can control seizures. Finally, with different inhibition contributions from PV INs and SOM INs, the possible disinhibitory effect of blue light acting on VIP INs is mainly discussed. The results suggest that depending on the inhibition degree of both types, the disinhibition brought about by the VIP INs will trigger seizures, will control seizures, and will not work or cause the PNs to tend toward a high saturation state with high excitability. The circuit mechanism and the related bifurcation characteristics in various cases are emphatically revealed. In the model presented, in addition to Hopf and saddle-node bifurcations, the system may also undergo period-doubling and torus bifurcations under stimulus action, with more complex dynamics. Our work may provide a theoretical basis for understanding and further exploring the role of heterogeneous interneurons, in particular, the VIP INs, a novel target, in absence seizures.
Collapse
Affiliation(s)
- Jinyi Zhao
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Ying Yu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai 201620, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| |
Collapse
|
4
|
Sun Y, Chen Y, Zhang H, Chai Y. Dynamic effect of electromagnetic induction on epileptic waveform. BMC Neurosci 2022; 23:78. [PMID: 36536272 PMCID: PMC9764561 DOI: 10.1186/s12868-022-00768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Electromagnetic induction has recently been considered as an important factor affecting the activity of neurons. However, as an important form of intervention in epilepsy treatment, few people have linked the two, especially the related dynamic mechanisms have not been explained clearly. METHODS Considering that electromagnetic induction has some brain area dependence, we proposed a modified two-compartment cortical thalamus model and set eight different key bifurcation parameters to study the transition mechanisms of epilepsy. We compared and analyzed the application and getting rid of memristors of single-compartment and coupled models. In particular, we plotted bifurcation diagrams to analyze the dynamic mechanisms behind abundant discharge activities, which mainly involved Hopf bifurcations (HB), fold of cycle bifurcations (LPC) and torus bifurcations (TR). RESULTS The results show that the coupled model can trigger more discharge states due to the driving effect between compartments. Moreover, the most remarkable finding of this study is that the memristor shows two sides. On the one hand, it may reduce tonic discharges. On the other hand, it may cause new pathological states. CONCLUSIONS The work explains the control effect of memristors on different brain regions and lays a theoretical foundation for future targeted therapy. Finally, it is hoped that our findings will provide new insights into the role of electromagnetic induction in absence seizures.
Collapse
Affiliation(s)
- Yuqin Sun
- grid.440635.00000 0000 9527 0839School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Yuting Chen
- grid.440635.00000 0000 9527 0839School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Hudong Zhang
- grid.440635.00000 0000 9527 0839School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| | - Yuan Chai
- grid.440635.00000 0000 9527 0839School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai, 201306 China
| |
Collapse
|
5
|
Pitetzis D, Frantzidis C, Psoma E, Deretzi G, Kalogera-Fountzila A, Bamidis PD, Spilioti M. EEG Network Analysis in Epilepsy with Generalized Tonic-Clonic Seizures Alone. Brain Sci 2022; 12:1574. [PMID: 36421898 PMCID: PMC9688338 DOI: 10.3390/brainsci12111574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 08/13/2024] Open
Abstract
Many contradictory theories regarding epileptogenesis in idiopathic generalized epilepsy have been proposed. This study aims to define the network that takes part in the formation of the spike-wave discharges in patients with generalized tonic-clonic seizures alone (GTCSa) and elucidate the network characteristics. Furthermore, we intend to define the most influential brain areas and clarify the connectivity pattern among them. The data were collected from 23 patients with GTCSa utilizing low-density electroencephalogram (EEG). The source localization of generalized spike-wave discharges (GSWDs) was conducted using the Standardized low-resolution brain electromagnetic tomography (sLORETA) methodology. Cortical connectivity was calculated utilizing the imaginary part of coherence. The network characteristics were investigated through small-world propensity and the integrated value of influence (IVI). Source localization analysis estimated that most sources of GSWDs were in the superior frontal gyrus and anterior cingulate. Graph theory analysis revealed that epileptic sources created a network that tended to be regularized during generalized spike-wave activity. The IVI analysis concluded that the most influential nodes were the left insular gyrus and the left inferior parietal gyrus at 3 and 4 Hz, respectively. In conclusion, some nodes acted mainly as generators of GSWDs and others as influential ones across the whole network.
Collapse
Affiliation(s)
- Dimitrios Pitetzis
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Christos Frantzidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- School of Computer Science, University of Lincoln, Lincoln LN6 7TS, UK
| | - Elizabeth Psoma
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, 56403 Thessaloniki, Greece
| | - Anna Kalogera-Fountzila
- Department of Radiology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Panagiotis D. Bamidis
- Lab of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Martha Spilioti
- 1st Department of Neurology, AHEPA General Hospital, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| |
Collapse
|
6
|
Bódizs R, Horváth CG, Szalárdy O, Ujma PP, Simor P, Gombos F, Kovács I, Genzel L, Dresler M. Sleep-spindle frequency: Overnight dynamics, afternoon nap effects, and possible circadian modulation. J Sleep Res 2021; 31:e13514. [PMID: 34761463 DOI: 10.1111/jsr.13514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Homeostatic and circadian processes play a pivotal role in determining sleep structure, timing, and quality. In sharp contrast with the wide accessibility of the electroencephalogram (EEG) index of sleep homeostasis, an electrophysiological measure of the circadian modulation of sleep is still unavailable. Evidence suggests that sleep-spindle frequencies decelerate during biological night. In order to test the feasibility of measuring this marker in common polysomnographic protocols, the Budapest-Munich database of sleep records (N = 251 healthy subjects, 122 females, age range: 4-69 years), as well as an afternoon nap sleep record database (N = 112 healthy subjects, 30 females, age range: 18-30 years) were analysed by the individual adjustment method of sleep-spindle analysis. Slow and fast sleep-spindle frequencies were characterised by U-shaped overnight dynamics, with highest values in the first and the fourth-to-fifth sleep cycle and the lowest values in the middle of the sleeping period (cycles two to three). Age-related attenuation of sleep-spindle deceleration was evident. Estimated phases of the nadirs in sleep-spindle frequencies were advanced in children as compared to other age groups. Additionally, nap sleep spindles were faster than night sleep spindles (0.57 and 0.39 Hz difference for slow and fast types, respectively). The fine frequency resolution analysis of sleep spindles is a feasible method of measuring the assumed circadian modulation of sleep. Moreover, age-related attenuation of circadian sleep modulation might be measurable by assessing the overnight dynamics in sleep-spindle frequency. Phase of the minimal sleep-spindle frequency is a putative biomarker of chronotype.
Collapse
Affiliation(s)
- Róbert Bódizs
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Csenge G Horváth
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary
| | - Orsolya Szalárdy
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Péter P Ujma
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Péter Simor
- Institute of Behavioural Sciences, Semmelweis University, Budapest, Hungary.,Institute of Psychology, ELTE, Eötvös Loránd University, Budapest, Hungary.,UR2NF, Neuropsychology and Functional Neuroimaging Research Unit at CRCN - Center for Research in Cognition and Neurosciences and UNI - ULB Neurosciences Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ferenc Gombos
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary.,MTA-PPKE Adolescent Development Research Group, Budapest, Hungary
| | - Ilona Kovács
- Department of General Psychology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Li Q, Westover MB, Zhang R, Chu CJ. Computational Evidence for a Competitive Thalamocortical Model of Spikes and Spindle Activity in Rolandic Epilepsy. Front Comput Neurosci 2021; 15:680549. [PMID: 34220477 PMCID: PMC8249809 DOI: 10.3389/fncom.2021.680549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/12/2021] [Indexed: 11/24/2022] Open
Abstract
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy syndrome, characterized by sleep-activated epileptiform spikes and seizures and cognitive deficits in school age children. Recent evidence suggests that this disease may be caused by disruptions to the Rolandic thalamocortical circuit, resulting in both an abundance of epileptiform spikes and a paucity of sleep spindles in the Rolandic cortex during non-rapid eye movement sleep (NREM); electrographic features linked to seizures and cognitive symptoms, respectively. The neuronal mechanisms that support the competitive shared thalamocortical circuitry between pathological epileptiform spikes and physiological sleep spindles are not well-understood. In this study we introduce a computational thalamocortical model for the sleep-activated epileptiform spikes observed in RE. The cellular and neuronal circuits of this model incorporate recent experimental observations in RE, and replicate the electrophysiological features of RE. Using this model, we demonstrate that: (1) epileptiform spikes can be triggered and promoted by either a reduced NMDA current or h-type current; and (2) changes in inhibitory transmission in the thalamic reticular nucleus mediates an antagonistic dynamic between epileptiform spikes and spindles. This work provides the first computational model that both recapitulates electrophysiological features and provides a mechanistic explanation for the thalamocortical switch between the pathological and physiological electrophysiological rhythms observed during NREM sleep in this common epileptic encephalopathy.
Collapse
Affiliation(s)
- Qiang Li
- Medical Big Data Research Center, Northwest University, Xi'an, China
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - M. Brandon Westover
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rui Zhang
- Medical Big Data Research Center, Northwest University, Xi'an, China
| | - Catherine J. Chu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Gobbo D, Scheller A, Kirchhoff F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front Neurol 2021; 12:661408. [PMID: 34177766 PMCID: PMC8219957 DOI: 10.3389/fneur.2021.661408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
The electrographic hallmark of childhood absence epilepsy (CAE) and other idiopathic forms of epilepsy are 2.5-4 Hz spike and wave discharges (SWDs) originating from abnormal electrical oscillations of the cortico-thalamo-cortical network. SWDs are generally associated with sudden and brief non-convulsive epileptic events mostly generating impairment of consciousness and correlating with attention and learning as well as cognitive deficits. To date, SWDs are known to arise from locally restricted imbalances of excitation and inhibition in the deep layers of the primary somatosensory cortex. SWDs propagate to the mostly GABAergic nucleus reticularis thalami (NRT) and the somatosensory thalamic nuclei that project back to the cortex, leading to the typical generalized spike and wave oscillations. Given their shared anatomical basis, SWDs have been originally considered the pathological transition of 11-16 Hz bursts of neural oscillatory activity (the so-called sleep spindles) occurring during Non-Rapid Eye Movement (NREM) sleep, but more recent research revealed fundamental functional differences between sleep spindles and SWDs, suggesting the latter could be more closely related to the slow (<1 Hz) oscillations alternating active (Up) and silent (Down) cortical activity and concomitantly occurring during NREM. Indeed, several lines of evidence support the fact that SWDs impair sleep architecture as well as sleep/wake cycles and sleep pressure, which, in turn, affect seizure circadian frequency and distribution. Given the accumulating evidence on the role of astroglia in the field of epilepsy in the modulation of excitation and inhibition in the brain as well as on the development of aberrant synchronous network activity, we aim at pointing at putative contributions of astrocytes to the physiology of slow-wave sleep and to the pathology of SWDs. Particularly, we will address the astroglial functions known to be involved in the control of network excitability and synchronicity and so far mainly addressed in the context of convulsive seizures, namely (i) interstitial fluid homeostasis, (ii) K+ clearance and neurotransmitter uptake from the extracellular space and the synaptic cleft, (iii) gap junction mechanical and functional coupling as well as hemichannel function, (iv) gliotransmission, (v) astroglial Ca2+ signaling and downstream effectors, (vi) reactive astrogliosis and cytokine release.
Collapse
Affiliation(s)
- Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
9
|
Bosl WJ, Leviton A, Loddenkemper T. Prediction of Seizure Recurrence. A Note of Caution. Front Neurol 2021; 12:675728. [PMID: 34054713 PMCID: PMC8155381 DOI: 10.3389/fneur.2021.675728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/31/2022] Open
Abstract
Great strides have been made recently in documenting that machine-learning programs can predict seizure occurrence in people who have epilepsy. Along with this progress have come claims that appear to us to be a bit premature. We anticipate that many people will benefit from seizure prediction. We also doubt that all will benefit. Although machine learning is a useful tool for aiding discovery, we believe that the greatest progress will come from deeper understanding of seizures, epilepsy, and the EEG features that enable seizure prediction. In this essay, we lay out reasons for optimism and skepticism.
Collapse
Affiliation(s)
- William J Bosl
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States.,Health Informatics Program, University of San Francisco, San Francisco, CA, United States
| | - Alan Leviton
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Tobias Loddenkemper
- Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
11
|
Zhang Y, Liu C, Zhang L, Zhou W, Yu S, Yi R, Luo D, Fu X. Effects of Propofol on Electrical Synaptic Strength in Coupling Reticular Thalamic GABAergic Parvalbumin-Expressing Neurons. Front Neurosci 2020; 14:364. [PMID: 32410945 PMCID: PMC7198707 DOI: 10.3389/fnins.2020.00364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Electrical synapses between neurons exhibit a high degree of plasticity, which makes critical contributions to neuronal communication. The GABAergic parvalbumin-expressing (PV+) neurons in the thalamic reticular nucleus (TRN) interact with each other through electrical and chemical synapses. Plasticity of electrical synaptic transmission in TRN plays a key role in regulating thalamocortical and corticothalamic circuits and even the formation of consciousness. We here examined the effects of propofol, a commonly used general anesthetic agent, on the strength of electrical synapses between TRN PV+ neurons by fluorescence-guided patch-clamp recording and pharmacological methods. Results show that 100 μM propofol reduced the electrical synaptic strength between TRN PV+ neurons. Notably, the propofol-induced depression of electrical synaptic strength between TRN PV+ neurons was diminished by saclofen (10 μM, antagonist of GABAB receptors), but not blocked by gabazine (10 μM, antagonist of GABAA receptors). Application of baclofen (10 μM, agonist of GABAB receptors), similar to propofol, also reduced the electrical synaptic strength between TRN PV+ neurons. Moreover, the propofol-induced depression of electrical synaptic strength between TRN PV+ neurons was abolished by 9-CPA (100 μM, specific adenylyl cyclase inhibitor), and by KT5720 (1 μM, selective inhibitor of PKA). Our findings indicate that propofol acts on metabotropic GABAB receptors, resulting in a depression of electrical synaptic transmission of coupled TRN PV+ neurons, which is mediated by the adenylyl cyclase-cAMP-PKA signaling pathway. Our findings also imply that propofol may change the thalamocortical communication via inducing depression of electrical synaptic strength in the TRN.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Chengxi Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Guizhou, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Wenjing Zhou
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Guizhou, China
| | - Rulan Yi
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Dan Luo
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Guizhou, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
12
|
Fan D, Wang Q. Closed-Loop Control of Absence Seizures Inspired by Feedback Modulation of Basal Ganglia to the Corticothalamic Circuit. IEEE Trans Neural Syst Rehabil Eng 2020; 28:581-590. [PMID: 32011258 DOI: 10.1109/tnsre.2020.2969426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basal ganglia (BG) has been demonstrated to play the role of modulation for absence seizure generated in the corticothalamic (CT) circuit. But it is unknown what the principle of modulation is and how to improve the modulation if BG fails to hold back the absence seizures. Although neurostimulation has been surgically employed to improve the clinical symptom of patients with epilepsy, the mechanism underlying the neurostimulation regulation is still unclear. In addition, it is not clear what sort of the spatiotemporal patterned stimulation protocols can effectively abate absence seizures with less side effect and energy consumption. Here, we address these issues on the previously proposed BG-CT model. In particular, we develop a reduced corticothalamic (RCT) moldel by viewing BG as a 2I:3O feedback modulator. By calculating the mean firing rate (MFR) and triggering mean firing rate (TMFR), we find that absence seizures can be induced or abated using the neurostimulations through driving the MFRs of the related neurons to fall into or be kicked out of the regions bounded by the TMFRs. In particular, closed-loop m:n ON-OFF anodic-cathodic-cathodic (ACC) triphase coordinated resetting stimulation (CRS) applied on the CT circuit and designed with the TMFR of subthalamic nucleus (STN) in BG could achieve the satisfying abatement effects of absence seizures with the least current consumption.
Collapse
|
13
|
Sinha N, Wang Y, Dauwels J, Kaiser M, Thesen T, Forsyth R, Taylor PN. Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy. NEUROIMAGE-CLINICAL 2019; 21:101655. [PMID: 30685702 PMCID: PMC6356007 DOI: 10.1016/j.nicl.2019.101655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022]
Abstract
Patients with idiopathic generalised epilepsy (IGE) typically have normal conventional magnetic resonance imaging (MRI), hence diagnosis based on MRI is challenging. Anatomical abnormalities underlying brain dysfunctions in IGE are unclear and their relation to the pathomechanisms of epileptogenesis is poorly understood. In this study, we applied connectometry, an advanced quantitative neuroimaging technique for investigating localised changes in white-matter tissues in vivo. Analysing white matter structures of 32 subjects we incorporated our in vivo findings in a computational model of seizure dynamics to suggest a plausible mechanism of epileptogenesis. Patients with IGE have significant bilateral alterations in major white-matter fascicles. In the cingulum, fornix, and superior longitudinal fasciculus, tract integrity is compromised, whereas in specific parts of tracts between thalamus and the precentral gyrus, tract integrity is enhanced in patients. Combining these alterations in a logistic regression model, we computed the decision boundary that discriminated patients and controls. The computational model, informed with the findings on the tract abnormalities, specifically highlighted the importance of enhanced cortico-reticular connections along with impaired cortico-cortical connections in inducing pathological seizure-like dynamics. We emphasise taking directionality of brain connectivity into consideration towards understanding the pathological mechanisms; this is possible by combining neuroimaging and computational modelling. Our imaging evidence of structural alterations suggest the loss of cortico-cortical and enhancement of cortico-thalamic fibre integrity in IGE. We further suggest that impaired connectivity from cortical regions to the thalamic reticular nucleus offers a therapeutic target for selectively modifying the brain circuit for reversing the mechanisms leading to epileptogenesis. Significant focal alterations along major white-matter fascicles in IGE patients are characterised. Increased white matter integrity found in thalamo-cortical connections. Decreased white matter integrity found in cortico-cortical connections. Disease mechanism is investigated by combining the neuroimaging findings with a dynamical model of seizure activity. Model implicates cortical projections to the thalamic reticular nucleus in IGE.
Collapse
Affiliation(s)
- Nishant Sinha
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK.
| | - Yujiang Wang
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK
| | - Justin Dauwels
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
| | - Marcus Kaiser
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Thomas Thesen
- Department of Neurology, School of Medicine, New York University, NY, USA; Department of Physiology and Neuroscience, St. Georges University, Grenada, West Indies
| | - Rob Forsyth
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Neal Taylor
- Institute of Neuroscience, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Interdisciplinary Computing and Complex BioSystems Group, School of Computing, Newcastle University, Newcastle upon Tyne, UK; Institute of Neurology, University College London, UK.
| |
Collapse
|
14
|
Lu Z, Fu Z, Hua L, Yuan N, Chen L. Evaluation of ENSO simulations in CMIP5 models: A new perspective based on percolation phase transition in complex networks. Sci Rep 2018; 8:14912. [PMID: 30297888 PMCID: PMC6175830 DOI: 10.1038/s41598-018-33340-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/25/2018] [Indexed: 11/09/2022] Open
Abstract
In this study, the performance of CMIP5 models in simulating the El Niño-Southern Oscillation (ENSO) is evaluated by using a new metric based on percolation theory. The surface air temperatures (SATs) over the tropical Pacific Ocean are constructed as a SAT network, and the nodes within the network are linked if they are highly connected (e.g., high correlations). It has been confirmed from reanalysis datasets that the SAT network undergoes an abrupt percolation phase transition when the influences of the sea surface temperature anomalies (SSTAs) below are strong enough. However, from simulations of the CMIP5 models, most models are found incapable of capturing the observed phase transition at a proper critical point Pc. For the 15 considered models, four even miss the phase transition, indicating that the simulated SAT network is too stable to be significantly changed by the SSTA below. Only four models can be considered cautiously with some skills in simulating the observed phase transition of the SAT network. By comparing the simulated SSTA patterns with the node vulnerabilities, which is the chance of each node being isolated during a ENSO event, we find that the improperly simulated sea-air interactions are responsible for the missing of the observed percolation phase transition. Accordingly, a careful study of the sea-air couplers, as well as the atmospheric components of the CMIP5 models is suggested. Since the percolation phase transition of the SAT network is a useful phenomenon to indicate whether the ENSO impacts can be transferred remotely, it deserves more attention for future model development.
Collapse
Affiliation(s)
- Zhenghui Lu
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China.,Lab for Climate and Ocean-Atmosphere Studies, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Zuntao Fu
- Lab for Climate and Ocean-Atmosphere Studies, Dept. of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China.
| | - Lijuan Hua
- State Key Laboratory of Severe Weather (LASW), Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Naiming Yuan
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, 100029, Beijing, China.
| | - Lin Chen
- International Pacific Research Center, and School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|