1
|
Wang M, Phan S, Hayes BH, Discher DE. Genetic heterogeneity in p53-null leukemia increases transiently with spindle assembly checkpoint inhibition and is not rescued by p53. Chromosoma 2024; 133:77-92. [PMID: 37256347 PMCID: PMC10828900 DOI: 10.1007/s00412-023-00800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Chromosome gains or losses often lead to copy number variations (CNV) and loss of heterozygosity (LOH). Both quantities are low in hematologic "liquid" cancers versus solid tumors in data of The Cancer Genome Atlas (TCGA) that also shows the fraction of a genome affected by LOH is ~ one-half of that with CNV. Suspension cultures of p53-null THP-1 leukemia-derived cells conform to these trends, despite novel evidence here of genetic heterogeneity and transiently elevated CNV after perturbation. Single-cell DNAseq indeed reveals at least 8 distinct THP-1 aneuploid clones with further intra-clonal variation, suggesting ongoing genetic evolution. Importantly, acute inhibition of the mitotic spindle assembly checkpoint (SAC) produces CNV levels that are typical of high-CNV solid tumors, with subsequent cell death and down-selection to novel CNV. Pan-cancer analyses show p53 inactivation associates with aneuploidy, but leukemias exhibit a weaker trend even though p53 inactivation correlates with poor survival. Overexpression of p53 in THP-1 does not rescue established aneuploidy or LOH but slightly increases cell death under oxidative or confinement stress, and triggers p21, a key p53 target, but without affecting net growth. Our results suggest that factors other than p53 exert stronger pressures against aneuploidy in liquid cancers, and identifying such CNV suppressors could be useful across liquid and solid tumor types.
Collapse
Affiliation(s)
- Mai Wang
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven Phan
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Brandon H Hayes
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dennis E Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
2
|
Gupta P, Alheib O, Shin JW. Towards single cell encapsulation for precision biology and medicine. Adv Drug Deliv Rev 2023; 201:115010. [PMID: 37454931 PMCID: PMC10798218 DOI: 10.1016/j.addr.2023.115010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The primary impetus of therapeutic cell encapsulation in the past several decades has been to broaden the options for donor cell sources by countering against immune-mediated rejection. However, another significant advantage of encapsulation is to provide donor cells with physiologically relevant cues that become compromised in disease. The advances in biomaterial design have led to the fundamental insight that cells sense and respond to various signals encoded in materials, ranging from biochemical to mechanical cues. The biomaterial design for cell encapsulation is becoming more sophisticated in controlling specific aspects of cellular phenotypes and more precise down to the single cell level. This recent progress offers a paradigm shift by designing single cell-encapsulating materials with predefined cues to precisely control donor cells after transplantation.
Collapse
Affiliation(s)
- Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Omar Alheib
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
3
|
Santamaria S, Delgado M, Botas M, Castellano E, Corraliza-Gorjon I, Lafuente P, Muñoz-Calleja C, Toribio M, Kremer L, Garcia-Sanz JA. Therapeutic potential of an anti-CCR9 mAb evidenced in xenografts of human CCR9+ tumors. Front Immunol 2022; 13:825635. [PMID: 35967322 PMCID: PMC9363564 DOI: 10.3389/fimmu.2022.825635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Relapsed or refractory T acute lymphoblastic leukemia (T-ALL) still carries poor prognosis. Aiming to improve outcomes, the therapeutic potential of an anti-CCR9 monoclonal antibody (mAb 92R), targeting the human chemokine-receptor CCR9 is analyzed on orthotopic xenotransplants. 92R mAb treatment of mice carrying human CCR9+ T-ALL cell lines or primary T cell leukemias inhibits tumor growth and increases survival. The therapeutic effects of 92R are specific and synergize with chemotherapeutic agents increasing survival. Furthermore, 92R decreases size of non-hematopoietic tumors with a forced CCR9 expression and of solid tumors generated by the pancreatic adenocarcinoma cell line AsPC-1. In addition, a humanized version of 92R mAb (Srb1) is also able to inhibit growth of CCR9+ T-ALL tumor cells in vivo, increasing survival 2.66-fold. Finally, 92R mAb prevents liver accumulation of infiltrates and reduces tumor cell numbers in already formed infiltrates. Thus, the humanized version of 92R mAb (Srb1), displays therapeutic potential for CCR9+ tumor treatment and might represent one of the first therapeutic antibodies for precision medicine on T-ALL patients.
Collapse
Affiliation(s)
- Silvia Santamaria
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Department of Molecular Medicine, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marisa Delgado
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Department of Molecular Medicine, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marta Botas
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Department of Molecular Medicine, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Eva Castellano
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Department of Molecular Medicine, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Isabel Corraliza-Gorjon
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paloma Lafuente
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Department of Molecular Medicine, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria L. Toribio
- Centro de Biología Molecular Severo Ochoa (CBMSO-CSIC-UAM), Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Leonor Kremer
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Immunology and Oncology, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Jose A. Garcia-Sanz, ; Leonor Kremer,
| | - Jose A. Garcia-Sanz
- Centro de Investigaciones Biologicas Margarita Salas (CIB-CSIC), Department of Molecular Medicine, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Jose A. Garcia-Sanz, ; Leonor Kremer,
| |
Collapse
|
4
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
5
|
Choi G, Tang Z, Guan W. Microfluidic high-throughput single-cell mechanotyping: Devices and
applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| |
Collapse
|
6
|
Lenzini S, Debnath K, Joshi JC, Wong SW, Srivastava K, Geng X, Cho IS, Song A, Bargi R, Lee JC, Mo GCH, Mehta D, Shin JW. Cell-Matrix Interactions Regulate Functional Extracellular Vesicle Secretion from Mesenchymal Stromal Cells. ACS NANO 2021; 15:17439-17452. [PMID: 34677951 PMCID: PMC9023614 DOI: 10.1021/acsnano.1c03231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted particles with broad potential to treat tissue injuries by delivering cargo to program target cells. However, improving the yield of functional EVs on a per cell basis remains challenging due to an incomplete understanding of how microenvironmental cues regulate EV secretion at the nanoscale. We show that mesenchymal stromal cells (MSCs) seeded on engineered hydrogels that mimic the elasticity of soft tissues with a lower integrin ligand density secrete ∼10-fold more EVs per cell than MSCs seeded on a rigid plastic substrate, without compromising their therapeutic activity or cargo to resolve acute lung injury in mice. Mechanistically, intracellular CD63+ multivesicular bodies (MVBs) transport faster within MSCs on softer hydrogels, leading to an increased frequency of MVB fusion with the plasma membrane to secrete more EVs. Actin-related protein 2/3 complex but not myosin-II limits MVB transport and EV secretion from MSCs on hydrogels. The results provide a rational basis for biomaterial design to improve EV secretion while maintaining their functionality.
Collapse
|
7
|
Matrix biophysical cues direct mesenchymal stromal cell functions in immunity. Acta Biomater 2021; 133:126-138. [PMID: 34365041 DOI: 10.1016/j.actbio.2021.07.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/25/2022]
Abstract
Hydrogels have been used to design synthetic matrices that capture salient features of matrix microenvironments to study and control cellular functions. Recent advances in understanding of both extracellular matrix biology and biomaterial design have shown that biophysical cues are powerful mediators of cell biology, especially that of mesenchymal stromal cells (MSCs). MSCs have been tested in many clinical trials because of their ability to modulate immune cells in different pathological conditions. While roles of biophysical cues in MSC biology have been studied in the context of multilineage differentiation, their significance in regulating immunomodulatory functions of MSCs is just beginning to be elucidated. This review first describes design principles behind how biophysical cues in native microenvironments influence the ability of MSCs to regulate immune cell production and functions. We will then discuss how biophysical cues can be leveraged to optimize cell isolation, priming, and delivery, which can help improve the success of MSC therapy for immunomodulation. Finally, a perspective is presented on how implementing biophysical cues in MSC potency assay can be important in predicting clinical outcomes. STATEMENT OF SIGNIFICANCE: Stromal cells of mesenchymal origin are known to direct immune cell functions in vivo by secreting paracrine mediators. This property has been leveraged in developing mesenchymal stromal cell (MSC)-based therapeutics by adoptive transfer to treat immunological rejection and tissue injuries, which have been tested in over one thousand clinical trials to date, but with mixed success. Advances in biomaterial design have enabled precise control of biophysical cues based on how stromal cells interact with the extracellular matrix in microenvironments in situ. Investigators have begun to use this approach to understand how different matrix biophysical parameters, such as fiber orientation, porosity, dimensionality, and viscoelasticity impact stromal cell-mediated immunomodulation. The insights gained from this effort can potentially be used to precisely define the microenvironmental cues for isolation, priming, and delivery of MSCs, which can be tailored based on different disease indications for optimal therapeutic outcomes.
Collapse
|
8
|
Deesrisak K, Chatupheeraphat C, Roytrakul S, Anurathapan U, Tanyong D. Autophagy and apoptosis induction by sesamin in MOLT-4 and NB4 leukemia cells. Oncol Lett 2020; 21:32. [PMID: 33262824 PMCID: PMC7693381 DOI: 10.3892/ol.2020.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Sesamin, the major furofuran lignan found in the seeds of Sesamum indicum L., has been investigated for its various medicinal properties. In the present study, the anti-leukemic effects of sesamin and its underlying mechanisms were investigated in MOLT-4 and NB4 acute leukemic cells. Leukemic cells were treated with various concentrations of sesamin. Cell viability was determined using an MTT assay. Flow cytometry using Annexin V-FITC/PI staining and anti-LC3/FITC antibodies was applied to detect the level of apoptosis and autophagy, respectively. Reverse transcription-quantitative PCR was performed to examine the alterations in the mRNA expression of apoptotic and autophagic genes. In addition, bioinformatics tools were used to predict the possible interactions between sesamin and its targets. The results revealed that sesamin inhibited MOLT-4 and NB4 cell proliferation in a dose-dependent manner. In addition, sesamin induced both apoptosis and autophagy. In sesamin-treated cells, the gene expression levels of caspase 3 and unc-51 like autophagy activating kinase 1 (ULK1) were upregulated, while those of mTOR were downregulated compared with in the control. Notably, the protein-chemical interaction network indicated that caspase 3, mTOR and ULK1 were the essential factors involved in the effects of sesamin treatment, as with anticancer agents, such as rapamycin, AZD8055, Torin1 and 2. Overall, the findings of the present study suggested that sesamin inhibited MOLT-4 and NB4 cell proliferation, and induced apoptosis and autophagy through the regulation of caspase 3 and mTOR/ULK1 signaling, respectively.
Collapse
Affiliation(s)
- Kamolchanok Deesrisak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chawalit Chatupheeraphat
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Pathum Thani 12120, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| |
Collapse
|
9
|
Integrating the Tumor Microenvironment into Cancer Therapy. Cancers (Basel) 2020; 12:cancers12061677. [PMID: 32599891 PMCID: PMC7352326 DOI: 10.3390/cancers12061677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor progression is mediated by reciprocal interaction between tumor cells and their surrounding tumor microenvironment (TME), which among other factors encompasses the extracellular milieu, immune cells, fibroblasts, and the vascular system. However, the complexity of cancer goes beyond the local interaction of tumor cells with their microenvironment. We are on the path to understanding cancer from a systemic viewpoint where the host macroenvironment also plays a crucial role in determining tumor progression. Indeed, growing evidence is emerging on the impact of the gut microbiota, metabolism, biomechanics, and the neuroimmunological axis on cancer. Thus, external factors capable of influencing the entire body system, such as emotional stress, surgery, or psychosocial factors, must be taken into consideration for enhanced management and treatment of cancer patients. In this article, we review prognostic and predictive biomarkers, as well as their potential evaluation and quantitative analysis. Our overarching aim is to open up new fields of study and intervention possibilities, within the framework of an integral vision of cancer as a functional tissue with the capacity to respond to different non-cytotoxic factors, hormonal, immunological, and mechanical forces, and others inducing stroma and tumor reprogramming.
Collapse
|
10
|
Engler AJ, Discher DE. Rationally engineered advances in cancer research. APL Bioeng 2018; 2:031601. [PMID: 31069310 PMCID: PMC6481711 DOI: 10.1063/1.5056176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Abstract
The physical and engineering sciences have much to offer in understanding, diagnosing, and even treating cancer. Microfluidics, imaging, materials, and diverse measurement devices are all helping to shift paradigms of tumorigenesis and dissemination. Using materials and micro-probes of elasticity, for example, epithelia have been shown to transform into mesenchymal cells when the elasticity of adjacent tissue increases. Approaches common in engineering science enable such discoveries, and further application of such tools and principles will likely improve existing cancer models in vivo and also create better models for high throughput analyses in vitro. As profiled in this special topic issue composed of more than a dozen manuscripts, opportunities abound for the creativity and analytics of engineering and the physical sciences to make advances in and against cancer.
Collapse
Affiliation(s)
- Adam J. Engler
- Author to whom correspondence should be addressed: . Telephone: 858-246-0678. Fax: 858-534-5722
| | - Dennis E. Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|