1
|
Shen YF, Luo MB. Knotting and adsorption of end-grafted active polymers. SOFT MATTER 2025; 21:1873-1883. [PMID: 39924967 DOI: 10.1039/d4sm01355g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
The adsorption of end-grafted active polymers is significantly influenced by the presence of knots in the polymer. In this study, the adsorption of end-grafted active polymers composed of an active head and an end-grafted passive chain is investigated using Langevin dynamics simulations. The relationship between knots and adsorption is checked by varying the rotational inertia J of the active head. The effect of the active head becomes more pronounced at larger J as the rotational persistence time of the active force on the active head is increased by increasing J. As a result, the adsorption of the active polymer is hindered and the critical surface attraction strength is increased with rising J. The results are primarily attributed to an increased probability of polymer knots Pknot with increasing J. The presence of knots leads to an obvious decrease in the number of adsorbed monomers. Furthermore, we find that the knotting process is slower than the adsorption and the influence of the knotting on the adsorption is relatively weaker than the surface attraction strength. Our simulation results reveal that the increase in the rotational persistence time can increase the probability of knotting and thus weaken the adsorption of active polymer.
Collapse
Affiliation(s)
- Yi-Fan Shen
- School of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Meng-Bo Luo
- School of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Anand SK. A computer simulation study of a chiral active ring polymer. J Chem Phys 2024; 161:184901. [PMID: 39513442 DOI: 10.1063/5.0232538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
We investigate a ring polymer under the influence of chiral active Brownian forces in two dimensions using coarse-grained computer simulations. We observe a non-monotonic behavior of the radius of gyration of an active Brownian ring as a function of active force. However, the shrinkage of the ring in the intermediate strength of active forces becomes more pronounced in the presence of chiral active forces, and the shrinkage is monotonic at a given activity level as a function of the angular frequency controlling the direction of the active force. The distribution of radius of gyration, inter-monomer distance, and radial distribution suggest that the monomers come close to each other, eventually leading to the shrinkage of the ring. Moreover, the bond-correlation suggests that the chirality introduces a local folding of the monomers. Furthermore, using the diameter correlation function, we show that the ring performs tank-treading motion with a frequency following power-law relation with active force with exponent 3/2. The mean squared displacement of the monomers further assists the tank-treading dynamics by exhibiting oscillatory behavior.
Collapse
Affiliation(s)
- Shalabh K Anand
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom and Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
3
|
Jin YY, Jin Y, Shi ZX, Tian WD, Zhang TH, Chen K. Deformation-induced phase separation of active vesicles. Phys Chem Chem Phys 2024; 26:24699-24708. [PMID: 39282801 DOI: 10.1039/d4cp02535k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Many active materials, such as bacteria and cells, are deformable. Deformability significantly affects their collective behaviors and movements in complex environments. Here, we introduce a two-dimensional deformable active vesicle (DAV) model to emulate cell-like deformable active matter, wherein the deformability can be continuously adjusted. We find that changes in deformability can induce phase separation of DAVs. The system can transition between a homogeneous gas state, a coexistence of gas and liquid, and a coexistence of gas and solid. The occurrence of deformation-induced phase separation is accompanied by nonmonotonic changes in effective concentration, particle size and shape. Moreover, the degree of deformability also impacts the motility and stress within the dense phase following phase separation. Our results offer new insights into the role of deformability in the collective behavior of active matter.
Collapse
Affiliation(s)
- Yi-Yang Jin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Yan Jin
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Zi-Xuan Shi
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Tian-Hui Zhang
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| | - Kang Chen
- Center for Soft Condensed Matter Physics & Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.
| |
Collapse
|
4
|
Tang B, Gao JC, Chen K, Zhang TH, Tian WD. Escape of an active ring from an attractive surface: Behaving like a self-propelled Brownian particle. Phys Rev E 2024; 110:034609. [PMID: 39425371 DOI: 10.1103/physreve.110.034609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
Escape of active agents from metastable states is of great interest in statistical and biological physics. In this paper, we investigate the escape of a flexible active ring, composed of active Brownian particles, from a flat attractive surface using Brownian dynamics simulations. To systematically explore the effects of activity, persistence time, and the shape of attractive potentials, we calculate escape time τ_{e} and effective temperature T_{eff}. We observe two distinct escape mechanisms: Kramers-like thermal activation at small persistence times, where ln(τ_{e})∼1/(k_{B}T_{eff}), and the maximal force problem at large persistence time, where τ_{e} is determined by persistence time. The escape time explicitly depends on the shape of the potential barrier at high activity and large persistence time. Moreover, when the propulsion force is biased along the ring's contour, escape becomes more difficult and is primarily driven by thermal noise. Our findings highlight that, despite its intricate configuration, the active ring can be effectively modeled as a self-propelled Brownian particle when studying its escape from a smooth surface.
Collapse
|
5
|
Goychuk A, Kannan D, Kardar M. Delayed Excitations Induce Polymer Looping and Coherent Motion. PHYSICAL REVIEW LETTERS 2024; 133:078101. [PMID: 39213554 DOI: 10.1103/physrevlett.133.078101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
We consider inhomogeneous polymers driven by energy-consuming active processes which encode temporal patterns of athermal kicks. We find that such temporal excitation programs, propagated by tension along the polymer, can effectively couple distinct polymer loci. Consequently, distant loci exhibit correlated motions that fold the polymer into specific conformations, as set by the local actions of the active processes and their distribution along the polymer. Interestingly, active kicks that are canceled out by a time-delayed echo can induce strong compaction of the active polymer.
Collapse
|
6
|
Luo MB, Shen YF. Langevin dynamics simulations for the critical adsorption of end-grafted active polymers. SOFT MATTER 2024; 20:5113-5121. [PMID: 38894642 DOI: 10.1039/d4sm00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The critical adsorption of end-grafted active polymer chains on an attractive surface is studied using Langevin dynamics simulations. The active polymers are composed of an active Langevin particle located at the head and a sequential passive chain. Results show that the active force exerted by the active head pulls the active polymer away from the surface. Consequently, the adsorption of the active polymer is hindered, and the critical surface attraction strength, , increases proportionally to the square of the active force, Fa2. The increase in depends on the rotation behavior of the active head. Specifically, for the restricted rotating active polymer (RRAP) chain with a longer rotational persistence time as the rotation of the active head is restricted, increases significantly with Fa. On the other hand, for the freely rotating active polymer (FRAP) chain with a shorter rotational persistence time as the rotation of the active head is free, shows a weak dependence on Fa. The results show that the active force has a significantly stronger pulling effect on the RRAP chain than on the FRAP chain. Furthermore, knotted conformations are observed for the adsorbed RRAP chain at large Fa. These knots reduce the adsorption of monomers near the grafted end. In contrast, no knotted conformations are observed for the FRAP chains due to the comparatively weaker pulling effect of the active force.
Collapse
Affiliation(s)
- Meng-Bo Luo
- School of Physics, Zhejiang University, Hangzhou 310027, China.
| | - Yi-Fan Shen
- School of Physics, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
7
|
Lamura A. Excluded volume effects on tangentially driven active ring polymers. Phys Rev E 2024; 109:054611. [PMID: 38907431 DOI: 10.1103/physreve.109.054611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 06/24/2024]
Abstract
The conformational and dynamical properties of active ring polymers are studied by numerical simulations. The two-dimensionally confined polymer is modeled as a closed bead-spring chain, driven by tangential forces, put in contact with a heat bath described by the Brownian multiparticle collision dynamics. Both phantom polymers and chains comprising excluded volume interactions are considered for different bending rigidities. The size and shape are found to be dependent on persistence length, driving force, and bead mutual exclusion. The lack of excluded volume interactions is responsible for a shrinkage of active rings when increasing driving force in the flexible limit, while the presence induces a moderate swelling of chains. The internal dynamics of flexible phantom active rings shows activity-enhanced diffusive behavior at large activity values while, in the case of self-avoiding active chains, it is characterized by active ballistic motion not depending on stiffness. The long-time dynamics of active rings is marked by rotational motion whose period scales as the inverse of the applied tangential force, irrespective of persistence length and beads' self-exclusion.
Collapse
Affiliation(s)
- A Lamura
- Istituto Applicazioni Calcolo, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| |
Collapse
|
8
|
Gandikota MC, Das S, Cacciuto A. Spontaneous crumpling of active spherical shells. SOFT MATTER 2024; 20:3635-3640. [PMID: 38619604 DOI: 10.1039/d4sm00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The existence of a crumpled phase for self-avoiding elastic surfaces was postulated more than three decades ago using simple Flory-like scaling arguments. Despite much effort, its stability in a microscopic environment has been the subject of much debate. In this paper we show how a crumpled phase develops reliably and consistently upon subjecting a thin spherical shell to active fluctuations. We find a master curve describing how the relative volume of a shell changes with the strength of the active forces, that applies for every shell independent of size and elastic constants. Furthermore, we extract a general expression for the onset active force beyond which a shell begins to crumple. Finally, we calculate how the size exponent varies along the crumpling curve.
Collapse
Affiliation(s)
- M C Gandikota
- Department of Chemistry, Columbia University, 3000 Broadway, NY 10027, New York, USA.
| | - Shibananda Das
- Department of Chemistry, Columbia University, 3000 Broadway, NY 10027, New York, USA.
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - A Cacciuto
- Department of Chemistry, Columbia University, 3000 Broadway, NY 10027, New York, USA.
| |
Collapse
|
9
|
Zhu G, Gao L, Sun Y, Wei W, Yan LT. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:054601. [PMID: 38608453 DOI: 10.1088/1361-6633/ad3e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.
Collapse
Affiliation(s)
- Guolong Zhu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yihang Sun
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
10
|
Smith JW, Carnevale LN, Das A, Chen Q. Electron videography of a lipid-protein tango. SCIENCE ADVANCES 2024; 10:eadk0217. [PMID: 38630809 PMCID: PMC11023515 DOI: 10.1126/sciadv.adk0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024]
Abstract
Biological phenomena, from enzymatic catalysis to synaptic transmission, originate in the structural transformations of biomolecules and biomolecular assemblies in liquid water. However, directly imaging these nanoscopic dynamics without probes or labels has been a fundamental methodological challenge. Here, we developed an approach for "electron videography"-combining liquid phase electron microscopy with molecular modeling-with which we filmed the nanoscale structural fluctuations of individual, suspended, and unlabeled membrane protein nanodiscs in liquid. Systematic comparisons with biochemical data and simulation indicate the graphene encapsulation involved can afford sufficiently reduced effects of the illuminating electron beam for these observations to yield quantitative fingerprints of nanoscale lipid-protein interactions. Our results suggest that lipid-protein interactions delineate dynamically modified membrane domains across unexpectedly long ranges. Moreover, they contribute to the molecular mechanics of the nanodisc as a whole in a manner specific to the protein within. Overall, this work illustrates an experimental approach to film, quantify, and understand biomolecular dynamics at the nanometer scale.
Collapse
Affiliation(s)
- John W. Smith
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Lauren N. Carnevale
- Department of Biochemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Aditi Das
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
- Materials Research Laboratory, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Miranda JP, Locatelli E, Valeriani C. Self-Organized States from Solutions of Active Ring Polymers in Bulk and under Confinement. J Chem Theory Comput 2024; 20:1636-1645. [PMID: 38153343 DOI: 10.1021/acs.jctc.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In the present work, we study, by means of numerical simulations, the structural and dynamical behavior of a suspension of active ring polymers in bulk and under lateral confinement. At high activity, when changing the distance between the confining planes and the polymers' density, we identify the emergence of a self-organized dynamical state, characterized by the coexistence of slowly diffusing clusters of rotating disks and faster rings moving in between them. We further assess that self-organization is robust in a range of polymer sizes, and we identify a critical value of the activity, necessary to trigger cluster formation. This system has distinctive features resembling at the same time polymers, liquid crystals, and active systems, where the interplay between activity, topology, and confinement leads to a spontaneous segregation in an initially one-component solution.
Collapse
Affiliation(s)
- Juan Pablo Miranda
- Dep. Est. de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - Emanuele Locatelli
- Department of Physics and Astronomy, University of Padova, 35131 Padova, Italy
- INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Chantal Valeriani
- Dep. Est. de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC - Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| |
Collapse
|
12
|
Li C, Chen Q, Ding M. Escape dynamics of active ring polymers in a cylindrical nanochannel. SOFT MATTER 2024; 20:1719-1724. [PMID: 38284326 DOI: 10.1039/d3sm01524f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
We explore the escape dynamics of active ring polymers confined in a cylindrical nanochannel using Brownian dynamics. Our simulation results show that the escape time decreases with the increase of the Péclet number, which is not noticeable between the two stages of the escape process, based on whether the center of mass of the polymer is inside or outside the nanochannel. However, the monomer motion trajectory of the active polymer is very different from that of the passive polymer, similar to the snake-like motion with uniform velocity. The passive polymer, however, is in constant fugitive motion with increased velocity at the tail end of the escape. Our work is vital for understanding the escape dynamics of active ring polymers in the confined nanochannel, which provides new perspectives on their characterization and analysis.
Collapse
Affiliation(s)
- Chuqiao Li
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Qiaoyue Chen
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Mingming Ding
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Rudyak VY, Lopushenko A, Palyulin VV, Chertovich AV. Long-range ordering of velocity-aligned active polymers. J Chem Phys 2024; 160:044905. [PMID: 38275191 DOI: 10.1063/5.0181252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
In this work, we study the effect of covalent bonding on the behavior of non-equilibrium systems with the active force acting on particles along their velocity. Self-ordering of single particles does not occur in this model. However, starting from some critical polymerization degree, the ordered state is observed. It is homogeneous and exhibits no phase separation. In the ordered state, the chains prefer a near-two-dimensional configuration and all move in one direction. Importantly, the self-ordering is obtained only at intermediate active force magnitudes. At high magnitudes, the transition from the disordered to ordered state is suppressed by the swelling of the chains during the transition, as we show by the transition kinetics analysis. We demonstrate the bistable behavior of the system in a particular range of polymerization degrees, amplitudes of active force, densities, and thermostat temperatures. Overall, we show that covalent bonding greatly aids the self-ordering in this active particle model, in contrast to active Brownian particles.
Collapse
Affiliation(s)
- Vladimir Yu Rudyak
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Alexander Lopushenko
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
| | - Vladimir V Palyulin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia
| | - Alexander V Chertovich
- Semenov Federal Research Center for Chemical Physics, Kosygina, 4, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
14
|
Goychuk A, Kannan D, Chakraborty AK, Kardar M. Polymer folding through active processes recreates features of genome organization. Proc Natl Acad Sci U S A 2023; 120:e2221726120. [PMID: 37155885 PMCID: PMC10194017 DOI: 10.1073/pnas.2221726120] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
From proteins to chromosomes, polymers fold into specific conformations that control their biological function. Polymer folding has long been studied with equilibrium thermodynamics, yet intracellular organization and regulation involve energy-consuming, active processes. Signatures of activity have been measured in the context of chromatin motion, which shows spatial correlations and enhanced subdiffusion only in the presence of adenosine triphosphate. Moreover, chromatin motion varies with genomic coordinate, pointing toward a heterogeneous pattern of active processes along the sequence. How do such patterns of activity affect the conformation of a polymer such as chromatin? We address this question by combining analytical theory and simulations to study a polymer subjected to sequence-dependent correlated active forces. Our analysis shows that a local increase in activity (larger active forces) can cause the polymer backbone to bend and expand, while less active segments straighten out and condense. Our simulations further predict that modest activity differences can drive compartmentalization of the polymer consistent with the patterns observed in chromosome conformation capture experiments. Moreover, segments of the polymer that show correlated active (sub)diffusion attract each other through effective long-ranged harmonic interactions, whereas anticorrelations lead to effective repulsions. Thus, our theory offers nonequilibrium mechanisms for forming genomic compartments, which cannot be distinguished from affinity-based folding using structural data alone. As a first step toward exploring whether active mechanisms contribute to shaping genome conformations, we discuss a data-driven approach.
Collapse
Affiliation(s)
- Andriy Goychuk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
15
|
Tejedor AR, Carracedo R, Ramírez J. Molecular dynamics simulations of active entangled polymers reptating through a passive mesh. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Vuijk HD, Klempahn S, Merlitz H, Sommer JU, Sharma A. Active colloidal molecules in activity gradients. Phys Rev E 2022; 106:014617. [PMID: 35974656 DOI: 10.1103/physreve.106.014617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
We consider a rigid assembly of two active Brownian particles, forming an active colloidal dimer, in a gradient of activity. We show analytically that depending on the relative orientation of the two particles the active dimer accumulates in regions of either high or low activity, corresponding to, respectively, chemotaxis and antichemotaxis. Certain active dimers show both chemotactic and antichemotactic behavior, depending on the strength of the activity. Our coarse-grained Fokker-Planck approach yields an effective potential, which we use to construct a nonequilibrium phase diagram that classifies the dimers according to their tactic behavior. Moreover, we show that for certain dimers a higher persistence of the motion is achieved similar to the effect of a steering wheel in macroscopic devices. This work could be useful for designing autonomous active colloidal structures which adjust their motion depending on the local activity gradients.
Collapse
Affiliation(s)
- Hidde D Vuijk
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
| | - Sophie Klempahn
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
| | - Holger Merlitz
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- School of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jens-Uwe Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Germany
| | - Abhinav Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theory der Polymere, 01069 Dresden, Germany
- Technische Universität Dresden, Institut für Theoretische Physik, 01069 Dresden, Germany
| |
Collapse
|
17
|
Theeyancheri L, Chaki S, Bhattacharjee T, Chakrabarti R. Migration of active rings in porous media. Phys Rev E 2022; 106:014504. [PMID: 35974648 DOI: 10.1103/physreve.106.014504] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Inspired by how the shape deformations in active organisms help them to migrate through disordered porous environments, we simulate active ring polymers in two-dimensional random porous media. Flexible and inextensible active ring polymers navigate smoothly through the disordered media. In contrast, semiflexible rings undergo transient trapping inside the pore space; the degree of trapping is inversely correlated with the increase in activity. We discover that flexible rings swell while inextensible and semiflexible rings monotonically shrink upon increasing the activity. Together, our findings identify the optimal migration of active ring polymers through porous media.
Collapse
Affiliation(s)
- Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Subhasish Chaki
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Tapomoy Bhattacharjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
18
|
Philipps CA, Gompper G, Winkler RG. Dynamics of active polar ring polymers. Phys Rev E 2022; 105:L062501. [PMID: 35854564 DOI: 10.1103/physreve.105.l062501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The conformational and dynamical properties of isolated semiflexible active polar ring polymers are investigated analytically. A ring is modeled as a continuous Gaussian polymer exposed to tangential active forces. The analytical solution of the linear non-Hermitian equation of motion in terms of an eigenfunction expansion shows that ring conformations are independent of activity. In contrast, activity strongly affects the internal ring dynamics and yields characteristic time regimes, which are absent in passive rings. On intermediate timescales, flexible rings show an activity-enhanced diffusive regime, while semiflexible rings exhibit ballistic motion. Moreover, a second active time regime emerges on longer timescales, where rings display a snake-like motion, which is reminiscent to a tank-treading rotational dynamics in shear flow, dominated by the mode with the longest relaxation time.
Collapse
Affiliation(s)
- Christian A Philipps
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52056 Aachen, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| |
Collapse
|
19
|
Eisenstecken T, Winkler RG. Path integral description of semiflexible active Brownian polymers. J Chem Phys 2022; 156:064105. [DOI: 10.1063/5.0081020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Roland G. Winkler
- Institute for Advanced Simulation, Forschungszentrum Jülich, Germany
| |
Collapse
|
20
|
Starkov D, Parfenyev V, Belan S. Conformational statistics of non-equilibrium polymer loops in Rouse model with active loop extrusion. J Chem Phys 2021; 154:164106. [PMID: 33940823 DOI: 10.1063/5.0048942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Motivated by the recent experimental observations of the DNA loop extrusion by protein motors, in this paper, we investigate the statistical properties of the growing polymer loops within the ideal chain model. The loop conformation is characterized statistically by the mean gyration radius and the pairwise contact probabilities. It turns out that a single dimensionless parameter, which is given by the ratio of the loop relaxation time over the time elapsed since the start of extrusion, controls the crossover between near-equilibrium and highly non-equilibrium asymptotics in the statistics of the extruded loop, regardless of the specific time dependence of the extrusion velocity. In addition, we show that two-sided and one-sided loop extruding motors produce the loops with almost identical properties. Our predictions are based on two rigorous semi-analytical methods accompanied by asymptotic analysis of slow and fast extrusion limits.
Collapse
Affiliation(s)
- Dmitry Starkov
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia
| | - Vladimir Parfenyev
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia
| | - Sergey Belan
- Landau Institute for Theoretical Physics, Russian Academy of Sciences, 1-A Akademika Semenova av., 142432 Chernogolovka, Russia and National Research University Higher School of Economics, Faculty of Physics, Myasnitskaya 20, 101000 Moscow, Russia
| |
Collapse
|
21
|
Teixeira EF, Fernandes HCM, Brunnet LG. A single active ring model with velocity self-alignment. SOFT MATTER 2021; 17:5991-6000. [PMID: 34048522 DOI: 10.1039/d1sm00080b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellular tissue behavior is a multiscale problem. At the cell level, out of equilibrium, biochemical reactions drive physical cell-cell interactions in a typical active matter process. Cell modeling computer simulations are a robust tool to explore countless possibilities and test hypotheses. Here, we introduce a two-dimensional, extended active matter model for biological cells. A ring of interconnected self-propelled particles represents the cell. Neighboring particles are subject to harmonic and bending potentials. Within a characteristic time, each particle's self-velocity tends to align with its scattering velocity after an interaction. Translational modes, rotational modes, and mixtures of these appear as collective states. Using analytical results derived from active Brownian particles, we identify effective characteristic time scales for ballistic and diffusive movements. Finite-size scale investigation shows that the ring diffusion increases linearly with its size when in collective movement. A study on the ring shape reveals that all collective states are present even when bending forces are weak. In that case, when in a translational mode, the collective velocity aligns with the largest ring's direction in a spontaneous polarization emergence.
Collapse
Affiliation(s)
- Emanuel F Teixeira
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970 Porto Alegre - RS, Brazil.
| | - Heitor C M Fernandes
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970 Porto Alegre - RS, Brazil.
| | - Leonardo G Brunnet
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, CEP 91501-970 Porto Alegre - RS, Brazil.
| |
Collapse
|
22
|
Locatelli E, Bianco V, Malgaretti P. Activity-Induced Collapse and Arrest of Active Polymer Rings. PHYSICAL REVIEW LETTERS 2021; 126:097801. [PMID: 33750170 DOI: 10.1103/physrevlett.126.097801] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
We investigate, using numerical simulations, the conformations of isolated active ring polymers. We find that their behavior depends crucially on their size: Short rings (N≲100) swell, whereas longer rings (N≳200) collapse, at sufficiently high activity. By investigating the nonequilibrium process leading to the steady state, we find a universal route driving both outcomes; we highlight the central role of steric interactions, at variance with linear chains, and of topology conservation. We further show that the collapsed rings are arrested by looking at different observables, all underlining the presence of an extremely long timescales at the steady state, associated with the internal dynamics of the collapsed section. Finally, we found that in some circumstances the collapsed state spins about its axis.
Collapse
Affiliation(s)
| | - Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Complutense University of Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Paolo Malgaretti
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- IV Institute for Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Helmholtz Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Fürther Strasse 248, 90429 Nürnberg, Germany
| |
Collapse
|
23
|
Abstract
Chromatin ‘blobs’ were recently identified by live super-resolution imaging of labeled nucleosomes as pervasive but fleeting structural entities. However, the mechanisms leading to the formation of these blobs and their functional implications are unknown. We explore here whether causal relationships exist between parameters that characterize the chromatin blob dynamics and structure, by adapting a framework for spatio-temporal Granger-causality inference. Our analysis reveals that chromatin dynamics is a key determinant for both blob area and local density. Such causality, however, could be demonstrated only in 10–20% of the nucleus, suggesting that chromatin dynamics and structure at the nanometer scale are dominated by stochasticity. We show that the theory of active semiflexible polymers can be invoked to provide potential mechanisms leading to the organization of chromatin into blobs. Our results represent a first step toward elucidating the mechanisms that govern the dynamic and stochastic organization of chromatin in the cell nucleus.
Collapse
Affiliation(s)
- Roman Barth
- Department of Bionanoscience, Delft University of Technology , Delft, The Netherlands
| | - Genevieve Fourel
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University of Claude Bernard, CNRS UMR 5239, Inserm U1210 , Lyon, France.,Centre Blaise Pascal, ENS de Lyon , Lyon, France
| | - Haitham A Shaban
- Spectroscopy Department, Physics Division, National Research Centre , Cairo, Egypt.,Center for Advanced Imaging, Faculty of Arts and Sciences, Harvard University , Cambridge, MA, USA
| |
Collapse
|
24
|
Clopés J, Gompper G, Winkler RG. Hydrodynamic interactions in squirmer dumbbells: active stress-induced alignment and locomotion. SOFT MATTER 2020; 16:10676-10687. [PMID: 33089276 DOI: 10.1039/d0sm01569e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrodynamic interactions are fundamental for the dynamics of swimming self-propelled particles. Specifically, bonds between microswimmers enforce permanent spatial proximity and, thus, enhance emergent correlations by microswimmer-specific flow fields. We employ the squirmer model to study the swimming behavior of microswimmer dumbbells by mesoscale hydrodynamic simulations, where the squirmers' rotational motion is geometrically unrestricted. An important aspect of the applied particle-based simulation approach-the multiparticle collision dynamics method-is the intrinsic account for thermal fluctuations. We find a strong effect of active stress on the motility of dumbbells. In particular, pairs of strong pullers exhibit orders of magnitude smaller swimming efficiency than pairs of pushers. This is a consequence of the inherent thermal fluctuations in combination with the strong coupling of the squirmers' rotational motion, which implies non-exponentially decaying auto- and cross-correlation functions of the propulsion directions, and active stress-dependent characteristic decay times. As a consequence, specific stationary-state relative alignments of the squirmer propulsion directions emerge, where pullers are preferentially aligned in an antiparallel manner along the bond vector, whereas pushers are preferentially aligned normal to the bond vector with a relative angle of approximately 60° at weak active stress, and one of the propulsion directions is aligned with the bond at strong active stress. The distinct differences between dumbbells comprised of pusher or pullers suggest means to control microswimmer assemblies for future microbot applications.
Collapse
Affiliation(s)
- Judit Clopés
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany.
| | | | | |
Collapse
|
25
|
Kaiser M, Sánchez PA, Samanta N, Chakrabarti R, Kantorovich SS. Directing the Diffusion of a Nonmagnetic Nanosized Active Particle with External Magnetic Fields. J Phys Chem B 2020; 124:8188-8197. [DOI: 10.1021/acs.jpcb.0c05791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Martin Kaiser
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Pedro A. Sánchez
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
- Wolfgang Pauli Institute c/o University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Nairhita Samanta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
- Indian Institute of Technology Bombay, Mumbai, India
| | - Sofia S. Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
- Ural Federal University, Lenin Av. 51, Ekaterinburg 620000, Russian Federation
| |
Collapse
|
26
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
27
|
Martin-Gomez A, Eisenstecken T, Gompper G, Winkler RG. Hydrodynamics of polymers in an active bath. Phys Rev E 2020; 101:052612. [PMID: 32575238 DOI: 10.1103/physreve.101.052612] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
The conformational and dynamical properties of active polymers in solution are determined by the nature of the activity. Here, the behavior of polymers with self-propelled, active Brownian particle-type monomers differs qualitatively from that of polymers with monomers driven externally by colored-noise forces. We present simulation and theoretical results for polymers in solution in the presence of external active noise. In simulations, a semiflexible bead-spring chain is considered, in analytical calculations, a continuous linear wormlike chain. Activity is taken into account by independent monomer or site velocities, with orientations changing in a diffusive manner. In simulations, hydrodynamic interactions (HIs) are taken into account by the Rotne-Prager-Yamakawa tensor or by an implementation of the active polymer in the multiparticle-collision-dynamics approach for fluids. To arrive at an analytical solution, the preaveraged Oseen tensor is employed. The active process implies a dependence of the stationary-state properties on HIs via the polymer relaxation times. With increasing activity, HIs lead to an enhanced swelling of flexible polymers, and the conformational properties differ substantially from those of polymers with self-propelled monomers in the presence of HIs, or free-draining polymers. The polymer mean-square displacement is enhanced by HIs. Over a wide range of timescales, hydrodynamics leads to a subdiffusive regime of the site mean-square displacement for flexible active polymers, with an exponent of 5/7, larger than that of the Rouse (1/2) and Zimm (2/3) models of passive polymers.
Collapse
Affiliation(s)
- Aitor Martin-Gomez
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Thomas Eisenstecken
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Roland G Winkler
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
28
|
Tortora MMC, Salari H, Jost D. Chromosome dynamics during interphase: a biophysical perspective. Curr Opin Genet Dev 2020; 61:37-43. [DOI: 10.1016/j.gde.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/29/2022]
|
29
|
Tejedor AR, Ramírez J. Dynamics of entangled polymers subjected to reptation and drift. SOFT MATTER 2020; 16:3154-3168. [PMID: 32159579 DOI: 10.1039/d0sm00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work we formulate a model to study the dynamical response of entangled polymers subjected to a constant drift. The drift may originate from an internal activity that acts along the primitive path of the tube. Here, we expand our previous work (A. R. Tejedor and J. Ramirez, Macromolecules, 2019, 52, 8788-8792) and solve analytically the most significant observables of the theory, providing explicit results to observables not considered previously, such as the tangent-tangent correlation function and the dynamic structure factor. These analytical results are compared and verified by means of Brownian dynamics simulations of the tube model. Interestingly, while the mean squared displacement of the chain segments is always subdiffusive, the center of mass shows a superdiffusive regime when the magnitude of the drift is significant. We provide scaling arguments to explain this phenomenon. We also consider the effect of contour-length fluctuations and describe two different approaches to introduce a drift using active particles.
Collapse
Affiliation(s)
- Andrés R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | | |
Collapse
|
30
|
Affiliation(s)
- Andrés R. Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jorge Ramírez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
31
|
Affiliation(s)
- Olivier Dauchot
- Laboratoire Gulliver, UMR 7083, ESPCI, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Martín-Gómez A, Eisenstecken T, Gompper G, Winkler RG. Active Brownian filaments with hydrodynamic interactions: conformations and dynamics. SOFT MATTER 2019; 15:3957-3969. [PMID: 31012481 DOI: 10.1039/c9sm00391f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The conformational and dynamical properties of active self-propelled filaments/polymers are investigated in the presence of hydrodynamic interactions by both, Brownian dynamics simulations and analytical theory. Numerically, a discrete linear chain composed of active Brownian particles is considered, analytically, a continuous linear semiflexible polymer with active velocities changing diffusively. The force-free nature of active monomers is accounted for-no Stokeslet fluid flow induced by active forces-and higher order hydrodynamic multipole moments are neglected. Hence, fluid-mediated interactions are assumed to arise solely due to intramolecular forces. The hydrodynamic interactions (HI) are taken into account analytically by the preaveraged Oseen tensor, and numerically by the Rotne-Prager-Yamakawa tensor. The nonequilibrium character of the active process implies a dependence of the stationary-state properties on HI via the polymer relaxation times. In particular, at moderate activities, HI lead to a substantial shrinkage of flexible and semiflexible polymers to an extent far beyond shrinkage of comparable free-draining polymers; even flexible HI-polymers shrink, while active free-draining polymers swell monotonically. Large activities imply a reswelling, however, to a less extent than for non-HI polymers, caused by the shorter polymer relaxation times due to hydrodynamic interactions. The polymer mean square displacement is enhanced, and an activity-determined ballistic regime appears. Over a wide range of time scales, flexible active polymers exhibit a hydrodynamically governed subdiffusive regime, with an exponent significantly smaller than that of the Rouse and Zimm models of passive polymers. Compared to simulations, the analytical approach predicts a weaker hydrodynamic effect. Overall, hydrodynamic interactions modify the conformational and dynamical properties of active polymers substantially.
Collapse
Affiliation(s)
- Aitor Martín-Gómez
- Theoretical Soft Matter and Biophysics, Institute for Advanced Simulation and Institute of Complex Systems, Forschungszentrum Jülich, D-52425 Jülich, Germany.
| | | | | | | |
Collapse
|