1
|
Li Z, Peng J, Zhu Y, Xu C, Peng L, Gelin MF, Gu FL, Lan Z. On-the-fly simulations of transient absorption pump-probe spectra: Combining mapping dynamics with doorway-window protocol. J Chem Phys 2025; 162:204107. [PMID: 40421791 DOI: 10.1063/5.0252891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/21/2025] [Indexed: 05/28/2025] Open
Abstract
We have constructed an ab initio protocol for the simulation of transient-absorption (TA) pump-probe (PP) signals of realistic polyatomic systems. The protocol is based on interfacing the doorway-window representation of spectroscopic signals with the on-the-fly mapping Hamiltonian dynamics approach at the symmetrical quasi-classical/Meyer-Miller level. The methodology is applied to the simulation of TA PP signals of two molecular systems, azobenzene and cis-hepta-3,5,7-trieniminium cation. For both molecules, the TA PP spectra were demonstrated to give a direct fingerprint of the excited state wavepacket dynamics and internal conversion, which permits the monitoring of the isomerization pathways en route to the final photoproducts.
Collapse
Affiliation(s)
- Zhaofa Li
- School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Liang Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, People's Republic of China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
2
|
Huang H, Peng J, Lan Z, Hu D, Liu YJ. Nonadiabatic Dynamics of Intersystem Crossings with the Symmetrical Quasi-Classical Dynamics Method Based on the Meyer-Miller Mapping Hamiltonian. J Chem Theory Comput 2025; 21:4386-4396. [PMID: 40257457 DOI: 10.1021/acs.jctc.5c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
We extended the symmetric quasi-classical (SQC) method based on the Meyer-Miller mapping Hamiltonian (MM) to treat the nonadiabatic dynamics simulation including spin-orbit couplings (SOCs). We studied the photoinduced ultrafast excited state dynamic involving intersystem crossing (ISC) process of the ReBr(CO)3bpy molecule by performing the dynamics based on a preconstructed model Hamiltonian as well as with the on-the-fly ab initio calculations. For the model system, the dynamics results obtained with the SQC/MM method compare very well with those obtained with the ML-MCTDH method. The SQC/MM method also outperforms the widely used trajectory surface hopping (TSH) method for the system studied here. For the realistic system, we employed the quasi-diabatic propagation scheme to enable on-the-fly ab initio dynamics with the SQC/MM method. In this case, the dynamics results obtained with the SQC/MM method are very similar to those obtained with the TSH method, and both of them show great discrepancy with the model system results, which implies it is necessary to perform the full atom on-the-fly dynamics for some molecular systems. Due to the great performance of the SQC/MM method in this work, we strongly recommend using it in the study of ISC processes in the future, for both model and realistic systems. The implementation of the SQC/MM method in the on-the-fly dynamics including the SOCs also paves the way to employing the SQC/MM or other more advanced semiclassical dynamics methods based on the mapping Hamiltonian to study the ISC processes for complex realistic molecular systems.
Collapse
Affiliation(s)
- Haiyi Huang
- Department of Chemistry, Faculty of Arts and Sciences, Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Deping Hu
- Department of Chemistry, Faculty of Arts and Sciences, Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ya-Jun Liu
- Department of Chemistry, Faculty of Arts and Sciences, Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
3
|
Wu B, Li B, He X, Cheng X, Ren J, Liu J. Nonadiabatic Field: A Conceptually Novel Approach for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2025; 21:3775-3813. [PMID: 40192130 PMCID: PMC12020003 DOI: 10.1021/acs.jctc.5c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Reliable trajectory-based nonadiabatic quantum dynamics methods at the atomic/molecular level are critical for the practical understanding and rational design of many important processes in real large/complex systems, where the quantum dynamical behavior of electrons and that of nuclei are coupled. The paper reports latest progress of nonadiabatic field (NaF), a conceptually novel approach for nonadiabatic quantum dynamics with independent trajectories. Substantially different from the mainstreams of Ehrenfest-like dynamics and surface hopping methods, the nuclear force in NaF involves the nonadiabatic force arising from the nonadiabatic coupling between different electronic states, in addition to the adiabatic force contributed by a single adiabatic electronic state. NaF is capable of faithfully describing the interplay between electronic and nuclear motion in a broad regime, which covers where the relevant electronic states keep coupled in a wide range or all the time and where the bifurcation characteristic of nuclear motion is essential. NaF is derived from the exact generalized phase space formulation with coordinate-momentum variables, where constraint phase space (CPS) is employed for discrete electronic-state degrees of freedom (DOFs) and infinite Wigner phase space is used for continuous nuclear DOFs. We propose efficient integrators for the equations of motion of NaF in both adiabatic and diabatic representations. Since the formalism in the CPS formulation is not unique, NaF can in principle be implemented with various phase space representations of the time correlation function (TCF) for the time-dependent property. They are applied to a suite of representative gas-phase and condensed-phase benchmark models where numerically exact results are available for comparison. It is shown that NaF is relatively insensitive to the phase space representation of the electronic TCF and will be a potential tool for practical and reliable simulations of the quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.
Collapse
Affiliation(s)
- Baihua Wu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingqi Li
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xin He
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangsong Cheng
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiajun Ren
- Key
Laboratory of Theoretical and Computational Photochemistry, Ministry
of Education, College of Chemistry, Beijing
Normal University, Beijing 100875, China
| | - Jian Liu
- Beijing
National Laboratory for Molecular Sciences, Institute of Theoretical
and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Richardson JO, Lawrence JE, Mannouch JR. Nonadiabatic Dynamics with the Mapping Approach to Surface Hopping (MASH). Annu Rev Phys Chem 2025; 76:663-687. [PMID: 39971353 DOI: 10.1146/annurev-physchem-082423-120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The mapping approach to surface hopping (MASH) combines the rigor of quasiclassical mapping approaches with the pragmatism of surface hopping to obtain a practical trajectory-based method for simulating nonadiabatic dynamics in molecular systems. In this review, we outline the derivation of MASH, prove a number of important properties that ensure its reliability, and illustrate its accuracy for computing nonadiabatic rate constants as well as ultrafast photochemical dynamics.
Collapse
Affiliation(s)
- Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland;
| | - Joseph E Lawrence
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
- Department of Chemistry, New York University, New York, NY, USA;
| | - Jonathan R Mannouch
- Hamburg Center for Ultrafast Imaging, Universität Hamburg and the Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany;
| |
Collapse
|
5
|
Hu D, Chng BXK, Ying W, Huo P. Trajectory-based non-adiabatic simulations of the polariton relaxation dynamics. J Chem Phys 2025; 162:124113. [PMID: 40145468 DOI: 10.1063/5.0246099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
We benchmark the accuracy of various trajectory-based non-adiabatic methods in simulating the polariton relaxation dynamics under the collective coupling regime. The Holstein-Tavis-Cummings Hamiltonian is used to describe the hybrid light-matter system of N molecules coupled to a single cavity mode. We apply various recently developed trajectory-based methods to simulate the population relaxation dynamics by initially exciting the upper polariton state and benchmark the results against populations computed from exact quantum dynamical propagation using the hierarchical equations of motion approach. In these benchmarks, we have systematically varied the number of molecules N, light-matter detunings, and the light-matter coupling strengths. Our results demonstrate that the symmetrical quasi-classical method with γ correction and spin-mapping linearized semi-classical approaches yield more accurate polariton population dynamics than traditional mixed quantum-classical methods, such as the Ehrenfest and surface hopping techniques.
Collapse
Affiliation(s)
- Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Benjamin X K Chng
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Wenxiang Ying
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
6
|
Li Z, Peng J, Zhu Y, Xu C, Gelin MF, Gu FL, Lan Z. Transient-Absorption Pump-Probe Spectra as Information-Rich Observables: Case Study of Fulvene. Molecules 2025; 30:1439. [PMID: 40286056 PMCID: PMC11990432 DOI: 10.3390/molecules30071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Conical intersections (CIs) are the most efficient channels of photodeactivation and energy transfer, while femtosecond spectroscopy is the main experimental tool delivering information on molecular CI-driven photoinduced processes. In this work, we undertake a comprehensive ab initio investigation of the CI-mediated internal conversion in fulvene by simulating evolutions of electronic populations, bond lengths and angles, and time-resolved transient absorption (TA) pump-probe (PP) spectra. TA PP spectra are evaluated on the fly by combining the symmetrical quasiclassical/Meyer-Miller-Stock-Thoss (SQC/MMST) dynamics and the doorway-window representation of spectroscopic signals. We show that the simulated time-resolved TA PP spectra reveal not only the population dynamics but also the key nuclear motions as well as mode-mode couplings. We also demonstrate that TA PP signals are not only experimental observables: They can also be considered as information-rich purely theoretical observables, which deliver more information on the CI-driven dynamics than conventional electronic populations. This information can be extracted by the appropriate theoretical analyses of time-resolved TA PP signals.
Collapse
Affiliation(s)
- Zhaofa Li
- School of Chemistry, South China Normal University, Guangzhou 510006, China;
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Jiawei Peng
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Yifei Zhu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, China; (J.P.); (Y.Z.); (C.X.)
| |
Collapse
|
7
|
Weight BM, Mandal A, Hu D, Huo P. Ab initio spin-mapping non-adiabatic dynamics simulations of photochemistry. J Chem Phys 2025; 162:084105. [PMID: 39998166 DOI: 10.1063/5.0248950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-mapping formalism. Two quantum dynamics approaches based on this mapping formalism, (i) the fully linearized Spin-LSC and (ii) the partially linearized Spin-PLDM, are explored using the quasi-diabatic propagation scheme. We have performed dynamics simulations in four ab initio molecular models for which benchmark ab initio multiple spawning (AIMS) data have been published. We find that the spin-LSC and the previously reported symmetric quasi-classical (SQC) approaches provide nearly equivalent population dynamics. While we expected the more involved spin-PLDM method to provide superior accuracy compared to the other mapping-based approaches, SQC and spin-LSC, we found that it performed with equivalent accuracy compared to the AIMS benchmark results. We further explore the underpinnings of the spin-PLDM correlation function by decomposing its N2 density matrix-focused initial conditions, where N is the number of states in the quantum subsystem. Finally, we found an approximate form of the spin-PLDM correlation function, which simplifies the simulation and reduces the computational costs from N2 to N.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, USA
| | - Deping Hu
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
8
|
Bian X, Wu Y, Qiu T, Tao Z, Subotnik JE. A semiclassical non-adiabatic phase-space approach to molecular translations and rotations: Surface hopping with electronic inertial effects. J Chem Phys 2024; 161:234114. [PMID: 39704569 DOI: 10.1063/5.0242673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
We demonstrate that working with a correct phase-space electronic Hamiltonian captures electronic inertial effects. In particular, we show that phase space surface hopping dynamics do not suffer (at least to very high order) from non-physical non-adiabatic transitions between electronic eigenstates during the course of pure nuclear translational and rotational motion. This work opens up many new avenues for quantitatively investigating complex phenomena, including angular momentum transfer between chiral phonons and electrons as well as chiral-induced spin selectivity effects.
Collapse
Affiliation(s)
- Xuezhi Bian
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Yanze Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Tian Qiu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Zhen Tao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Joseph E Subotnik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
10
|
Ibele LM, Sangiogo Gil E, Villaseco Arribas E, Agostini F. Simulations of photoinduced processes with the exact factorization: state of the art and perspectives. Phys Chem Chem Phys 2024; 26:26693-26718. [PMID: 39417703 DOI: 10.1039/d4cp02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This perspective offers an overview of the applications of the exact factorization of the electron-nuclear wavefunction to the domain of theoretical photochemistry, where the aim is to gain insights into the ultrafast dynamics of molecular systems via simulations of their excited-state dynamics beyond the Born-Oppenheimer approximation. The exact factorization offers an alternative viewpoint to the Born-Huang representation for the interpretation of dynamical processes involving the electronic ground and excited states as well as their coupling through the nuclear motion. Therefore, the formalism has been used to derive algorithms for quantum molecular-dynamics simulations where the nuclear motion is treated using trajectories and the electrons are treated quantum mechanically. These algorithms have the characteristic features of being based on coupled and on auxiliary trajectories, and have shown excellent performance in describing a variety of excited-state processes, as this perspective illustrates. We conclude with a discussion on the authors' point of view on the future of the exact factorization.
Collapse
Affiliation(s)
- Lea Maria Ibele
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| | - Eduarda Sangiogo Gil
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Institute of Theoretical Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Evaristo Villaseco Arribas
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
- Department of Physics, Rutgers University, Newark 07102, New Jersey, USA
| | - Federica Agostini
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000, Orsay, 91405, France.
| |
Collapse
|
11
|
Liu Z, Lyu N, Hu Z, Zeng H, Batista VS, Sun X. Benchmarking various nonadiabatic semiclassical mapping dynamics methods with tensor-train thermo-field dynamics. J Chem Phys 2024; 161:024102. [PMID: 38980091 DOI: 10.1063/5.0208708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Accurate quantum dynamics simulations of nonadiabatic processes are important for studies of electron transfer, energy transfer, and photochemical reactions in complex systems. In this comparative study, we benchmark various approximate nonadiabatic dynamics methods with mapping variables against numerically exact calculations based on the tensor-train (TT) representation of high-dimensional arrays, including TT-KSL for zero-temperature dynamics and TT-thermofield dynamics for finite-temperature dynamics. The approximate nonadiabatic dynamics methods investigated include mixed quantum-classical Ehrenfest mean-field and fewest-switches surface hopping, linearized semiclassical mapping dynamics, symmetrized quasiclassical dynamics, the spin-mapping method, and extended classical mapping models. Different model systems were evaluated, including the spin-boson model for nonadiabatic dynamics in the condensed phase, the linear vibronic coupling model for electronic transition through conical intersections, the photoisomerization model of retinal, and Tully's one-dimensional scattering models. Our calculations show that the optimal choice of approximate dynamical method is system-specific, and the accuracy is sensitively dependent on the zero-point-energy parameter and the initial sampling strategy for the mapping variables.
Collapse
Affiliation(s)
- Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Ningyi Lyu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Hao Zeng
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Victor S Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai 200124, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, USA
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|
12
|
He X, Cheng X, Wu B, Liu J. Nonadiabatic Field with Triangle Window Functions on Quantum Phase Space. J Phys Chem Lett 2024; 15:5452-5466. [PMID: 38747729 PMCID: PMC11129318 DOI: 10.1021/acs.jpclett.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024]
Abstract
Recent progress on the constraint coordinate-momentum phase space (CPS) formulation of finite-state quantum systems has revealed that the triangle window function approach is an isomorphic representation of the exact population-population correlation function of the two-state system. We use the triangle window (TW) function and the CPS mapping kernel element to formulate a novel useful representation of discrete electronic degrees of freedom (DOFs). When it is employed with nonadiabatic field (NaF) dynamics, a new variant of the NaF approach (i.e., NaF-TW) is proposed. The NaF-TW expression of the population of any adiabatic state is always positive semidefinite. Extensive benchmark tests of model systems in both the condensed phase and gas phase demonstrate that the NaF-TW approach is able to faithfully capture the dynamical interplay between electronic and nuclear DOFs in a broad region, including where the states remain coupled all the time, as well as where the bifurcation characteristic of nuclear motion is important.
Collapse
Affiliation(s)
- Xin He
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiangsong Cheng
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory
for Molecular Sciences, Institute of Theoretical and Computational
Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Amati G, Mannouch JR, Richardson JO. Detailed balance in mixed quantum-classical mapping approaches. J Chem Phys 2023; 159:214114. [PMID: 38054513 DOI: 10.1063/5.0176291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
The violation of detailed balance poses a serious problem for the majority of current quasiclassical methods for simulating nonadiabatic dynamics. In order to analyze the severity of the problem, we predict the long-time limits of the electronic populations according to various quasiclassical mapping approaches by applying arguments from classical ergodic theory. Our analysis confirms that regions of the mapping space that correspond to negative populations, which most mapping approaches introduce in order to go beyond the Ehrenfest approximation, pose the most serious issue for reproducing the correct thermalization behavior. This is because inverted potentials, which arise from negative electronic populations entering the nuclear force, can result in trajectories unphysically accelerating off to infinity. The recently developed mapping approach to surface hopping (MASH) provides a simple way of avoiding inverted potentials while retaining an accurate description of the dynamics. We prove that MASH, unlike any other quasiclassical approach, is guaranteed to describe the exact thermalization behavior of all quantum-classical systems, confirming it as one of the most promising methods for simulating nonadiabatic dynamics in real condensed-phase systems.
Collapse
Affiliation(s)
- Graziano Amati
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jonathan R Mannouch
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Liu Z, Hu H, Sun X. Multistate Reaction Coordinate Model for Charge and Energy Transfer Dynamics in the Condensed Phase. J Chem Theory Comput 2023; 19:7151-7170. [PMID: 37815937 PMCID: PMC10601487 DOI: 10.1021/acs.jctc.3c00770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Indexed: 10/12/2023]
Abstract
Constructing multistate model Hamiltonians from all-atom electronic structure calculations and molecular dynamics simulations is crucial for understanding charge and energy transfer dynamics in complex condensed phases. The most popular two-level system model is the spin-boson Hamiltonian, where the nuclear degrees of freedom are represented as shifted normal modes. Recently, we proposed the general multistate nontrivial extension of the spin-boson model, i.e., the multistate harmonic (MSH) model, which is constructed by extending the spatial dimensions of each nuclear mode so as to satisfy the all-atom reorganization energy restrictions for all pairs of electronic states. In this work, we propose the multistate reaction coordinate (MRC) model with a primary reaction coordinate and secondary bath modes as in the Caldeira-Leggett form but in extended spatial dimensions. The MRC model is proven to be equivalent to the MSH model and offers an intuitive physical picture of the nuclear-electronic feedback in nonadiabatic processes such as the inherent trajectory of the reaction coordinate. The reaction coordinate is represented in extended dimensions, carrying the entire reorganization energies and bilinearly coupled to the secondary bath modes. We demonstrate the MRC model construction for photoinduced charge transfer in an organic photovoltaic caroteniod-porphyrin-C60 molecular triad dissolved in tetrahydrofuran as well as excitation energy transfer in a photosynthetic light-harvesting Fenna-Matthews-Olson complex. The MRC model provides an effective and robust platform for investigating quantum dissipative dynamics in complex condensed-phase systems since it allows a consistent description of realistic spectral density, state-dependent system-bath couplings, and heterogeneous environments due to static disorder in reorganization energies.
Collapse
Affiliation(s)
- Zengkui Liu
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York, 10003, United States
| | - Haorui Hu
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
| | - Xiang Sun
- Division
of Arts and Sciences, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
- Department
of Chemistry, New York University, New York, New York, 10003, United States
- Shanghai
Frontiers Science Center of Artificial Intelligence and Deep Learning, NYU Shanghai, 567 West Yangsi Road, Shanghai, 200124, China
| |
Collapse
|
15
|
Limbu DK, Shakib FA. Real-Time Dynamics and Detailed Balance in Ring Polymer Surface Hopping: The Impact of Frustrated Hops. J Phys Chem Lett 2023; 14:8658-8666. [PMID: 37732811 DOI: 10.1021/acs.jpclett.3c02085] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Ring polymer surface hopping (RPSH) has been recently introduced as a well-tailored method for incorporating nuclear quantum effects, such as zero-point energy and tunneling, into nonadiabatic molecular dynamics simulations. The practical widespread usage of RPSH demands a comprehensive benchmarking of different reaction regimes and conditions with equal emphasis on demonstrating both the cons and the pros of the method. Here, we investigate the fundamental questions related to the conservation of energy and detailed balance in the context of RPSH. Using Tully's avoided crossing model as well as a 2-state quantum system coupled to a classical bath undergoing Langevin dynamics, we probe the critical problem of the proper treatment of the classically forbidden transitions stemming from the surface hopping algorithm. We show that proper treatment of these frustrated hops is key to the accurate description of real-time dynamics as well as reproducing the correct quantum Boltzmann populations.
Collapse
Affiliation(s)
- Dil K Limbu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Farnaz A Shakib
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
16
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
17
|
Abstract
We present a nonadiabatic classical-trajectory approach that offers the best of both worlds between fewest-switches surface hopping (FSSH) and quasiclassical mapping dynamics. This mapping approach to surface hopping (MASH) propagates the nuclei on the active adiabatic potential-energy surface, such as in FSSH. However, unlike in FSSH, transitions between active surfaces are deterministic and occur when the electronic mapping variables evolve between specified regions of the electronic phase space. This guarantees internal consistency between the active surface and the electronic degrees of freedom throughout the dynamics. MASH is rigorously derivable from exact quantum mechanics as a limit of the quantum-classical Liouville equation (QCLE), leading to a unique prescription for momentum rescaling and frustrated hops. Hence, a quantum-jump procedure can, in principle, be used to systematically converge the accuracy of the results to that of the QCLE. This jump procedure also provides a rigorous framework for deriving approximate decoherence corrections similar to those proposed for FSSH. We apply MASH to simulate the nonadiabatic dynamics in various model systems and show that it consistently produces more accurate results than FSSH at a comparable computational cost.
Collapse
|
18
|
Lin K, Peng J, Xu C, Gu FL, Lan Z. Trajectory Propagation of Symmetrical Quasi-classical Dynamics with Meyer-Miller Mapping Hamiltonian Using Machine Learning. J Phys Chem Lett 2022; 13:11678-11688. [PMID: 36511563 DOI: 10.1021/acs.jpclett.2c02159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The long short-term memory recurrent neural network (LSTM-RNN) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After construction, the LSTM-RNN model allows us to propagate the entire trajectory evolutions of all involved degrees of freedoms (DOFs) from initial conditions. The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models and three Tully's scattering models. It indicates that the LSTM-RNN model perfectly captures the dynamical information on the trajectory evolution in the MM-SQC dynamics. Our work proposes a novel machine learning approach in the simulation of trajectory-based nonadiabatic dynamic of complex systems with a large number of DOFs.
Collapse
Affiliation(s)
- Kunni Lin
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Jiawei Peng
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Chao Xu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Feng Long Gu
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhenggang Lan
- MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, P. R. China
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
19
|
Hu Z, Liu Z, Sun X. Effects of Heterogeneous Protein Environment on Excitation Energy Transfer Dynamics in the Fenna-Matthews-Olson Complex. J Phys Chem B 2022; 126:9271-9287. [PMID: 36327977 DOI: 10.1021/acs.jpcb.2c06605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Fenna-Matthews-Olson (FMO) complex of green sulfur bacteria has been serving as a prototypical light-harvesting protein for studying excitation energy transfer (EET) dynamics in photosynthesis. The most widely used Frenkel exciton model for FMO complex assumes that each excited bacteriochlorophyll site couples to an identical and isolated harmonic bath, which does not account for the heterogeneous local protein environment. To better describe the realistic environment, we propose to use the recently developed multistate harmonic (MSH) model, which contains a globally shared bath that couples to the different pigment sites according to the atomistic quantum mechanics/molecular mechanics simulations with explicit protein scaffold and solvent. In this work, the effects of heterogeneous protein environment on EET in FMO complexes from Prosthecochloris aestuarii and Chlorobium tepidum, specifically including realistic spectral density, site-dependent reorganization energies, and system-bath couplings are investigated. Semiclassical and mixed quantum-classical mapping dynamics were applied to obtain the nonadiabatic EET dynamics in several models ranging from the Frenkel exciton model to the MSH model and their variants. The MSH model with realistic spectral density and site-dependent system-bath couplings displays slower EET dynamics than the Frenkel exciton model. Our comparative study shows that larger average reorganization energy, heterogeneity in spectral densities, and low-frequency modes could facilitate energy dissipation, which is insensitive to the static disorder in reorganization energies. The effects of the spectral densities and system-bath couplings along with the MSH model can be used to optimize EET dynamics for artificial light-harvesting systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zengkui Liu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
20
|
Hu Z, Sun X. All-Atom Nonadiabatic Semiclassical Mapping Dynamics for Photoinduced Charge Transfer of Organic Photovoltaic Molecules in Explicit Solvents. J Chem Theory Comput 2022; 18:5819-5836. [PMID: 36073792 DOI: 10.1021/acs.jctc.2c00631] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct all-atom simulation of nonadiabatic dynamics in disordered condensed phases like liquid solutions and amorphous solids has been challenging. The first all-atom simulation of the photoinduced charge-transfer dynamics of a prototypical organic photovoltaic carotenoid-porphyrin-C60 molecular triad in explicit tetrahydrofuran is presented. Based on the Meyer-Miller mapping Hamiltonian, various semiclassical and mixed quantum-classical dynamics are employed, including the linearized semiclassical, symmetrical quasiclassical, mean-field Ehrenfest, classical mapping model, and spin-mapping model approaches. The all-atom nonadiabatic dynamics were compared to multi-state harmonic models with a globally shared bath, and the models built using the ensemble averages on the initial electronic state could reproduce the all-atom results. The solvent effect was found to be critical for the photoinduced charge transfer, and the time-dependent solute-solvent radial distribution functions revealed that only the nonadiabatic dynamics started with the effective forces on the initial electronic state could capture the correct nuclear dynamics. The proposed strategy for modeling condensed-phase nonadiabatic dynamics with atomistic details is readily applied to complex condensed-phase systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiang Sun
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
21
|
Polley K, Loring RF. 2D electronic-vibrational spectroscopy with classical trajectories. J Chem Phys 2022; 156:204110. [DOI: 10.1063/5.0090868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional electronic-vibrational (2DEV) spectra have the capacity to probe electron–nuclear interactions in molecules by measuring correlations between initial electronic excitations and vibrational transitions at a later time. The trajectory-based semiclassical optimized mean trajectory approach is applied to compute 2DEV spectra for a system with excitonically coupled electronic excited states vibronically coupled to a chromophore vibration. The chromophore mode is in turn coupled to a bath, inducing redistribution of vibrational populations. The lineshapes and delay-time dynamics of the resulting spectra compare well with benchmark calculations, both at the level of the observable and with respect to contributions from distinct spectroscopic processes.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
22
|
He X, Wu B, Shang Y, Li B, Cheng X, Liu J. New phase space formulations and quantum dynamics approaches. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Baihua Wu
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Youhao Shang
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Bingqi Li
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Xiangsong Cheng
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing China
| |
Collapse
|
23
|
Polley K, Loring RF. Two-dimensional vibronic spectroscopy with semiclassical thermofield dynamics. J Chem Phys 2022; 156:124108. [DOI: 10.1063/5.0083868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational–electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
24
|
Talbot JJ, Head-Gordon M, Miller WH, Cotton SJ. Dynamic signatures of electronically nonadiabatic coupling in sodium hydride: a rigorous test for the symmetric quasi-classical model applied to realistic, ab initio electronic states in the adiabatic representation. Phys Chem Chem Phys 2022; 24:4820-4831. [PMID: 35156112 DOI: 10.1039/d1cp04090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sodium hydride (NaH) in the gas phase presents a seemingly simple electronic structure making it a potentially tractable system for the detailed investigation of nonadiabatic molecular dynamics from both computational and experimental standpoints. The single vibrational degree of freedom, as well as the strong nonadiabatic coupling that arises from the excited electronic states taking on considerable ionic character, provides a realistic chemical system to test the accuracy of quasi-classical methods to model population dynamics where the results are directly comparable against quantum mechanical benchmarks. Using a simulated pump-probe type experiment, this work presents computational predictions of population transfer through the avoided crossings of NaH via symmetric quasi-classical Meyer-Miller (SQC/MM), Ehrenfest, and exact quantum dynamics on realistic, ab initio potential energy surfaces. The main driving force for population transfer arises from the ground vibrational level of the D1Σ+ adiabatic state that is embedded in the manifold of near-dissociation C1Σ+ vibrational states. When coupled through a sharply localized first-order derivative coupling most of the population transfers between t = 15 and t = 30 fs depending on the initially excited vibronic wavepacket. While quantum mechanical effects are expected due to the reduced mass of NaH, predictions of the population dynamics from both the SQC/MM and Ehrenfest models perform remarkably well against the quantum dynamics benchmark. Additionally, an analysis of the vibronic structure in the nonadiabatically coupled regime is presented using a variational eigensolver methodology.
Collapse
Affiliation(s)
- Justin J Talbot
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, USA. .,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - William H Miller
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Stephen J Cotton
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
25
|
Ananth N. Path Integrals for Nonadiabatic Dynamics: Multistate Ring Polymer Molecular Dynamics. Annu Rev Phys Chem 2022; 73:299-322. [PMID: 35081325 DOI: 10.1146/annurev-physchem-082620-021809] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on a recent class of path-integral-based methods that simulate nonadiabatic dynamics in the condensed phase using only classical molecular dynamics trajectories in an extended phase space. Specifically, a semiclassical mapping protocol is used to derive an exact, continuous, Cartesian variable path-integral representation for the canonical partition function of a system in which multiple electronic states are coupled to nuclear degrees of freedom. Building on this exact statistical foundation, multistate ring polymer molecular dynamics methods are developed for the approximate calculation of real-time thermal correlation functions. The remarkable promise of these multistate ring polymer methods, their successful applications, and their limitations are discussed in detail.Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Nandini Ananth
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
26
|
Abstract
Multidimensional optical spectra are measured from the response of a material system to a sequence of laser pulses and have the capacity to elucidate specific molecular interactions and dynamics whose influences are absent or obscured in a conventional linear absorption spectrum. Interpretation of complex spectra is supported by theoretical modeling of the spectroscopic observable, requiring implementation of quantum dynamics for coupled electrons and nuclei. Performing numerically correct quantum dynamics in this context may pose computational challenges, particularly in the condensed phase. Semiclassical methods based on calculating classical trajectories offer a practical alternative. Here I review the recent application of some semiclassical, trajectory-based methods to nonlinear molecular vibrational and electronic spectra. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roger F. Loring
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
27
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for simulating nonlinear optical spectra. J Chem Phys 2022; 156:024108. [PMID: 35032975 DOI: 10.1063/5.0077744] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a partially linearized method based on spin-mapping for computing both linear and nonlinear optical spectra. As observables are obtained from ensembles of classical trajectories, the approach can be applied to the large condensed-phase systems that undergo photosynthetic light-harvesting processes. In particular, the recently derived spin partially linearized density matrix method has been shown to exhibit superior accuracy in computing population dynamics compared to other related classical-trajectory methods. Such a method should also be ideally suited to describing the quantum coherences generated by interaction with light. We demonstrate that this is, indeed, the case by calculating the nonlinear optical response functions relevant for the pump-probe and 2D photon-echo spectra for a Frenkel biexciton model and the Fenna-Matthews-Olsen light-harvesting complex. One especially desirable feature of our approach is that the full spectrum can be decomposed into its constituent components associated with the various Liouville-space pathways, offering a greater insight beyond what can be directly obtained from experiments.
Collapse
|
28
|
Wu D, Hu Z, Li J, Sun X. Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network. J Chem Phys 2021; 155:224104. [PMID: 34911307 DOI: 10.1063/5.0073689] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Modeling nonadiabatic dynamics in complex molecular or condensed-phase systems has been challenging, especially for the long-time dynamics. In this work, we propose a time series machine learning scheme based on the hybrid convolutional neural network/long short-term memory (CNN-LSTM) framework for predicting the long-time quantum behavior, given only the short-time dynamics. This scheme takes advantage of both the powerful local feature extraction ability of CNN and the long-term global sequential pattern recognition ability of LSTM. With feature fusion of individually trained CNN-LSTM models for the quantum population and coherence dynamics, the proposed scheme is shown to have high accuracy and robustness in predicting the linearized semiclassical and symmetrical quasiclassical mapping dynamics as well as the mixed quantum-classical Liouville dynamics of various spin-boson models with learning time up to 0.3 ps. Furthermore, if the hybrid network has learned the dynamics of a system, this knowledge is transferable that could significantly enhance the accuracy in predicting the dynamics of a similar system. The hybrid CNN-LSTM network is thus believed to have high predictive power in forecasting the nonadiabatic dynamics in realistic charge and energy transfer processes in photoinduced energy conversion.
Collapse
Affiliation(s)
- Daxin Wu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Jiebo Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Institute of Medical Photonics, Beihang University, Beijing 100191, China
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|
29
|
Cho KH, Rhee YM. Computational elucidations on the role of vibrations in energy transfer processes of photosynthetic complexes. Phys Chem Chem Phys 2021; 23:26623-26639. [PMID: 34842245 DOI: 10.1039/d1cp04615b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coupling between pigment excitations and nuclear movements in photosynthetic complexes is known to modulate the excitation energy transfer (EET) efficiencies. Toward providing microscopic information, researchers often apply simulation techniques and investigate how vibrations are involved in EET processes. Here, reports on such roles of nuclear movements are discussed from a theory perspective. While vibrations naturally present random thermal fluctuations that can affect energy transferring characteristics, they can also be intertwined with exciton structures and create more specific non-adiabatic energy transfer pathways. For reliable simulations, a bath model that accurately mimics a given molecular system is required. Methods for obtaining such a model in combination with quantum chemical electronic structure calculations and molecular dynamics trajectory simulations are discussed. Various quantum dynamics simulation tools that can handle pigment-to-pigment energy transfers together with their vibrational characters are also touched on. Behaviors of molecular vibrations often deviate from ideality, especially when all-atom details are included, which practically forces us to treat them classically. We conclude this perspective by considering some recent reports that suggest that classical descriptions of bath effects with all-atom details may still produce valuable information for analyzing sophisticated contributions by vibrations to EET processes.
Collapse
Affiliation(s)
- Kwang Hyun Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| |
Collapse
|
30
|
Hu Z, Brian D, Sun X. Multi-state harmonic models with globally shared bath for nonadiabatic dynamics in the condensed phase. J Chem Phys 2021; 155:124105. [PMID: 34598571 DOI: 10.1063/5.0064763] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Model Hamiltonians constructed from quantum chemistry calculations and molecular dynamics simulations are widely used for simulating nonadiabatic dynamics in the condensed phase. The most popular two-state spin-boson model could be built by mapping the all-atom anharmonic Hamiltonian onto a two-level system bilinearly coupled to a harmonic bath using the energy gap time correlation function. However, for more than two states, there lacks a general strategy to construct multi-state harmonic (MSH) models since the energy gaps between different pairs of electronic states are not entirely independent and need to be considered consistently. In this paper, we extend the previously proposed approach for building three-state harmonic models for photoinduced charge transfer to the arbitrary number of electronic states with a globally shared bath and the system-bath couplings are scaled differently according to the reorganization energies between each pair of states. We demonstrate the MSH model construction for an organic photovoltaic carotenoid-porphyrin-C60 molecular triad dissolved in explicit tetrahydrofuran solvent. Nonadiabatic dynamics was simulated using mixed quantum-classical techniques, including the linearized semiclassical and symmetrical quasiclassical dynamics with the mapping Hamiltonians, mean-field Ehrenfest, and mixed quantum-classical Liouville dynamics in two-state, three-state, and four-state harmonic models of the triad system. The MSH models are shown to provide a general and flexible framework for simulating nonadiabatic dynamics in complex systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Dominikus Brian
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| | - Xiang Sun
- Division of Arts and Sciences, NYU Shanghai, 1555 Century Avenue, Shanghai 200122, China
| |
Collapse
|
31
|
Weight BM, Mandal A, Huo P. Ab initio symmetric quasi-classical approach to investigate molecular Tully models. J Chem Phys 2021; 155:084106. [PMID: 34470343 DOI: 10.1063/5.0061934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We perform on-the-fly non-adiabatic molecular dynamics simulations using the symmetrical quasi-classical (SQC) approach with the recently suggested molecular Tully models: ethylene and fulvene. We attempt to provide benchmarks of the SQC methods using both the square and triangle windowing schemes as well as the recently proposed electronic zero-point-energy correction scheme (the so-called γ correction). We use the quasi-diabatic propagation scheme to directly interface the diabatic SQC methods with adiabatic electronic structure calculations. Our results showcase the drastic improvement of the accuracy by using the trajectory-adjusted γ-corrections, which outperform the widely used trajectory surface hopping method with decoherence corrections. These calculations provide useful and non-trivial tests to systematically investigate the numerical performance of various diabatic quantum dynamics approaches, going beyond simple diabatic model systems that have been used as the major workhorse in the quantum dynamics field. At the same time, these available benchmark studies will also likely foster the development of new quantum dynamics approaches based on these techniques.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
32
|
He X, Wu B, Gong Z, Liu J. Commutator Matrix in Phase Space Mapping Models for Nonadiabatic Quantum Dynamics. J Phys Chem A 2021; 125:6845-6863. [PMID: 34339600 DOI: 10.1021/acs.jpca.1c04429] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We show that a novel, general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonian, involves a commutator variable matrix rather than the conventional zero-point-energy parameter. In the exact mapping formulation on constraint space for phase space approaches for nonadiabatic dynamics, the general mapping Hamiltonian with commutator variables can be employed to generate approximate trajectory-based dynamics. Various benchmark model tests, which range from gas phase to condensed phase systems, suggest that the overall performance of the general mapping Hamiltonian is better than that of the conventional Meyer-Miller Hamiltonian.
Collapse
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Gong
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
33
|
Hu D, Xie Y, Peng J, Lan Z. On-the-Fly Symmetrical Quasi-Classical Dynamics with Meyer-Miller Mapping Hamiltonian for the Treatment of Nonadiabatic Dynamics at Conical Intersections. J Chem Theory Comput 2021; 17:3267-3279. [PMID: 34028268 DOI: 10.1021/acs.jctc.0c01249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The on-the-fly version of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (SQC/MM) is implemented to study the nonadiabatic dynamics at conical intersections of polyatomic systems. The current on-the-fly implementation of the SQC/MM method is based on the adiabatic representation and the dressed momentum. To include the zero-point energy (ZPE) correction of the electronic mapping variables, we employ both the γ-adjusted and γ-fixed approaches. Nonadiabatic dynamics of the methaniminium cation (CH2NH2+) and azomethane are simulated using the on-the-fly SQC/MM method. For CH2NH2+, both ZPE correction approaches give reasonable and consistent results. However, for azomethane, the γ-adjusted version of the SQC/MM dynamics behaves much better than the γ-fixed version. Further analysis indicates that it is always recommended to use the γ-adjusted SQC/MM dynamics in the on-the-fly simulation of photoinduced dynamics of polyatomic systems, particularly when the excited state is well separated from the ground state in the Franck-Condon region. This work indicates that the on-the-fly SQC/MM method is a powerful simulation protocol to deal with the nonadiabatic dynamics of realistic polyatomic systems.
Collapse
Affiliation(s)
- Deping Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Yu Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Jiawei Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhenggang Lan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.,School of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
34
|
Polley K, Loring RF. Two-dimensional vibrational-electronic spectra with semiclassical mechanics. J Chem Phys 2021; 154:194110. [PMID: 34240897 DOI: 10.1063/5.0051667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-dimensional vibrational-electronic (2DVE) spectra probe the effects on vibronic spectra of initial vibrational excitation in an electronic ground state. The optimized mean trajectory (OMT) approximation is a semiclassical method for computing nonlinear spectra from response functions. Ensembles of classical trajectories are subject to semiclassical quantization conditions, with the radiation-matter interaction inducing discontinuous transitions. This approach has been previously applied to two-dimensional infrared and electronic spectra and is extended here to 2DVE spectra. For a system including excitonic coupling, vibronic coupling, and interaction of a chromophore vibration with a resonant environment, the OMT method is shown to well approximate exact quantum dynamics.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
35
|
Chowdhury SN, Huo P. Non-adiabatic Matsubara dynamics and non-adiabatic ring-polymer molecular dynamics. J Chem Phys 2021; 154:124124. [PMID: 33810665 DOI: 10.1063/5.0042136] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We present the non-adiabatic Matsubara dynamics, a general framework for computing the time-correlation function (TCF) of electronically non-adiabatic systems. This new formalism is derived based on the generalized Kubo-transformed TCF using the Wigner representation for both the nuclear degrees of freedom and the electronic mapping variables. By dropping the non-Matsubara nuclear normal modes in the quantum Liouvillian and explicitly integrating these modes out from the expression of the TCF, we derived the non-adiabatic Matsubara dynamics approach. Further making the approximation to drop the imaginary part of the Matsubara Liouvillian and enforce the nuclear momentum integral to be real, we arrived at the non-adiabatic ring-polymer molecular dynamics (NRPMD) approach. We have further justified the capability of NRPMD for simulating the non-equilibrium TCF. This work provides the rigorous theoretical foundation for several recently proposed state-dependent RPMD approaches and offers a general framework for developing new non-adiabatic quantum dynamics methods in the future.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
36
|
He X, Gong Z, Wu B, Liu J. Negative Zero-Point-Energy Parameter in the Meyer-Miller Mapping Model for Nonadiabatic Dynamics. J Phys Chem Lett 2021; 12:2496-2501. [PMID: 33667108 DOI: 10.1021/acs.jpclett.1c00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The celebrated Meyer-Miller mapping model has been a useful approach for generating practical trajectory-based nonadiabatic dynamics methods. It is generally assumed that the zero-point-energy (ZPE) parameter is positive. The constraint implied in the conventional Meyer-Miller mapping Hamiltonian for an F-electronic-state system actually requires γ∈(-1/F, ∞) for the ZPE parameter for each electronic degree of freedom. Both negative and positive values are possible for such a parameter. We first establish a rigorous formulation to construct exact mapping models in the Cartesian phase space when the constraint is applied. When nuclear dynamics is approximated by the linearized semiclassical initial value representation, a negative ZPE parameter could lead to reasonably good performance in describing dynamic behaviors in typical spin-boson models for condensed-phase two-state systems, even at challenging zero temperature.
Collapse
Affiliation(s)
- Xin He
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Gong
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baihua Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Chowdhury SN, Mandal A, Huo P. Ring polymer quantization of the photon field in polariton chemistry. J Chem Phys 2021; 154:044109. [PMID: 33514102 DOI: 10.1063/5.0038330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We use the ring polymer (RP) representation to quantize the radiation field inside an optical cavity to investigate polariton quantum dynamics. Using a charge transfer model coupled to an optical cavity, we demonstrate that the RP quantization of the photon field provides accurate rate constants of the polariton mediated electron transfer reaction compared to Fermi's golden rule. Because RP quantization uses extended phase space to describe the photon field, it significantly reduces the computational costs compared to the commonly used Fock state description of the radiation field. Compared to the other quasi-classical descriptions of the photon field, such as the classical Wigner based mean-field Ehrenfest model, the RP representation provides a much more accurate description of the polaritonic quantum dynamics because it alleviates the potential quantum distribution leakage problem associated with the photonic degrees of freedom (DOF). This work demonstrates the possibility of using the ring polymer description to treat the quantized radiation field in polariton chemistry, offering an accurate and efficient approach for future investigations in cavity quantum electrodynamics.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Arkajit Mandal
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| | - Pengfei Huo
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
| |
Collapse
|
38
|
Mandal A, Hunt KLC. Quantum transition probabilities due to overlapping electromagnetic pulses: Persistent differences between Dirac's form and nonadiabatic perturbation theory. J Chem Phys 2021; 154:024116. [PMID: 33445917 DOI: 10.1063/5.0020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The probability of transition to an excited state of a quantum system in a time-dependent electromagnetic field determines the energy uptake from the field. The standard expression for the transition probability has been given by Dirac. Landau and Lifshitz suggested, instead, that the adiabatic effects of a perturbation should be excluded from the transition probability, leaving an expression in terms of the nonadiabatic response. In our previous work, we have found that these two approaches yield different results while a perturbing field is acting on the system. Here, we prove, for the first time, that differences between the two approaches may persist after the perturbing fields have been completely turned off. We have designed a pair of overlapping pulses in order to establish the possibility of lasting differences, in a case with dephasing. Our work goes beyond the analysis presented by Landau and Lifshitz, since they considered only linear response and required that a constant perturbation must remain as t → ∞. First, a "plateau" pulse populates an excited rotational state and produces coherences between the ground and excited states. Then, an infrared pulse acts while the electric field of the first pulse is constant, but after dephasing has occurred. The nonadiabatic perturbation theory permits dephasing, but dephasing of the perturbed part of the wave function cannot occur within Dirac's method. When the frequencies in both pulses are on resonance, the lasting differences in the calculated transition probabilities may exceed 35%. The predicted differences are larger for off-resonant perturbations.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Katharine L C Hunt
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
39
|
Gao X, Geva E. Improving the Accuracy of Quasiclassical Mapping Hamiltonian Methods by Treating the Window Function Width as an Adjustable Parameter. J Phys Chem A 2020; 124:11006-11016. [DOI: 10.1021/acs.jpca.0c09750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xing Gao
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, China
| | - Eitan Geva
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
40
|
Polley K, Loring RF. Spectroscopic response theory with classical mapping Hamiltonians. J Chem Phys 2020; 153:204103. [PMID: 33261495 DOI: 10.1063/5.0029231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exact quantum dynamics with a time-independent Hamiltonian in a discrete state space can be computed using classical mechanics through the classical Meyer-Miller-Stock-Thoss mapping Hamiltonian. In order to compute quantum response functions from classical dynamics, we extend this mapping to a quantum Hamiltonian with time-dependence arising from a classical field. This generalization requires attention to time-ordering in quantum and classical propagators. Quantum response theory with the original quantum Hamiltonian is equivalent to classical response theory with the classical mapping Hamiltonian. We elucidate the structure of classical response theory with the mapping Hamiltonian, thereby generating classical versions of the two-sided quantum density operator diagrams conventionally used to describe spectroscopic processes. This formal development can provide a foundation for new semiclassical approximations to spectroscopic observables for models in which classical nuclear degrees of freedom are introduced into a mapping Hamiltonian describing electronic states. Calculations of the temperature-dependence of two-dimensional electronic spectra for an exciton dimer using two semiclassical approaches are compared with benchmark calculations using the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
41
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. I. Derivation of the theory. J Chem Phys 2020; 153:194109. [DOI: 10.1063/5.0031168] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Mannouch JR, Richardson JO. A partially linearized spin-mapping approach for nonadiabatic dynamics. II. Analysis and comparison with related approaches. J Chem Phys 2020; 153:194110. [DOI: 10.1063/5.0031173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
43
|
Polley K, Loring RF. One and Two Dimensional Vibronic Spectra for an Exciton Dimer from Classical Trajectories. J Phys Chem B 2020; 124:9913-9920. [DOI: 10.1021/acs.jpcb.0c07078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
44
|
Kim CW, Rhee YM. Toward monitoring the dissipative vibrational energy flows in open quantum systems by mixed quantum-classical simulations. J Chem Phys 2020; 152:244109. [PMID: 32610983 DOI: 10.1063/5.0009867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In open quantum system dynamics, rich information about the major energy relaxation channels and corresponding relaxation rates can be elucidated by monitoring the vibrational energy flow among individual bath modes. However, such calculations often become tremendously difficult as the complexity of the subsystem-bath coupling increases. In this paper, we attempt to make this task feasible by using a mixed quantum-classical method, the Poisson-bracket mapping equation with non-Hamiltonian modification (PBME-nH) [H. W. Kim and Y. M. Rhee, J. Chem. Phys. 140, 184106 (2014)]. For a quantum subsystem bilinearly coupled to harmonic bath modes, we derive an expression for the mode energy in terms of the classical positions and momenta of the nuclei, while keeping consistency with the energy of the quantum subsystem. The accuracy of the resulting expression is then benchmarked against a numerically exact method by using relatively simple models. Although our expression predicts a qualitatively correct dissipation rate for a range of situations, cases involving a strong vibronic resonance are quite challenging. This is attributed to the inherent lack of quantum back reaction in PBME-nH, which becomes significant when the subsystem strongly interacts with a small number of bath modes. A rigorous treatment of such an effect will be crucial for developing quantitative simulation methods that can handle generic subsystem-bath coupling.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
45
|
Mandal A, Hunt KLC. Variance of the energy of a quantum system in a time-dependent perturbation: Determination by nonadiabatic transition probabilities. J Chem Phys 2020; 152:104110. [DOI: 10.1063/1.5140009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Anirban Mandal
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Katharine L. C. Hunt
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
46
|
Runeson JE, Richardson JO. Generalized spin mapping for quantum-classical dynamics. J Chem Phys 2020; 152:084110. [DOI: 10.1063/1.5143412] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Johan E. Runeson
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | | |
Collapse
|
47
|
Saller MAC, Kelly A, Richardson JO. Improved population operators for multi-state nonadiabatic dynamics with the mixed quantum-classical mapping approach. Faraday Discuss 2020; 221:150-167. [DOI: 10.1039/c9fd00050j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Application to the 7-state Frenkel-exciton Hamiltonian for the Fenna–Matthews–Olson complex shows that using a different representation of the electronic population operators can drastically improve the accuracy of the quasiclassical mapping approach without increasing the computational effort.
Collapse
Affiliation(s)
| | - Aaron Kelly
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | |
Collapse
|
48
|
Zheng J, Peng J, Xie Y, Long Y, Ning X, Lan Z. Study of the exciton dynamics in perylene bisimide (PBI) aggregates with symmetrical quasiclassical dynamics based on the Meyer–Miller mapping Hamiltonian. Phys Chem Chem Phys 2020; 22:18192-18204. [DOI: 10.1039/d0cp00648c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The exciton dynamics in one-dimensional stacked PBI (Perylene Bisimide) aggregates was studied with SQC-MM dynamics (Symmetrical Quasiclassical Dynamics based on the Meyer–Miller mapping Hamiltonian).
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Jiawei Peng
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yu Xie
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| | - Yunze Long
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles
- Shandong Center for Engineered Nonwovens (SCEN)
- College of Textiles Clothing
- Qingdao University
- Qingdao 266071
| | - Zhenggang Lan
- SCNU Environmental Research Institute
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment
- South China Normal University
- Guangzhou 510006
- China
| |
Collapse
|
49
|
Zheng J, Xie Y, Jiang S, Long Y, Ning X, Lan Z. Initial sampling in symmetrical quasiclassical dynamics based on Li-Miller mapping Hamiltonian. Phys Chem Chem Phys 2019; 21:26502-26514. [PMID: 31777888 DOI: 10.1039/c9cp03975a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A symmetrical quasiclassical (SQC) dynamics approach based on the Li-Miller (LM) mapping Hamiltonian (SQC-LM) was employed to describe nonadiabatic dynamics. In principle, the different initial sampling procedures may be applied in the SQC-LM dynamics, and the results may be dependent on different initial sampling. We provided various initial sampling approaches and checked their influence. We selected two groups of models including site-exciton models for exciton dynamics and linear vibronic coupling models for conical intersections to test the performance of SQC-LM dynamics with the different initial sampling methods. The results were examined with respect to those of the accurate multiconfigurational time-dependent Hartree (MCTDH) quantum dynamics. For both the models, the SQC-LM method more-or-less gives a reasonable description of the population dynamics, while the influence of the initial sampling approaches on the final results is noticeable. It seems that the suitable initial sampling methods should be determined by the system under study. This indicates that the combination of the SQC-LM method with a suitable sampling approach may be a potential method in the description of nonadiabatic dynamics.
Collapse
Affiliation(s)
- Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles Clothing, Qingdao University, Qingdao 266071, China.
| | | | | | | | | | | |
Collapse
|
50
|
Zhou W, Mandal A, Huo P. Quasi-Diabatic Scheme for Nonadiabatic On-the-Fly Simulations. J Phys Chem Lett 2019; 10:7062-7070. [PMID: 31665889 DOI: 10.1021/acs.jpclett.9b02747] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We use the quasi-diabatic (QD) propagation scheme to perform on-the-fly nonadiabatic simulations of the photodynamics of ethylene. The QD scheme enables a seamless interface between accurate diabatic-based quantum dynamics approaches and adiabatic electronic structure calculations, explicitly avoiding any efforts to construct global diabatic states or reformulate the diabatic dynamics approach to the adiabatic representation. Using the partial linearized path-integral approach and the symmetrical quasi-classical approach as the diabatic dynamics methods, the QD propagation scheme enables direct nonadiabatic simulation with complete active space self-consistent field on-the-fly electronic structure calculations. The population dynamics obtained from both approaches are in a close agreement with the quantum wavepacket-based method and outperform the widely used trajectory surface-hopping approach. Further analysis of the ethylene photodeactivation pathways demonstrates the correct predictions of competing processes of nonradiative relaxation mechanism through various conical intersections. This work provides the foundation of using accurate diabatic dynamics approaches and on-the-fly adiabatic electronic structure information to perform ab initio nonadiabatic simulation.
Collapse
Affiliation(s)
- Wanghuai Zhou
- Advanced Functional Material and Photoelectric Technology Research Institution, School of Science , Hubei University of Automotive Technology , Shiyan , Hubei 442002 , People's Republic of China
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Arkajit Mandal
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| | - Pengfei Huo
- Department of Chemistry , University of Rochester , 120 Trustee Road , Rochester , New York 14627 , United States
| |
Collapse
|