1
|
Daas KJ, Zhao H, Polak E, Vuckovic S. Exact Mo̷ller-Plesset Adiabatic Connection Correlation Energy Densities. J Chem Theory Comput 2025. [PMID: 40397791 DOI: 10.1021/acs.jctc.5c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
The Mo̷ller-Plesset adiabatic connection (MPAC) provides a powerful tool for developing density functional theory (DFT)-like approximations that map Hartree-Fock densities to the wave function-based correlation energy, thereby leveraging both wave function and DFT concepts for electronic structure approximations. A key object in this context is the correlation energy density, which represents the local (pointwise) contribution to the total correlation energy. While well-studied in DFT, it remains largely unexplored in the wave function framework. Here, we introduce a rigorous formulation of the wave function-based correlation energy density within MPAC, implement it via full configuration interaction calculations, and analyze its behavior and physically meaningful contributions for representative small (di)atomic systems. We define this quantity by employing a general gauge strategy, from which the conventional DFT correlation energy density gauge also arises. We then discuss the resulting commonalities and differences between correlation energy densities in the DFT and wave function frameworks and derive the small-interaction (MP2) limit of the latter in terms of Hartree-Fock orbitals. Finally, we show how these newly introduced energy densities can serve as new approximation targets in both machine-learning-assisted and traditional electronic structure methods for mapping HF-density-based features to correlation energy within the wave function framework.
Collapse
Affiliation(s)
- Kimberly J Daas
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Heng Zhao
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Elias Polak
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| | - Stefan Vuckovic
- Department of Chemistry, Faculty of Science and Medicine, Université de Fribourg/Universität Freiburg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Ikabata Y, Fujisawa R, Seino J, Yoshikawa T, Nakai H. Machine-learned electron correlation model based on frozen core approximation. J Chem Phys 2020; 153:184108. [DOI: 10.1063/5.0021281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yasuhiro Ikabata
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ryo Fujisawa
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Junji Seino
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
6
|
Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James AM, Lehtola S, Misiewicz JP, Scheurer M, Shaw RA, Schriber JB, Xie Y, Glick ZL, Sirianni DA, O’Brien JS, Waldrop JM, Kumar A, Hohenstein EG, Pritchard BP, Brooks BR, Schaefer HF, Sokolov AY, Patkowski K, DePrince AE, Bozkaya U, King RA, Evangelista FA, Turney JM, Crawford TD, Sherrill CD. Psi4 1.4: Open-source software for high-throughput quantum chemistry. J Chem Phys 2020; 152:184108. [PMID: 32414239 PMCID: PMC7228781 DOI: 10.1063/5.0006002] [Citation(s) in RCA: 486] [Impact Index Per Article: 97.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022] Open
Abstract
PSI4 is a free and open-source ab initio electronic structure program providing implementations of Hartree-Fock, density functional theory, many-body perturbation theory, configuration interaction, density cumulant theory, symmetry-adapted perturbation theory, and coupled-cluster theory. Most of the methods are quite efficient, thanks to density fitting and multi-core parallelism. The program is a hybrid of C++ and Python, and calculations may be run with very simple text files or using the Python API, facilitating post-processing and complex workflows; method developers also have access to most of PSI4's core functionalities via Python. Job specification may be passed using The Molecular Sciences Software Institute (MolSSI) QCSCHEMA data format, facilitating interoperability. A rewrite of our top-level computation driver, and concomitant adoption of the MolSSI QCARCHIVE INFRASTRUCTURE project, makes the latest version of PSI4 well suited to distributed computation of large numbers of independent tasks. The project has fostered the development of independent software components that may be reused in other quantum chemistry programs.
Collapse
Affiliation(s)
| | - Lori A. Burns
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Andrew C. Simmonett
- National Institutes of Health – National Heart,
Lung and Blood Institute, Laboratory of Computational Biology, Bethesda,
Maryland 20892, USA
| | - Robert M. Parrish
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Matthew C. Schieber
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | | | - Peter Kraus
- School of Molecular and Life Sciences, Curtin
University, Kent St., Bentley, Perth, Western Australia 6102,
Australia
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of
Sciences, Královopolská 135, 612 65 Brno, Czech
Republic
| | - Roberto Di Remigio
- Department of Chemistry, Centre for Theoretical
and Computational Chemistry, UiT, The Arctic University of Norway, N-9037
Tromsø, Norway
| | - Asem Alenaizan
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Andrew M. James
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, USA
| | - Susi Lehtola
- Department of Chemistry, University of
Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), FI-00014 Helsinki,
Finland
| | - Jonathon P. Misiewicz
- Center for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602, USA
| | - Maximilian Scheurer
- Interdisciplinary Center for Scientific
Computing, Heidelberg University, D-69120 Heidelberg,
Germany
| | - Robert A. Shaw
- ARC Centre of Excellence in Exciton Science,
School of Science, RMIT University, Melbourne, VIC 3000,
Australia
| | - Jeffrey B. Schriber
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Yi Xie
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Zachary L. Glick
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Dominic A. Sirianni
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Joseph Senan O’Brien
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| | - Jonathan M. Waldrop
- Department of Chemistry and Biochemistry, Auburn
University, Auburn, Alabama 36849, USA
| | - Ashutosh Kumar
- Department of Chemistry, Virginia
Tech, Blacksburg, Virginia 24061, USA
| | - Edward G. Hohenstein
- SLAC National Accelerator Laboratory, Stanford
PULSE Institute, Menlo Park, California 94025,
USA
| | | | - Bernard R. Brooks
- National Institutes of Health – National Heart,
Lung and Blood Institute, Laboratory of Computational Biology, Bethesda,
Maryland 20892, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602, USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The
Ohio State University, Columbus, Ohio 43210, USA
| | - Konrad Patkowski
- Department of Chemistry and Biochemistry, Auburn
University, Auburn, Alabama 36849, USA
| | - A. Eugene DePrince
- Department of Chemistry and Biochemistry,
Florida State University, Tallahassee, Florida 32306-4390,
USA
| | - Uğur Bozkaya
- Department of Chemistry, Hacettepe
University, Ankara 06800, Turkey
| | - Rollin A. King
- Department of Chemistry, Bethel
University, St. Paul, Minnesota 55112, USA
| | | | - Justin M. Turney
- Center for Computational Quantum Chemistry,
University of Georgia, Athens, Georgia 30602, USA
| | | | - C. David Sherrill
- Center for Computational Molecular Science and
Technology, School of Chemistry and Biochemistry, School of Computational Science and
Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400,
USA
| |
Collapse
|