1
|
Gray M, Mandal A, Herbert JM. Revisiting the Half-and-Half Functional. J Phys Chem A 2025; 129:3969-3982. [PMID: 40257398 DOI: 10.1021/acs.jpca.5c01402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Hybrid density functionals typically provide significantly better accuracy than semilocal functionals. Conventional wisdom holds that incorporating more than 20-25% exact exchange is deleterious to thermochemical properties and should only be used as a last resort, for problems that are dominated by self-interaction error. In such cases, the Becke-Lee-Yang-Parr "half-and-half" functional (BH&H-LYP) has emerged as a go-to choice, especially in time-dependent density functional theory calculations for excitation energies. Here, we examine the assumption that 50% Hartree-Fock exchange sacrifices thermochemical accuracy. Using a sequence of functionals B(α)LYP, with different percentages of exact exchange (0 ≤ α ≤ 100), we find that BH&H-LYP (with α = 50) is nearly optimal and affords accuracy similar to B3LYP for thermochemistry, barrier heights, and excitation energies. Although BH&H-LYP is significantly less accurate than B3LYP for atomization energies, this emerges as the sole rationale for the taboo against values α > 25. Overall, BH&H-LYP is a reasonable choice for problems that are dominated by self-interaction error, including charge-transfer complexes and core-level excitation energies. While B3LYP remains more accurate for valence excitation energies, the use of 50% exact exchange appears to be an acceptable compromise, and BH&H-LYP can be used without undue concern over its diminished accuracy for ground-state properties.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aniket Mandal
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Penfold TJ, Curchod BFE. Exploring the Influence of Approximations for Simulating Valence Excited X-ray Spectra. J Phys Chem A 2024; 128:10826-10836. [PMID: 39630609 DOI: 10.1021/acs.jpca.4c06150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of n-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM-CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck-Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck-Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.
Collapse
Affiliation(s)
- Thomas J Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon-Tyne NE1 7RU, United Kingdom
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Restaino L, Mincigrucci R, Kowalewski M. Distinguishing Organomagnesium Species in the Grignard Addition to Ketones with X-Ray Spectroscopy. Chemistry 2024; 30:e202402099. [PMID: 39297557 PMCID: PMC11639641 DOI: 10.1002/chem.202402099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 11/09/2024]
Abstract
The addition of Grignard reagents to ketones is a well-established textbook reaction. However, a comprehensive understanding of its mechanism has only recently begun to emerge. X-ray spectroscopy, because of its high selectivity and sensitivity, is the ideal tool for distinguishing between an ensemble of competing pathways. With this aim in mind, we investigated the concerted mechanism of the addition of methylmagnesium chloride (CH3MgCl) to acetone in tetrahydrofuran by simulating the X-ray spectra of different molecules in solution. We used electronic structure methods to calculate the X-ray absorption spectra at the Mg K- and L1-edges and the X-ray photoelectron spectra at the Mg K-edge for different organomagnesium species, which coexist in solution due to the Schlenk equilibrium. The simulated spectra show that individual species can be distinguished throughout the different stages of the reaction. Each species has a distinct spectral feature which can be used as a fingerprint in solution. The absorption and photoelectron spectra consistently show a blue shift as the reaction progressed from reagents to products.
Collapse
Affiliation(s)
- Lorenzo Restaino
- Department of PhysicsStockholm UniversityAlbanova University CentreSE-106 91StockholmSweden
| | - Riccardo Mincigrucci
- Elettra Sincrotrone Trieste SCpAStrada Statale 14 - km 163,5 in AREA Science Park34149BasovizzaTriesteItaly
| | - Markus Kowalewski
- Department of PhysicsStockholm UniversityAlbanova University CentreSE-106 91StockholmSweden
| |
Collapse
|
4
|
Costain TS, Rolston JB, Neville SP, Schuurman MS. A DFT/MRCI Hamiltonian parameterized using only ab initio data. II. Core-excited states. J Chem Phys 2024; 161:114117. [PMID: 39301854 DOI: 10.1063/5.0227385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
A newly parameterized combined density functional theory and multi-reference configuration interaction (DFT/MRCI) Hamiltonian, termed core-valence separation (CVS)-QE12, is defined for the computation of K-shell core-excitation and core-ionization energies. This CVS counterpart to the recently reported QE8 Hamiltonian [Costain et al., J. Chem. Phys, 160, 224106 (2024)] is parameterized by fitting to benchmark quality ab initio data. The definition of the CVS-QE12 and QE8 Hamiltonians differ from previous CVS-DFT/MRCI parameterizations in three primary ways: (i) the replacement of the BHLYP exchange-correlation functional with QTP17 to yield a balanced description of both core and valence excitation energies, (ii) the adoption of a new, three-parameter damping function, and (iii) the introduction of separate scaling of the core-valence and valence-valence Coulombic interactions. Crucially, the parameters of the CVS-QE12 Hamiltonian are obtained via fitting exclusively to highly accurate ab initio vertical core-excitation and ionization energies computed at the CVS-EOM-CCSDT level of theory. The CVS-QE12 Hamiltonian is validated against further benchmark computations and is found to furnish K-edge core vertical excitation and ionization energies exhibiting absolute errors ≤0.5 eV at low computational cost.
Collapse
Affiliation(s)
- Teagan Shane Costain
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jibrael B Rolston
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Simon P Neville
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
5
|
Mandal A, Berquist EJ, Herbert JM. A new parameterization of the DFT/CIS method with applications to core-level spectroscopy. J Chem Phys 2024; 161:044114. [PMID: 39051834 DOI: 10.1063/5.0220535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Time-dependent density functional theory (TD-DFT) within a restricted excitation space is an efficient means to compute core-level excitation energies using only a small subset of the occupied orbitals. However, core-to-valence excitation energies are significantly underestimated when standard exchange-correlation functionals are used, which is partly traceable to systemic issues with TD-DFT's description of Rydberg and charge-transfer excited states. To mitigate this, we have implemented an empirically modified combination of configuration interaction with single substitutions (CIS) based on Kohn-Sham orbitals, which is known as "DFT/CIS." This semi-empirical approach is well-suited for simulating x-ray near-edge spectra, as it contains sufficient exact exchange to model charge-transfer excitations yet retains DFT's low-cost description of dynamical electron correlation. Empirical corrections to the matrix elements enable semi-quantitative simulation of near-edge x-ray spectra without the need for significant a posteriori shifts; this should be useful in complex molecules and materials with multiple overlapping x-ray edges. Parameter optimization for use with a specific range-separated hybrid functional makes this a black-box method intended for both core and valence spectroscopy. Results herein demonstrate that realistic K-edge absorption and emission spectra can be obtained for second- and third-row elements and 3d transition metals, with promising results for L-edge spectra as well. DFT/CIS calculations require absolute shifts that are considerably smaller than what is typical in TD-DFT.
Collapse
Affiliation(s)
- Aniket Mandal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
6
|
Costain TS, Ogden V, Neville SP, Schuurman MS. A DFT/MRCI Hamiltonian parameterized using only ab initio data: I. valence excited states. J Chem Phys 2024; 160:224106. [PMID: 38856682 DOI: 10.1063/5.0210897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
A new combined density functional theory and multi-reference configuration interaction (DFT/MRCI) Hamiltonian parameterized solely using the benchmark ab initio vertical excitation energies obtained from the QUEST databases is presented. This new formulation differs from all previous versions of the method in that the choice of the underlying exchange-correlation (XC) functional employed to construct the one-particle (orbital) basis is considered, and a new XC functional, QTP17, is chosen for its ability to generate a balanced description of core and valence vertical excitation energies. The ability of the new DFT/MRCI Hamiltonian, termed QE8, to furnish accurate excitation energies is confirmed using benchmark quantum chemistry computations, and a mean absolute error of 0.16 eV is determined for the wide range of electronic excitations included in the validation dataset. In particular, the QE8 Hamiltonian dramatically improves the performance of DFT/MRCI for doubly excited states. The performance of fast approximate DFT/MRCI methods, p-DFT/MRCI and DFT/MRCI(2), is also evaluated using the QE8 Hamiltonian, and they are found to yield excitation energies in quantitative agreement with the parent DFT/MRCI method, with the two methods exhibiting a mean difference of 0.01 eV with respect to DFT/MRCI over the entire benchmark set.
Collapse
Affiliation(s)
- Teagan Shane Costain
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Victoria Ogden
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Simon P Neville
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| | - Michael S Schuurman
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- National Research Council Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
7
|
Ferté A, Giner E, Taïeb R, Carniato S. Unraveling the variational breakdown of core valence separation calculations: Diagnostic and cure to the over relaxation error of double core hole states. J Chem Phys 2023; 159:144104. [PMID: 37811825 DOI: 10.1063/5.0159493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
The core valence separation (CVS) approximation is the most employed strategy to prevent the variational collapse of standard wave function optimization when attempting to compute electronic states bearing one or more electronic vacancies in core orbitals. Here, we explore the spurious consequences of this approximation on the properties of the computed core hole states. We especially focus on the less studied case of double core hole (DCH) states, whose spectroscopic interest has recently been rapidly growing. We show that the CVS error leads to a systematic underestimation of DCH energies, a property in stark contrast with the case of single core hole states. We highlight that the CVS error can then be interpreted as an over relaxation effect and design a new correction strategy adapted to these specificities.
Collapse
Affiliation(s)
- Anthony Ferté
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
- Laboratoire de Chimie et Interdisciplinarité, Synthèse, Analyse, Modélisation, Nantes Université and CNRS, F-44000 Nantes, France
| | - Emmanuel Giner
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Richard Taïeb
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| | - Stéphane Carniato
- Laboratoire de Chimie Physique-Matière et Rayonnement, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
8
|
Kehry M, Klopper W, Holzer C. Robust relativistic many-body Green's function based approaches for assessing core ionized and excited states. J Chem Phys 2023; 159:044116. [PMID: 37522402 DOI: 10.1063/5.0160265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
A two-component contour deformation (CD) based GW method that employs frequency sampling to drastically reduce the computational effort when assessing quasiparticle states far away from the Fermi level is outlined. Compared to the canonical CD-GW method, computational scaling is reduced by an order of magnitude without sacrificing accuracy. This allows for an efficient calculation of core ionization energies. The improved computational efficiency is used to provide benchmarks for core ionized states, comparing the performance of 15 density functional approximations as Kohn-Sham starting points for GW calculations on a set of 65 core ionization energies of 32 small molecules. Contrary to valence states, GW calculations on core states prefer functionals with only a moderate amount of Hartree-Fock exchange. Moreover, modern ab initio local hybrid functionals are also shown to provide excellent generalized Kohn-Sham references for core GW calculations. Furthermore, the core-valence separated Bethe-Salpeter equation (CVS-BSE) is outlined. CVS-BSE is a convenient tool to probe core excited states. The latter is tested on a set of 40 core excitations of eight small inorganic molecules. Results from the CVS-BSE method for excitation energies and the corresponding absorption cross sections are found to be in excellent agreement with those of reference damped response BSE calculations.
Collapse
Affiliation(s)
- Max Kehry
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Wim Klopper
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| |
Collapse
|
9
|
Kaczun T, Dempwolff AL, Huang X, Gelin MF, Domcke W, Dreuw A. Tuning UV Pump X-ray Probe Spectroscopy on the Nitrogen K Edge Reveals the Radiationless Relaxation of Pyrazine: Ab Initio Simulations Using the Quasiclassical Doorway-Window Approximation. J Phys Chem Lett 2023:5648-5656. [PMID: 37310800 DOI: 10.1021/acs.jpclett.3c01018] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transient absorption UV pump X-ray probe spectroscopy has been established as a versatile technique for the exploration of ultrafast photoinduced dynamics in valence-excited states. In this work, an ab initio theoretical framework for the simulation of time-resolved UV pump X-ray probe spectra is presented. The method is based on the description of the radiation-matter interaction in the classical doorway-window approximation and a surface-hopping algorithm for the nonadiabatic nuclear excited-state dynamics. Using the second-order algebraic-diagrammatic construction scheme for excited states, UV pump X-ray probe signals were simulated for the carbon and nitrogen K edges of pyrazine, assuming a duration of 5 fs of the UV pump and X-ray probe pulses. It is predicted that spectra measured at the nitrogen K edge carry much richer information about the ultrafast nonadiabatic dynamics in the valence-excited states of pyrazine than those measured at the carbon K edge.
Collapse
Affiliation(s)
- Tobias Kaczun
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, Garching D-85747, Germany
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, Garching D-85747, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg D-69120, Germany
| |
Collapse
|
10
|
Mester D, Kállay M. Double-Hybrid Density Functional Theory for Core Excitations: Theory and Benchmark Calculations. J Chem Theory Comput 2023; 19:1310-1321. [PMID: 36721871 PMCID: PMC9979613 DOI: 10.1021/acs.jctc.2c01222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The double-hybrid (DH) time-dependent density functional theory is extended to core excitations. Two different DH formalisms are presented utilizing the core-valence separation (CVS) approximation. First, a CVS-DH variant is introduced relying on the genuine perturbative second-order correction, while an iterative analogue is also presented using our second-order algebraic-diagrammatic construction [ADC(2)]-based DH ansatz. The performance of the new approaches is tested for the most popular DH functionals using the recently proposed XABOOM [J. Chem. Theory Comput.2021, 17, 1618] benchmark set. In order to make a careful comparison, the accuracy and precision of the methods are also inspected. Our results show that the genuine approaches are highly competitive with the more advanced CVS-ADC(2)-based methods if only excitation energies are required. In contrast, as expected, significant differences are observed in oscillator strengths; however, the precision is acceptable for the genuine functionals as well. Concerning the performance of the CVS-DH approaches, the PBE0-2/CVS-ADC(2) functional is superior, while its spin-opposite-scaled variant is also recommended as a cost-effective alternative. For these approaches, significant improvements are realized in the error measures compared with the popular CVS-ADC(2) method.
Collapse
Affiliation(s)
- Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Müegyetem rkp. 3, H-1111Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Müegyetem rkp. 3, H-1111Budapest, Hungary,
| |
Collapse
|
11
|
Carter-Fenk K, Cunha LA, Arias-Martinez JE, Head-Gordon M. Electron-Affinity Time-Dependent Density Functional Theory: Formalism and Applications to Core-Excited States. J Phys Chem Lett 2022; 13:9664-9672. [PMID: 36215404 DOI: 10.1021/acs.jpclett.2c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The lack of particle-hole attraction and orbital relaxation within time-dependent density functional theory (TDDFT) lead to extreme errors in the prediction of K-edge X-ray absorption spectra (XAS). We derive a linear-response formalism that uses optimized orbitals of the n - 1-electron system as the reference, building orbital relaxation and a proper hole into the initial density. Our approach is an exact generalization of the static-exchange approximation that ameliorates the particle-hole interaction error associated with the adiabatic approximation and reduces errors in TDDFT XAS by orders of magnitude. With a statistical performance of just 0.5 eV root-mean-square error and the same computational scaling as TDDFT under the core-valence separation approximation, we anticipate that this approach will be of great utility in XAS calculations of large systems.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Leonardo A Cunha
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Juan E Arias-Martinez
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
12
|
de Moura CEV, Sokolov AY. Simulating X-ray photoelectron spectra with strong electron correlation using multireference algebraic diagrammatic construction theory. Phys Chem Chem Phys 2022; 24:4769-4784. [DOI: 10.1039/d1cp05476g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new theoretical approach for the simulations of X-ray photoelectron spectra of strongly correlated molecular systems that combines multireference algebraic diagrammatic construction theory (MR-ADC) with a core–valence separation (CVS) technique.
Collapse
Affiliation(s)
- Carlos E. V. de Moura
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Alexander Yu. Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
13
|
Seidu I, Neville SP, MacDonell RJ, Schuurman MS. Resolving competing conical intersection pathways: time-resolved X-ray absorption spectroscopy of trans-1,3-butadiene. Phys Chem Chem Phys 2021; 24:1345-1354. [PMID: 34935809 DOI: 10.1039/d1cp05085k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved X-ray absorption spectroscopy is emerging as a uniquely powerful tool to probe coupled electronic-nuclear dynamics in photo-excited molecules. Theoretical studies to date have established that time-resolved X-ray absorption spectroscopy is an atom-specific probe of excited-state wave packet passage through a seam of conical intersections (CIs). However, in many molecular systems, there are competing dynamical pathways involving CIs of different electronic and nuclear character. Discerning these pathways remains an important challenge. Here, we demonstrate that time-resolved X-ray absorption spectroscopy (TRXAS) has the potential to resolve competing channels in excited-state non-adiabatic dynamics. Using the example of 1,3-butadiene, we show how TRXAS discerns the different electronic structures associated with passage through multiple conical intersections. trans-1,3-Butadiene exhibits a branching between polarized and radicaloid pathways associated with ethylenic "twisted-pyramidalized" and excited-state cis-trans isomerization dynamics, respectively. The differing electronic structures along these pathways give rise to different XAS signals, indicating the possibility of resolving them. Furthermore, this indicates that XAS, and other core-level spectroscopic techniques, offer the appealing prospect of directly probing the effects of selective chemical substitution and its ability to affect chemical control over excited-state molecular dynamics.
Collapse
Affiliation(s)
- Issaka Seidu
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.
| | - Simon P Neville
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.
| | - Ryan J MacDonell
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| | - Michael S Schuurman
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada. .,Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
14
|
Neville SP, Schuurman MS. Removing the Deadwood from DFT/MRCI Wave Functions: The p-DFT/MRCI Method. J Chem Theory Comput 2021; 17:7657-7665. [PMID: 34861111 DOI: 10.1021/acs.jctc.1c00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The combined density functional theory and multireference configuration interaction (DFT/MRCI) method is a powerful tool for the calculation of excited electronic states of large molecules. There exists, however, a large amount of superfluous configurations in a typical DFT/MRCI wave function. We show that this deadwood may be effectively removed using a simple configuration pruning algorithm based on second-order Epstein-Nesbet perturbation theory. The resulting method, which we denote p-DFT/MRCI, is shown to result in orders of magnitude saving in computational timings, while retaining the accuracy of the original DFT/MRCI method.
Collapse
Affiliation(s)
- Simon P Neville
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Michael S Schuurman
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
15
|
Moitra T, Coriani S, Cabral Tenorio BN. Inner-shell photoabsorption and photoionisation cross-sections of valence excited states from asymmetric-Lanczos equation-of-motion coupled cluster singles and doubles theory. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1980235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Torsha Moitra
- DTU Chemistry–Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry–Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | |
Collapse
|
16
|
Halbert L, Vidal ML, Shee A, Coriani S, Severo Pereira Gomes A. Relativistic EOM-CCSD for Core-Excited and Core-Ionized State Energies Based on the Four-Component Dirac-Coulomb(-Gaunt) Hamiltonian. J Chem Theory Comput 2021; 17:3583-3598. [PMID: 33944570 DOI: 10.1021/acs.jctc.0c01203] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report an implementation of the core-valence separation approach to the four-component relativistic Hamiltonian-based equation-of-motion coupled-cluster with singles and doubles theory (CVS-EOM-CCSD) for the calculation of relativistic core-ionization potentials and core-excitation energies. With this implementation, which is capable of exploiting double group symmetry, we investigate the effects of the different CVS-EOM-CCSD variants and the use of different Hamiltonians based on the exact two-component (X2C) framework on the energies of different core-ionized and -excited states in halogen- (CH3I, HX, and X-, X = Cl-At) and xenon-containing (Xe, XeF2) species. Our results show that the X2C molecular mean-field approach [Sikkema, J.; J. Chem. Phys. 2009, 131, 124116], based on four-component Dirac-Coulomb mean-field calculations (2DCM), is capable of providing core excitations and ionization energies that are nearly indistinguishable from the reference four-component energies for up to and including fifth-row elements. We observe that two-electron integrals over the small-component basis sets lead to non-negligible contributions to core binding energies for the K and L edges for atoms such as iodine or astatine and that the approach based on Dirac-Coulomb-Gaunt mean-field calculations (2DCGM) are significantly more accurate than X2C calculations for which screened two-electron spin-orbit interactions are included via atomic mean-field integrals.
Collapse
Affiliation(s)
- Loïc Halbert
- CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, Université de Lille, F-59000 Lille, France
| | - Marta L Vidal
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sonia Coriani
- DTU Chemistry-Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - André Severo Pereira Gomes
- CNRS, UMR 8523-PhLAM-Physique des Lasers, Atomes et Molécules, Université de Lille, F-59000 Lille, France
| |
Collapse
|
17
|
Fransson T, Brumboiu IE, Vidal ML, Norman P, Coriani S, Dreuw A. XABOOM: An X-ray Absorption Benchmark of Organic Molecules Based on Carbon, Nitrogen, and Oxygen 1s → π* Transitions. J Chem Theory Comput 2021; 17:1618-1637. [PMID: 33544612 PMCID: PMC8023667 DOI: 10.1021/acs.jctc.0c01082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 01/05/2023]
Abstract
The performance of several standard and popular approaches for calculating X-ray absorption spectra at the carbon, nitrogen, and oxygen K-edges of 40 primarily organic molecules up to the size of guanine has been evaluated, focusing on the low-energy and intense 1s → π* transitions. Using results obtained with CVS-ADC(2)-x and fc-CVS-EOM-CCSD as benchmark references, we investigate the performance of CC2, ADC(2), ADC(3/2), and commonly adopted density functional theory (DFT)-based approaches. Here, focus is on precision rather than on accuracy of transition energies and intensities-in other words, we target relative energies and intensities and the spread thereof, rather than absolute values. The use of exchange-correlation functionals tailored for time-dependent DFT calculations of core excitations leads to error spreads similar to those seen for more standard functionals, despite yielding superior absolute energies. Long-range corrected functionals are shown to perform particularly well compared to our reference data, showing error spreads in energy and intensity of 0.2-0.3 eV and ∼10%, respectively, as compared to 0.3-0.6 eV and ∼20% for a typical pure hybrid. In comparing intensities, state mixing can complicate matters, and techniques to avoid this issue are discussed. Furthermore, the influence of basis sets in high-level ab initio calculations is investigated, showing that reasonably accurate results are obtained with the use of 6-311++G**. We name this benchmark suite as XABOOM (X-ray absorption benchmark of organic molecules) and provide molecular structures and ground-state self-consistent field energies and spectroscopic data. We believe that it provides a good assessment of electronic structure theory methods for calculating X-ray absorption spectra and will become useful for future developments in this field.
Collapse
Affiliation(s)
- Thomas Fransson
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
- Fysikum, Stockholm University, Albanova, 10691 Stockholm, Sweden
| | - Iulia E. Brumboiu
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 10691 Stockholm, Sweden
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology, 34141 Daejeon, Korea
| | - Marta L. Vidal
- DTU
Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Patrick Norman
- Department
of Theoretical Chemistry and Biology, KTH
Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Sonia Coriani
- DTU
Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
- Department
of Chemistry, NTNU-Norwegian University
of Science and Technology, N-7991 Trondheim, Norway
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Tsuru S, Vidal ML, Pápai M, Krylov AI, Møller KB, Coriani S. An assessment of different electronic structure approaches for modeling time-resolved x-ray absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:024101. [PMID: 33786337 PMCID: PMC7986275 DOI: 10.1063/4.0000070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/11/2021] [Indexed: 05/06/2023]
Abstract
We assess the performance of different protocols for simulating excited-state x-ray absorption spectra. We consider three different protocols based on equation-of-motion coupled-cluster singles and doubles, two of them combined with the maximum overlap method. The three protocols differ in the choice of a reference configuration used to compute target states. Maximum-overlap-method time-dependent density functional theory is also considered. The performance of the different approaches is illustrated using uracil, thymine, and acetylacetone as benchmark systems. The results provide guidance for selecting an electronic structure method for modeling time-resolved x-ray absorption spectroscopy.
Collapse
Affiliation(s)
- Shota Tsuru
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Marta L. Vidal
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Mátyás Pápai
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Anna I. Krylov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Klaus B. Møller
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
19
|
Zinchenko KS, Ardana-Lamas F, Seidu I, Neville SP, van der Veen J, Lanfaloni VU, Schuurman MS, Wörner HJ. Sub-7-femtosecond conical-intersection dynamics probed at the carbon K-edge. Science 2021; 371:489-494. [DOI: 10.1126/science.abf1656] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Issaka Seidu
- National Research Council of Canada, Ottawa, ON, Canada
| | | | | | | | - Michael S. Schuurman
- National Research Council of Canada, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
20
|
Herbst MF, Fransson T. Quantifying the error of the core-valence separation approximation. J Chem Phys 2020; 153:054114. [PMID: 32770930 DOI: 10.1063/5.0013538] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For the calculation of core-excited states probed through X-ray absorption spectroscopy, the core-valence separation (CVS) scheme has become a vital tool. This approach allows us to target such states with high specificity, albeit introducing an error. We report the implementation of a post-processing step for CVS excitations obtained within the algebraic-diagrammatic construction scheme for the polarization propagator, which removes this error. Based on this, we provide a detailed analysis of the CVS scheme, identifying its accuracy to be dominated by an error balance between two neglected couplings, one between core and valence single excitations and the other between single and double core excitations. The selection of the basis set is shown to be vital for a proper description of both couplings, with tight polarizing functions being necessary for a good balance of errors. The CVS error is confirmed to be stable across multiple systems, with an element-specific spread for K-edge spectrum calculations of only about ±0.02 eV. A systematic lowering of the CVS error by 0.02 eV-0.03 eV is noted when considering excitations to extremely diffuse states, emulating ionization.
Collapse
Affiliation(s)
- Michael F Herbst
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France; Inria Paris, 75589 Paris Cedex 12, France; and Sorbonne Universitée, Institut des Sciences du Calcul et des Données, ISCD, 75005 Paris, France
| | - Thomas Fransson
- Interdisciplinary Center for Scientific Computing, Heidelberg University, 69120 Heidelberg, Germany and Fysikum, Stockholm University, Albanova, 10691 Stockholm, Sweden
| |
Collapse
|
21
|
List NH, Dempwolff AL, Dreuw A, Norman P, Martínez TJ. Probing competing relaxation pathways in malonaldehyde with transient X-ray absorption spectroscopy. Chem Sci 2020; 11:4180-4193. [PMID: 34122881 PMCID: PMC8152795 DOI: 10.1039/d0sc00840k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Excited-state intramolecular hydrogen transfer (ESIHT) is a fundamental reaction relevant to chemistry and biology. Malonaldehyde is the simplest example of ESIHT, yet only little is known experimentally about its excited-state dynamics. Several competing relaxation pathways have been proposed, including internal conversion mediated by ESIHT and C[double bond, length as m-dash]C torsional motion as well as intersystem crossing. We perform an in silico transient X-ray absorption spectroscopy (TRXAS) experiment at the oxygen K-edge to investigate its potential to monitor the proposed ultrafast decay pathways in malonaldehyde upon photoexcitation to its bright S2(ππ*) state. We employ both restricted active space perturbation theory and algebraic-diagrammatic construction for the polarization propagator along interpolated reaction coordinates as well as representative trajectories from ab initio multiple spawning simulations to compute the TRXAS signals from the lowest valence states. Our study suggests that oxygen K-edge TRXAS can distinctly fingerprint the passage through the H-transfer intersection and the concomitant population transfer to the S1(nπ*) state. Potential intersystem crossing to T1(ππ*) is detectable from reappearance of the double pre-edge signature and reversed intensities. Moreover, the torsional deactivation pathway induces transient charge redistribution from the enol side towards the central C-atom and manifests itself as substantial shifts of the pre-edge features. Given the continuous advances in X-ray light sources, our study proposes an experimental route to disentangle ultrafast excited-state decay channels in this prototypical ESIHT system and provides a pathway-specific mapping of the TRXAS signal to facilitate the interpretation of future experiments.
Collapse
Affiliation(s)
- Nanna H List
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Adrian L Dempwolff
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Heidelberg University Im Neuenheimer Feld 205 D-69120 Heidelberg Germany
| | - Patrick Norman
- School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Department of Theoretical Chemistry and Biology, KTH Royal Institute of Technology Sweden
| | - Todd J Martínez
- Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
22
|
Hait D, Head-Gordon M. Highly Accurate Prediction of Core Spectra of Molecules at Density Functional Theory Cost: Attaining Sub-electronvolt Error from a Restricted Open-Shell Kohn-Sham Approach. J Phys Chem Lett 2020; 11:775-786. [PMID: 31917579 DOI: 10.1021/acs.jpclett.9b03661] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the use of the recently developed square gradient minimization (SGM) algorithm for excited-state orbital optimization to obtain spin-pure restricted open-shell Kohn-Sham (ROKS) energies for core excited states of molecules. The SGM algorithm is robust against variational collapse and offers a reliable route to converging orbitals for target excited states at only 2-3 times the cost of ground-state orbital optimization (per iteration). ROKS/SGM with the modern SCAN/ωB97X-V functionals is found to predict the K-edge of C, N, O, and F to a root mean squared error of ∼0.3 eV. ROKS/SGM is equally effective at predicting L-edge spectra of third period elements, provided a perturbative spin-orbit correction is employed. This high accuracy can be contrasted with traditional time-dependent density functional theory (TDDFT), which typically has greater than 10 eV error and requires translation of computed spectra to align with experiment. ROKS is computationally affordable (having the same scaling as ground-state DFT and a slightly larger prefactor) and can be applied to geometry optimizations/ab initio molecular dynamics of core excited states, as well as condensed phase simulations. ROKS can also model doubly excited/ionized states with one broken electron pair, which are beyond the ability of linear response based methods.
Collapse
Affiliation(s)
- Diptarka Hait
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry , University of California , Berkeley , California 94720 , United States
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|