1
|
Van Benschoten W, Petras HR, Shepherd JJ. Electronic Free Energy Surface of the Nitrogen Dimer Using First-Principles Finite Temperature Electronic Structure Methods. J Phys Chem A 2023; 127:6842-6856. [PMID: 37535315 PMCID: PMC10440793 DOI: 10.1021/acs.jpca.3c01741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Indexed: 08/04/2023]
Abstract
We use full configuration interaction and density matrix quantum Monte Carlo methods to calculate the electronic free energy surface of the nitrogen dimer within the free-energy Born-Oppenheimer approximation. As the temperature is raised from T = 0, we find a temperature regime in which the internal energy causes bond strengthening. At these temperatures, adding in the entropy contributions is required to cause the bond to gradually weaken with increasing temperature. We predict a thermally driven dissociation for the nitrogen dimer between 22,000 to 63,200 K depending on symmetries and basis set. Inclusion of more spatial and spin symmetries reduces the temperature required. The origin of these observations is explored using the structure of the density matrix at various temperatures and bond lengths.
Collapse
Affiliation(s)
| | - Hayley R. Petras
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - James J. Shepherd
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Babbush R, Huggins WJ, Berry DW, Ung SF, Zhao A, Reichman DR, Neven H, Baczewski AD, Lee J. Quantum simulation of exact electron dynamics can be more efficient than classical mean-field methods. Nat Commun 2023; 14:4058. [PMID: 37429883 DOI: 10.1038/s41467-023-39024-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/26/2023] [Indexed: 07/12/2023] Open
Abstract
Quantum algorithms for simulating electronic ground states are slower than popular classical mean-field algorithms such as Hartree-Fock and density functional theory but offer higher accuracy. Accordingly, quantum computers have been predominantly regarded as competitors to only the most accurate and costly classical methods for treating electron correlation. However, here we tighten bounds showing that certain first-quantized quantum algorithms enable exact time evolution of electronic systems with exponentially less space and polynomially fewer operations in basis set size than conventional real-time time-dependent Hartree-Fock and density functional theory. Although the need to sample observables in the quantum algorithm reduces the speedup, we show that one can estimate all elements of the k-particle reduced density matrix with a number of samples scaling only polylogarithmically in basis set size. We also introduce a more efficient quantum algorithm for first-quantized mean-field state preparation that is likely cheaper than the cost of time evolution. We conclude that quantum speedup is most pronounced for finite-temperature simulations and suggest several practically important electron dynamics problems with potential quantum advantage.
Collapse
Affiliation(s)
| | | | - Dominic W Berry
- Department of Physics and Astronomy, Macquarie University, Sydney, NSW, Australia
| | - Shu Fay Ung
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andrew Zhao
- Google Quantum AI, Venice, CA, USA
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | | | | | - Andrew D Baczewski
- Quantum Algorithms and Applications Collaboratory, Sandia National Laboratories, Albuquerque, NM, USA
| | - Joonho Lee
- Google Quantum AI, Venice, CA, USA.
- Department of Chemistry, Columbia University, New York, NY, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA.
| |
Collapse
|
3
|
Pathak H, Panyala A, Peng B, Bauman NP, Mutlu E, Rehr JJ, Vila FD, Kowalski K. Real-Time Equation-of-Motion Coupled-Cluster Cumulant Green's Function Method: Heterogeneous Parallel Implementation Based on the Tensor Algebra for Many-Body Methods Infrastructure. J Chem Theory Comput 2023; 19:2248-2257. [PMID: 37096369 DOI: 10.1021/acs.jctc.3c00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
We report the implementation of the real-time equation-of-motion coupled-cluster (RT-EOM-CC) cumulant Green's function method [ J. Chem. Phys. 2020, 152, 174113] within the Tensor Algebra for Many-body Methods (TAMM) infrastructure. TAMM is a massively parallel heterogeneous tensor library designed for utilizing forthcoming exascale computing resources. The two-body electron repulsion matrix elements are Cholesky-decomposed, and we imposed spin-explicit forms of the various operators when evaluating the tensor contractions. Unlike our previous real algebra Tensor Contraction Engine (TCE) implementation, the TAMM implementation supports fully complex algebra. The RT-EOM-CC singles (S) and doubles (D) time-dependent amplitudes are propagated using a first-order Adams-Moulton method. This new implementation shows excellent scalability tested up to 500 GPUs using the Zn-porphyrin molecule with 655 basis functions, with parallel efficiencies above 90% up to 400 GPUs. The TAMM RT-EOM-CCSD was used to study core photoemission spectra in the formaldehyde and ethyl trifluoroacetate (ESCA) molecules. Simulations of the latter involve as many as 71 occupied and 649 virtual orbitals. The relative quasiparticle ionization energies and overall spectral functions agree well with available experimental results.
Collapse
Affiliation(s)
- Himadri Pathak
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ajay Panyala
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Nicholas P Bauman
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Erdal Mutlu
- Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Karol Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
4
|
Martyn JM, Liu Y, Chin ZE, Chuang IL. Efficient fully-coherent quantum signal processing algorithms for real-time dynamics simulation. J Chem Phys 2023; 158:024106. [PMID: 36641381 DOI: 10.1063/5.0124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Simulating the unitary dynamics of a quantum system is a fundamental problem of quantum mechanics, in which quantum computers are believed to have significant advantage over their classical counterparts. One prominent such instance is the simulation of electronic dynamics, which plays an essential role in chemical reactions, non-equilibrium dynamics, and material design. These systems are time-dependent, which requires that the corresponding simulation algorithm can be successfully concatenated with itself over different time intervals to reproduce the overall coherent quantum dynamics of the system. In this paper, we quantify such simulation algorithms by the property of being fully-coherent: the algorithm succeeds with arbitrarily high success probability 1 - δ while only requiring a single copy of the initial state. We subsequently develop fully-coherent simulation algorithms based on quantum signal processing (QSP), including a novel algorithm that circumvents the use of amplitude amplification while also achieving a query complexity additive in time t, ln(1/δ), and ln(1/ϵ) for error tolerance ϵ: Θ‖H‖|t|+ln(1/ϵ)+ln(1/δ). Furthermore, we numerically analyze these algorithms by applying them to the simulation of the spin dynamics of the Heisenberg model and the correlated electronic dynamics of an H2 molecule. Since any electronic Hamiltonian can be mapped to a spin Hamiltonian, our algorithm can efficiently simulate time-dependent ab initio electronic dynamics in the circuit model of quantum computation. Accordingly, it is also our hope that the present work serves as a bridge between QSP-based quantum algorithms and chemical dynamics, stimulating a cross-fertilization between these exciting fields.
Collapse
Affiliation(s)
- John M Martyn
- Department of Physics, Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuan Liu
- Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zachary E Chin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Isaac L Chuang
- Department of Physics, Co-Design Center for Quantum Advantage, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
5
|
Van Benschoten WZ, Shepherd JJ. Piecewise Interaction Picture Density Matrix Quantum Monte Carlo. J Chem Phys 2022; 156:184107. [DOI: 10.1063/5.0094290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The density matrix quantum Monte Carlo (DMQMC) set of methods stochastically samples the exact $N$-body density matrix for interacting electrons at finite temperature. We introduce a simple modification to the interaction picture DMQMC method (IP-DMQMC) which overcomes the limitation of only sampling one inverse temperature point at a time, instead allowing for the sampling of a temperature range within a single calculation thereby reducing the computational cost. At the target inverse temperature, instead of ending the simulation, we incorporate a change of picture away from the interaction picture. The resulting equations of motion have piecewise functions and use the interaction picture in the first phase of a simulation, followed by the application of the Bloch equation once the target inverse temperature is reached. We find that the performance of this method is similar to or better than the DMQMC and IP-DMQMC algorithms in a variety of molecular test systems.
Collapse
|
6
|
Dan X, Xu M, Yan Y, Shi Q. Generalized master equation for charge transport in a molecular junction: Exact memory kernels and their high order expansion. J Chem Phys 2022; 156:134114. [PMID: 35395901 DOI: 10.1063/5.0086663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a set of generalized master equations (GMEs) to study charge transport dynamics in molecular junctions using the Nakajima-Zwanzig-Mori projection operator approach. In the new GME, time derivatives of population on each quantum state of the molecule, as well as the tunneling current, are calculated as the convolution of time non-local memory kernels with populations on all system states. The non-Markovian memory kernels are obtained by combining the hierarchical equations of motion (HEOM) method and a previous derived Dyson relation for the exact kernel. A perturbative expansion of these memory kernels is then calculated using the extended HEOM developed in our previous work [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. By using the resonant level model and the Anderson impurity model, we study properties of the exact memory kernels and analyze convergence properties of their perturbative expansions with respect to the system-bath coupling strength and the electron-electron repulsive energy. It is found that exact memory kernels calculated from HEOM exhibit short memory times and decay faster than the population and current dynamics. The high order perturbation expansion of the memory kernels can give converged results in certain parameter regimes. The Padé and Landau-Zener resummation schemes are also found to give improved results over low order perturbation theory.
Collapse
Affiliation(s)
- Xiaohan Dan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaming Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Polley K, Loring RF. Two-dimensional vibronic spectroscopy with semiclassical thermofield dynamics. J Chem Phys 2022; 156:124108. [DOI: 10.1063/5.0083868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Thermofield dynamics is an exactly correct formulation of quantum mechanics at finite temperature in which a wavefunction is governed by an effective temperature-dependent quantum Hamiltonian. The optimized mean trajectory (OMT) approximation allows the calculation of spectroscopic response functions from trajectories produced by the classical limit of a mapping Hamiltonian that includes physical nuclear degrees of freedom and other effective degrees of freedom representing discrete vibronic states. Here, we develop a thermofield OMT (TF-OMT) approach in which the OMT procedure is applied to a temperature-dependent classical Hamiltonian determined from the thermofield-transformed quantum mapping Hamiltonian. Initial conditions for bath nuclear degrees of freedom are sampled from a zero-temperature distribution. Calculations of two-dimensional electronic spectra and two-dimensional vibrational–electronic spectra are performed for models that include excitonically coupled electronic states. The TF-OMT calculations agree very closely with the corresponding OMT results, which, in turn, represent well benchmark calculations with the hierarchical equations of motion method.
Collapse
Affiliation(s)
- Kritanjan Polley
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | - Roger F. Loring
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
8
|
Petras HR, Van Benschoten WZ, Ramadugu SK, Shepherd JJ. The Sign Problem in Density Matrix Quantum Monte Carlo. J Chem Theory Comput 2021; 17:6036-6052. [PMID: 34546738 PMCID: PMC8515812 DOI: 10.1021/acs.jctc.1c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Density matrix quantum Monte Carlo (DMQMC) is a recently developed method for stochastically sampling the N-particle thermal density matrix to obtain exact-on-average energies for model and ab initio systems. We report a systematic numerical study of the sign problem in DMQMC based on simulations of atomic and molecular systems. In DMQMC, the density matrix is written in an outer product basis of Slater determinants. In principle, this means that DMQMC needs to sample a space that scales in the system size, N, as O[(exp(N))2]. In practice, removing the sign problem requires a total walker population that exceeds a system-dependent critical walker population (Nc), imposing limitations on both storage and compute time. We establish that Nc for DMQMC is the square of Nc for FCIQMC. By contrast, the minimum Nc in the interaction picture modification of DMQMC (IP-DMQMC) is only linearly related to the Nc for FCIQMC. We find that this difference originates from the difference in propagation of IP-DMQMC versus canonical DMQMC: the former is asymmetric, whereas the latter is symmetric. When an asymmetric mode of propagation is used in DMQMC, there is a much greater stochastic error and is thus prohibitively expensive for DMQMC without the interaction picture adaptation. Finally, we find that the equivalence between IP-DMQMC and FCIQMC seems to extend to the initiator approximation, which is often required to study larger systems with large basis sets. This suggests that IP-DMQMC offers a way to ameliorate the cost of moving between a Slater determinant space and an outer product basis.
Collapse
Affiliation(s)
- Hayley R Petras
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | | | - Sai Kumar Ramadugu
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| | - James J Shepherd
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, United States
| |
Collapse
|
9
|
Fischer EW, Saalfrank P. A thermofield-based multilayer multiconfigurational time-dependent Hartree approach to non-adiabatic quantum dynamics at finite temperature. J Chem Phys 2021; 155:134109. [PMID: 34624972 DOI: 10.1063/5.0064013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a thermofield-based formulation of the multilayer multiconfigurational time-dependent Hartree (MCTDH) method to study finite temperature effects on non-adiabatic quantum dynamics from a non-stochastic, wave function perspective. Our approach is based on the formal equivalence of bosonic many-body theory at zero temperature with a doubled number of degrees of freedom and the thermal quasi-particle representation of bosonic thermofield dynamics (TFD). This equivalence allows for a transfer of bosonic many-body MCTDH as introduced by Wang and Thoss to the finite temperature framework of thermal quasi-particle TFD. As an application, we study temperature effects on the ultrafast internal conversion dynamics in pyrazine. We show that finite temperature effects can be efficiently accounted for in the construction of multilayer expansions of thermofield states in the framework presented herein. Furthermore, we find our results to agree well with existing studies on the pyrazine model based on the ρMCTDH method.
Collapse
Affiliation(s)
- Eric W Fischer
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Peng R, White AF, Zhai H, Kin-Lic Chan G. Conservation laws in coupled cluster dynamics at finite temperature. J Chem Phys 2021; 155:044103. [PMID: 34340387 DOI: 10.1063/5.0059257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We extend the finite-temperature Keldysh non-equilibrium coupled cluster theory (Keldysh-CC) [A. F. White and G. K.-L. Chan, J. Chem. Theory Comput. 15, 6137-6253 (2019)] to include a time-dependent orbital basis. When chosen to minimize the action, such a basis restores local and global conservation laws (Ehrenfest's theorem) for all one-particle properties while remaining energy conserving for time-independent Hamiltonians. We present the time-dependent Keldysh orbital-optimized coupled cluster doubles method in analogy with the formalism for zero-temperature dynamics, extended to finite temperatures through the time-dependent action on the Keldysh contour. To demonstrate the conservation property and understand the numerical performance of the method, we apply it to several problems of non-equilibrium finite-temperature dynamics: a 1D Hubbard model with a time-dependent Peierls phase, laser driving of molecular H2, driven dynamics in warm-dense silicon, and transport in the single impurity Anderson model.
Collapse
Affiliation(s)
- Ruojing Peng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alec F White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Huanchen Zhai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Church MS, Rubenstein BM. Real-time dynamics of strongly correlated fermions using auxiliary field quantum Monte Carlo. J Chem Phys 2021; 154:184103. [PMID: 34241020 DOI: 10.1063/5.0049116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spurred by recent technological advances, there is a growing demand for computational methods that can accurately predict the dynamics of correlated electrons. Such methods can provide much-needed theoretical insights into the electron dynamics probed via time-resolved spectroscopy experiments and observed in non-equilibrium ultracold atom experiments. In this article, we develop and benchmark a numerically exact Auxiliary Field Quantum Monte Carlo (AFQMC) method for modeling the dynamics of correlated electrons in real time. AFQMC has become a powerful method for predicting the ground state and finite temperature properties of strongly correlated systems mostly by employing constraints to control the sign problem. Our initial goal in this work is to determine how well AFQMC generalizes to real-time electron dynamics problems without constraints. By modeling the repulsive Hubbard model on different lattices and with differing initial electronic configurations, we show that real-time AFQMC is capable of accurately capturing long-lived electronic coherences beyond the reach of mean field techniques. While the times to which we can meaningfully model decrease with increasing correlation strength and system size as a result of the exponential growth of the dynamical phase problem, we show that our technique can model the short-time behavior of strongly correlated systems to very high accuracy. Crucially, we find that importance sampling, combined with a novel adaptive active space sampling technique, can substantially lengthen the times to which we can simulate. These results establish real-time AFQMC as a viable technique for modeling the dynamics of correlated electron systems and serve as a basis for future sampling advances that will further mitigate the dynamical phase problem.
Collapse
Affiliation(s)
- Matthew S Church
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Brenda M Rubenstein
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
12
|
Liu J, Cheng L. Relativistic coupled‐cluster and equation‐of‐motion coupled‐cluster methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Junzi Liu
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| | - Lan Cheng
- Department of Chemistry The Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
13
|
Begušić T, Vaníček J. Finite-Temperature, Anharmonicity, and Duschinsky Effects on the Two-Dimensional Electronic Spectra from Ab Initio Thermo-Field Gaussian Wavepacket Dynamics. J Phys Chem Lett 2021; 12:2997-3005. [PMID: 33733773 PMCID: PMC8006135 DOI: 10.1021/acs.jpclett.1c00123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 05/28/2023]
Abstract
Accurate description of finite-temperature vibrational dynamics is indispensable in the computation of two-dimensional electronic spectra. Such simulations are often based on the density matrix evolution, statistical averaging of initial vibrational states, or approximate classical or semiclassical limits. While many practical approaches exist, they are often of limited accuracy and difficult to interpret. Here, we use the concept of thermo-field dynamics to derive an exact finite-temperature expression that lends itself to an intuitive wavepacket-based interpretation. Furthermore, an efficient method for computing finite-temperature two-dimensional spectra is obtained by combining the exact thermo-field dynamics approach with the thawed Gaussian approximation for the wavepacket dynamics, which is exact for any displaced, distorted, and Duschinsky-rotated harmonic potential but also accounts partially for anharmonicity effects in general potentials. Using this new method, we directly relate a symmetry breaking of the two-dimensional signal to the deviation from the conventional Brownian oscillator picture.
Collapse
|
14
|
Shen T, Liu Y, Yu Y, Rubenstein BM. Finite temperature auxiliary field quantum Monte Carlo in the canonical ensemble. J Chem Phys 2020; 153:204108. [DOI: 10.1063/5.0026606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tong Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Yuan Liu
- Center for Ultracold Atoms, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yang Yu
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
15
|
Harsha G, Henderson TM, Scuseria GE. Wave function methods for canonical ensemble thermal averages in correlated many-fermion systems. J Chem Phys 2020; 153:124115. [DOI: 10.1063/5.0022702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gaurav Harsha
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - Thomas M. Henderson
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| | - Gustavo E. Scuseria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
16
|
White AF, Kin-Lic Chan G. Finite-temperature coupled cluster: Efficient implementation and application to prototypical systems. J Chem Phys 2020; 152:224104. [DOI: 10.1063/5.0009845] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
White AF, Chan GKL. Time-Dependent Coupled Cluster Theory on the Keldysh Contour for Nonequilibrium Systems. J Chem Theory Comput 2019; 15:6137-6153. [DOI: 10.1021/acs.jctc.9b00750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alec F. White
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Umited States
| | - Garnet Kin-Lic Chan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Umited States
| |
Collapse
|