1
|
Nuckolls KP, Scheer MG, Wong D, Oh M, Lee RL, Herzog-Arbeitman J, Watanabe K, Taniguchi T, Lian B, Yazdani A. Spectroscopy of the fractal Hofstadter energy spectrum. Nature 2025; 639:60-66. [PMID: 40011775 DOI: 10.1038/s41586-024-08550-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/19/2024] [Indexed: 02/28/2025]
Abstract
Hofstadter's butterfly, the predicted energy spectrum for non-interacting electrons confined to a two-dimensional lattice in a magnetic field, is one of the most remarkable fractal structures in nature1. At rational ratios of magnetic flux quanta per lattice unit cell, this spectrum shows self-similar distributions of energy levels that reflect its recursive construction. For most materials, Hofstadter's butterfly is predicted under experimental conditions that are unachievable using laboratory-scale magnetic fields1-3. More recently, electrical transport studies have provided evidence for Hofstadter's butterfly in materials engineered to have artificially large lattice constants4-6, such as those with moiré superlattices7-10. Yet, so far, direct spectroscopy of the fractal energy spectrum predicted by Hofstadter nearly 50 years ago has remained out of reach. Here we use high-resolution scanning tunnelling microscopy/spectroscopy (STM/STS) to investigate the flat electronic bands in twisted bilayer graphene (TBG) near the predicted second magic angle11,12, an ideal setting for spectroscopic studies of Hofstadter's spectrum. Our study shows the fractionalization of flat moiré bands into discrete Hofstadter subbands and discerns experimental signatures of self-similarity of this spectrum. Moreover, our measurements uncover a spectrum that evolves dynamically with electron density, showing phenomena beyond that of Hofstadter's original model owing to the combined effects of strong correlations, Coulomb interactions and the quantum degeneracy of electrons in TBG.
Collapse
Affiliation(s)
- Kevin P Nuckolls
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
- Department of Physics, Princeton University, Princeton, NJ, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Dillon Wong
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Myungchul Oh
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
- Department of Physics, Princeton University, Princeton, NJ, USA
- Department of Semiconductor Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ryan L Lee
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA
- Department of Physics, Princeton University, Princeton, NJ, USA
| | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Biao Lian
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Ali Yazdani
- Joseph Henry Laboratories, Princeton University, Princeton, NJ, USA.
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Wang J, Sun M. Piezo tube stacked scanning tunneling microscope for use in extreme and confined environments. Micron 2024; 187:103719. [PMID: 39293141 DOI: 10.1016/j.micron.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Scanning Tunneling Microscopy (STM) is widely used for observing atomic structures due to its ultra-high spatial resolution. As the core units of STM, the coarse stepper motor and imaging unit, have conflicting size requirements for piezo tubes. Longer piezo tubes yield greater output force and easier movement for the motor, while shorter tubes enhance imaging precision and stability for the scanner. Traditional STMs typically employ a large piezo tube for coarse stepping and a smaller one for independent imaging to address this issue. Here, we present the new design of a piezo tube stacked STM, in which two independent piezo tubes act together during tip-sample approach process and only one shorter tube works during scanning imaging. Both tubes are fixed to the framework, ensuring high rigidity and compactness. The new design enables us to achieve both coarse stepping and imaging functions with a total length of only 25 mm for the two tubes, effectively reducing the length of whole STM, facilitating its integration into narrow low-temperature spaces for imaging applications. Using this device, we obtained high-quality atomic images of graphite sample surfaces at room temperature. Continuous scanning imaging of the same area on Au film at 300 K demonstrates the STM's high stability in both X-Y and Z directions. Atomic images, I-V spectra, and di/dv spectra obtained at 2 K on graphite surface illustrate the excellent application potential of this device in low-temperature environments. Finally, atomic images obtained of graphite in sweeping the magnetic fields from 0 T to 11 T in a huge vibrational dry magnet prove the new STM's excellent performance in extreme conditions.
Collapse
Affiliation(s)
- Jihao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Mengbo Sun
- Department of General Education, Anhui Xinhua University, Hefei 230088, China.
| |
Collapse
|
3
|
Ham U, Kim H, Yoon JS, Yang W, Kim TH, Lee J, Yeom HW. An approach to breaking the 100-milli-Kelvin barrier in electron temperature with a dilution-refrigerator ultrahigh vacuum scanning tunneling microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:113707. [PMID: 39589207 DOI: 10.1063/5.0233223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
This study presents a newly constructed dilution-refrigerator ultrahigh vacuum (UHV) scanning tunneling microscope (STM) with a 9/2/2 T superconducting vector magnet capable of achieving electron temperatures as low as 76 mK. Our design emphasizes robust thermal contacts, particularly with the sample holder through a thin insulating layer. Additionally, we focus on effective shielding and grounding against radio-frequency electromagnetic interference by integrating the critical electronics as a physically and electrically integral component of the STM setup. Scanning tunneling spectroscopy results obtained from a superconducting aluminum substrate and a gold tip indicate superior energy resolution, with a higher aspect ratio of the superconducting coherence peak in the dI/dV spectra compared to other dilution-refrigerator UHV STMs. Given that only a handful of UHV STMs with dilution refrigerators have reached electron temperatures below 100 mK, these results demonstrate the effectiveness of our design and methodology in achieving low electron temperatures.
Collapse
Affiliation(s)
- Ungdon Ham
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Hyeonjung Kim
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ji-Soo Yoon
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Wooin Yang
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Tae-Hwan Kim
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jinho Lee
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Han Woong Yeom
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
4
|
Coe AM, Li G, Andrei EY. Cryogen-free modular scanning tunneling microscope operating at 4-K in high magnetic field on a compact ultra-high vacuum platform. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:083702. [PMID: 39105599 DOI: 10.1063/5.0212244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
One of the daunting challenges in modern low temperature scanning tunneling microscopy (STM) is the difficulty of combining atomic resolution with cryogen-free cooling. Further functionality needs, such as ultra-high vacuum (UHV), high magnetic field (HF), and compatibility with μm-sized samples, pose additional challenges to an already ambitious build. We present the design, construction, and performance of a cryogen-free, UHV, low temperature, and high magnetic field system for modular STM operation. An internal vibration isolator reduces vibrations in this system, allowing for atomic resolution STM imaging while maintaining a low base temperature of ∼4 K and magnetic fields up to 9 T. Samples and tips can be conditioned in situ utilizing a heating stage, an ion sputtering gun, an e-beam evaporator, a tip treater, and sample exfoliation. In situ sample and tip exchange and alignment are performed in a connected UHV room temperature stage with optical access. Multisite operation without breaking vacuum is enabled by a unique quick-connect STM head design. A novel low-profile vertical transfer mechanism permits transferring the STM between room temperature and the low temperature cryostat.
Collapse
Affiliation(s)
- Angela M Coe
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Guohong Li
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Eva Y Andrei
- Department of Physics and Astronomy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
5
|
Coe AM, Li G, Andrei EY. Quick-connect scanning tunneling microscope head with nested piezoelectric coarse walkers. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:073703. [PMID: 38958515 DOI: 10.1063/5.0204940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
To meet changing research demands, new scanning tunneling microscope (STM) features must constantly evolve. We describe the design, development, and performance of a modular plug-in STM, which is compact and stable. The STM head is equipped with a quick-connect socket that is matched to a universal connector plug, enabling it to be transferred between systems. This head can be introduced into a vacuum system via a load-lock and transferred to various sites equipped with the connector plug, permitting multi-site STM operation. Its design allows for reliable operation in a variety of experimental conditions, including a broad temperature range, ultra-high vacuum, high magnetic fields, and closed-cycle pulse-tube cooling. The STM's compact size is achieved by a novel nested piezoelectric coarse walker design, which allows for large orthogonal travel in the X, Y, and Z directions, ideal for studying both bulk and thin film samples ranging in size from mm to μm. Its stability and noise tolerance are demonstrated by achieving atomic resolution under ambient conditions on a laboratory desktop with no vibrational or acoustic isolation. The operation of the nested coarse walkers is demonstrated by successful navigation to a μm-sized 2D sample.
Collapse
Affiliation(s)
- Angela M Coe
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Guohong Li
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Eva Y Andrei
- Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
6
|
Chung PF, Venkatesan B, Su CC, Chang JT, Cheng HK, Liu CA, Yu H, Chang CS, Guan SY, Chuang TM. Design and performance of an ultrahigh vacuum spectroscopic-imaging scanning tunneling microscope with a hybrid vibration isolation system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:033701. [PMID: 38426899 DOI: 10.1063/5.0189100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
A spectroscopic imaging-scanning tunneling microscope (SI-STM) allows for the atomic scale visualization of the surface electronic and magnetic structure of novel quantum materials with a high energy resolution. To achieve the optimal performance, a low vibration facility is required. Here, we describe the design and performance of an ultrahigh vacuum STM system supported by a hybrid vibration isolation system that consists of a pneumatic passive and a piezoelectric active vibration isolation stage. We present the detailed vibrational noise analysis of the hybrid vibration isolation system, which shows that the vibration level can be suppressed below 10-8 m/sec/√Hz for most frequencies up to 100 Hz. Combined with a rigid STM design, vibrational noise can be successfully removed from the tunneling current. We demonstrate the performance of our STM system by taking high resolution spectroscopic maps and topographic images on several quantum materials. Our results establish a new strategy to achieve an effective vibration isolation system for high-resolution STM and other scanning probe microscopies to investigate the nanoscale quantum phenomena.
Collapse
Affiliation(s)
- Pei-Fang Chung
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Balaji Venkatesan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Chih-Chuan Su
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Jen-Te Chang
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Hsu-Kai Cheng
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Che-An Liu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Henry Yu
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Seng Chang
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 11529, Taiwan
| | - Syu-You Guan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
7
|
Zhao K, Zhang J, Meng W, Zheng S, Wang J, Feng Q, Wang Z, Hou Y, Lu Q, Lu Y. Cryogenic spectroscopic imaging scanning tunnelling microscope in a water-cooled magnet down to 1.7 K. Ultramicroscopy 2023; 253:113773. [PMID: 37315346 DOI: 10.1016/j.ultramic.2023.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Spectroscopic-imaging scanning tunnelling microscope (SI-STM) in a water-cooled magnet (WM) at low temperature has long been desirable in the condensed matter physics area since it is crucial for addressing various scientific problems, such as the behaviour of Cooper electrons crossing Hc2 in a high-temperature superconductor. Here we report on the construction and performance of the first atomically resolved cryogenic SI-STM in a WM. It operates at low temperatures of down to 1.7 K and in magnetic fields of up to 22 T (the WM's upper safety limit). The WM-SI-STM unit features a high-stiffness sapphire-based frame with the lowest eigenfrequency being 16 kHz. A slender piezoelectric scan tube (PST) is coaxially embedded in and glued to the frame. A well-polished zirconia shaft is spring-clamped onto the gold-coated inner wall of the PST to serve both the stepper and the scanner. The microscope unit as a whole is elastically suspended in a tubular sample space inside a 1K-cryostat by a two-stage internal passive vibrational reduction system, achieving a base temperature below 2 K in a static exchange gas. We demonstrate the SI-STM by imaging TaS2 at 50 K and FeSe at 1.7 K. Detecting the well-defined superconducting gap of FeSe, an iron-based superconductor, at variable magnetic fields demonstrates the device's spectroscopic imaging capability. The maximum noise intensity at the typical frequency is 3 pA per square root Hz at 22 T, which is only slightly worse than at 0 T, indicating the insensitivity of the STM to harsh conditions. In addition, our work shows the potential of SI-STMs for use in a WM and hybrid magnet with a 50 mm-bore size where high fields can be generated.
Collapse
Affiliation(s)
- Kesen Zhao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Jing Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Wenjie Meng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China.
| | - Shaofeng Zheng
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Jihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Qiyuan Feng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Ze Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Yubin Hou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China.
| | - Qingyou Lu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Hefei Science Center Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Yalin Lu
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
8
|
Nuckolls KP, Lee RL, Oh M, Wong D, Soejima T, Hong JP, Călugăru D, Herzog-Arbeitman J, Bernevig BA, Watanabe K, Taniguchi T, Regnault N, Zaletel MP, Yazdani A. Quantum textures of the many-body wavefunctions in magic-angle graphene. Nature 2023; 620:525-532. [PMID: 37587297 DOI: 10.1038/s41586-023-06226-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/16/2023] [Indexed: 08/18/2023]
Abstract
Interactions among electrons create novel many-body quantum phases of matter with wavefunctions that reflect electronic correlation effects, broken symmetries and collective excitations. Many quantum phases have been discovered in magic-angle twisted bilayer graphene (MATBG), including correlated insulating1, unconventional superconducting2-5 and magnetic topological6-9 phases. The lack of microscopic information10,11 of possible broken symmetries has hampered our understanding of these phases12-17. Here we use high-resolution scanning tunnelling microscopy to study the wavefunctions of the correlated phases in MATBG. The squares of the wavefunctions of gapped phases, including those of the correlated insulating, pseudogap and superconducting phases, show distinct broken-symmetry patterns with a √3 × √3 super-periodicity on the graphene atomic lattice that has a complex spatial dependence on the moiré scale. We introduce a symmetry-based analysis using a set of complex-valued local order parameters, which show intricate textures that distinguish the various correlated phases. We compare the observed quantum textures of the correlated insulators at fillings of ±2 electrons per moiré unit cell to those expected for proposed theoretical ground states. In typical MATBG devices, these textures closely match those of the proposed incommensurate Kekulé spiral order15, whereas in ultralow-strain samples, our data have local symmetries like those of a time-reversal symmetric intervalley coherent phase12. Moreover, the superconducting state of MATBG shows strong signatures of intervalley coherence, only distinguishable from those of the insulator with our phase-sensitive measurements.
Collapse
Affiliation(s)
- Kevin P Nuckolls
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Ryan L Lee
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Myungchul Oh
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Dillon Wong
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Tomohiro Soejima
- Department of Physics, University of California, Berkeley, CA, USA
| | - Jung Pyo Hong
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Dumitru Călugăru
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - Jonah Herzog-Arbeitman
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
| | - B Andrei Bernevig
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA
- Donostia International Physics Center, Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Nicolas Regnault
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Michael P Zaletel
- Department of Physics, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ali Yazdani
- Joseph Henry Laboratories and Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Wang J, Li W, Meng W, Hou Y, Lu Y, Lu Q. Atomic imaging with a 12 T magnetic field perpendicular or parallel to the sample surface by an ultra-stable scanning tunneling microscope. Ultramicroscopy 2023; 251:113774. [PMID: 37270856 DOI: 10.1016/j.ultramic.2023.113774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
We present the first nonmetallic scanning tunneling microscope (STM) featuring an ultra-stable tip-sample mechanical loop and capable of atomic-resolution imaging within a 12 T magnetic field that could be either perpendicular or parallel to the sample surface. This is also the first STM with an ultra-stable tip-sample mechanical loop but without a standalone scanner. The STM head is constructed only with two parts: an improved spider-drive motor and a zirconia tip holder. The motor performs both the coarse approach and atomic imaging. A supporting spring is set at the fixed end of the motor tube to decrease the tip-sample mechanical loop. The zirconia tip holder performs as the frame of the whole STM head. With the novel design, the STM head in three dimensions can be as small as 7.9 mm × 7.9 mm × 26.5 mm. The device's excellent performance is demonstrated by atomic-resolution images of graphite and NbSe2 obtained at 300 K and 2 K, as well as the high-resolution dI/dV spectrums of NbSe2 at variable temperatures. Low drift rates in the X-Y plane and Z direction further prove the imaging stability of our new STM. High-quality imaging of the Charge Density Wave (CDW) structure on a TaS2 surface shows the STM's good application capability. Continuous atomic images obtained in magnetic fields rangs from 0 T to 12 T with the direction of the magnetic field perpendicular or parallel to the sample surface show the STM's good immunity to high magnetic fields. Our results illustrate the new STM's broad application ability in extreme conditions of low temperature and high magnetic field.
Collapse
Affiliation(s)
- Jihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Weixuan Li
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Wenjie Meng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China
| | - Yubin Hou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China.
| | - Yalin Lu
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 China
| | - Qingyou Lu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui 230031, China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 China; Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
10
|
Zhou L, He Q, Que X, Rost AW, Takagi H. A spectroscopic-imaging scanning tunneling microscope in vector magnetic field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033704. [PMID: 37012779 DOI: 10.1063/5.0131532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Cryogenic scanning tunneling microscopy and spectroscopy (STM/STS) performed in a high vector magnetic field provide unique possibilities for imaging surface magnetic structures and anisotropic superconductivity and exploring spin physics in quantum materials with atomic precision. Here, we describe the design, construction, and performance of a low-temperature, ultra-high-vacuum (UHV) spectroscopic-imaging STM equipped with a vector magnet capable of applying a field of up to 3 T in any direction with respect to the sample surface. The STM head is housed in a fully bakeable UHV compatible cryogenic insert and is operational over variable temperatures ranging from ∼300 down to 1.5 K. The insert can be easily upgraded using our home-designed 3He refrigerator. In addition to layered compounds, which can be cleaved at a temperature of either ∼300, ∼77, or ∼4.2 K to expose an atomically flat surface, thin films can also be studied by directly transferring using a UHV suitcase from our oxide thin-film laboratory. Samples can be treated further with a heater and a liquid helium/nitrogen cooling stage on a three-axis manipulator. The STM tips can be treated in vacuo by e-beam bombardment and ion sputtering. We demonstrate the successful operation of the STM with varying the magnetic field direction. Our facility provides a way to study materials in which magnetic anisotropy is a key factor in determining the electronic properties such as in topological semimetals and superconductors.
Collapse
Affiliation(s)
- Lihui Zhou
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Qingyu He
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Xinglu Que
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Andreas W Rost
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Hide Takagi
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| |
Collapse
|
11
|
Geng T, Wang J, Meng W, Zhang J, Feng Q, Lu Y, Hou Y, Lu Q. A cryogen-free superconducting magnet based scanning tunneling microscope for liquid phase measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033705. [PMID: 37012773 DOI: 10.1063/5.0121761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Scanning tunneling microscopes (STMs) that work in ultra-high vacuum and low temperatures are commonly used in condensed matter physics, but an STM that works in a high magnetic field to image chemical molecules and active biomolecules in solution has never been reported. Here, we present a liquid-phase STM for use in a 10 T cryogen-free superconducting magnet. The STM head is mainly constructed with two piezoelectric tubes. A large piezoelectric tube is fixed at the bottom of a tantalum frame to perform large-area imaging. A small piezoelectric tube mounted at the free end of the large one performs high-precision imaging. The imaging area of the large piezoelectric tube is four times that of the small one. The high compactness and rigidity of the STM head make it functional in a cryogen-free superconducting magnet with huge vibrations. The performance of our homebuilt STM was demonstrated by the high-quality, atomic-resolution images of a graphite surface, as well as the low drift rates in the X-Y plane and Z direction. Furthermore, we successfully obtained atomic-resolution images of graphite in solution conditions while sweeping the field from 0 to 10 T, illustrating the new STM's immunity to magnetic fields. The sub-molecular images of active antibodies and plasmid DNA in solution conditions show the device's capability of imaging biomolecules. Our STM is suitable for studying chemical molecules and active biomolecules in high magnetic fields.
Collapse
Affiliation(s)
- Tao Geng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jihao Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Wengjie Meng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Qiyuan Feng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yalin Lu
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yubin Hou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Qingyou Lu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
12
|
Li W, Wang J, Zhang J, Meng W, Xie C, Hou Y, Xia Z, Lu Q. Atomic-Resolution Imaging of Micron-Sized Samples Realized by High Magnetic Field Scanning Tunneling Microscopy. MICROMACHINES 2023; 14:287. [PMID: 36837986 PMCID: PMC9961884 DOI: 10.3390/mi14020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Scanning tunneling microscopy (STM) can image material surfaces with atomic resolution, making it a useful tool in the areas of physics and materials. Many materials are synthesized at micron size, especially few-layer materials. Limited by their complex structure, very few STMs are capable of directly positioning and imaging a micron-sized sample with atomic resolution. Traditional STMs are designed to study the material behavior induced by temperature variation, while the physical properties induced by magnetic fields are rarely studied. In this paper, we present the design and construction of an atomic-resolution STM that can operate in a 9 T high magnetic field. More importantly, the homebuilt STM is capable of imaging micron-sized samples. The performance of the STM is demonstrated by high-quality atomic images obtained on a graphite surface, with low drift rates in the X-Y plane and Z direction. The atomic-resolution image obtained on a 32-μm graphite flake illustrates the new STM's ability of positioning and imaging micron-sized samples. Finally, we present atomic resolution images at a magnetic field range from 0 T to 9 T. The above advantages make our STM a promising tool for investigating the quantum hall effect of micron-sized layered materials.
Collapse
Affiliation(s)
- Weixuan Li
- College of Metrology and Measurement Engineering, China Jiliang University (CJLU), Hangzhou 310018, China
| | - Jihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenjie Meng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Caihong Xie
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Yubin Hou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhigang Xia
- College of Metrology and Measurement Engineering, China Jiliang University (CJLU), Hangzhou 310018, China
| | - Qingyou Lu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- High Magnetic Field Laboratory of Anhui Province, Chinese Academy of Sciences, Hefei 230031, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Hefei Science Center, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
13
|
Călugăru D, Regnault N, Oh M, Nuckolls KP, Wong D, Lee RL, Yazdani A, Vafek O, Bernevig BA. Spectroscopy of Twisted Bilayer Graphene Correlated Insulators. PHYSICAL REVIEW LETTERS 2022; 129:117602. [PMID: 36154402 DOI: 10.1103/physrevlett.129.117602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/13/2022] [Indexed: 06/16/2023]
Abstract
We analytically compute the scanning tunneling microscopy (STM) signatures of integer-filled correlated ground states of the magic angle twisted bilayer graphene (TBG) narrow bands. After experimentally validating the strong-coupling approach at ±4 electrons/moiré unit cell, we consider the spatial features of the STM signal for 14 different many-body correlated states and assess the possibility of Kekulé distortion (KD) emerging at the graphene lattice scale. Remarkably, we find that coupling the two opposite graphene valleys in the intervalley-coherent (IVC) TBG insulators does not always result in KD. As an example, we show that the Kramers IVC state and its nonchiral U(4) rotations do not exhibit any KD, while the time-reversal-symmetric IVC state does. Our results, obtained over a large range of energies and model parameters, show that the STM signal and Chern number of a state can be used to uniquely determine the nature of the TBG ground state.
Collapse
Affiliation(s)
- Dumitru Călugăru
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Nicolas Regnault
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Myungchul Oh
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kevin P Nuckolls
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Dillon Wong
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ryan L Lee
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Ali Yazdani
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Oskar Vafek
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
- Department of Physics, Florida State University, Tallahassee, Florida 32306, USA
| | - B Andrei Bernevig
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
- Donostia International Physics Center, P. Manuel de Lardizabal 4, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
14
|
Evidence for unconventional superconductivity in twisted bilayer graphene. Nature 2021; 600:240-245. [PMID: 34670267 DOI: 10.1038/s41586-021-04121-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/11/2021] [Indexed: 11/08/2022]
Abstract
The emergence of superconductivity and correlated insulators in magic-angle twisted bilayer graphene (MATBG) has raised the intriguing possibility that its pairing mechanism is distinct from that of conventional superconductors1-4, as described by the Bardeen-Cooper-Schrieffer (BCS) theory. However, recent studies have shown that superconductivity persists even when Coulomb interactions are partially screened5,6. This suggests that pairing in MATBG might be conventional in nature and a consequence of the large density of states of its flat bands. Here we combine tunnelling and Andreev reflection spectroscopy with a scanning tunnelling microscope to observe several key experimental signatures of unconventional superconductivity in MATBG. We show that the tunnelling spectra below the transition temperature Tc are inconsistent with those of a conventional s-wave superconductor, but rather resemble those of a nodal superconductor with an anisotropic pairing mechanism. We observe a large discrepancy between the tunnelling gap ΔT, which far exceeds the mean-field BCS ratio (with 2ΔT/kBTc ~ 25), and the gap ΔAR extracted from Andreev reflection spectroscopy (2ΔAR/kBTc ~ 6). The tunnelling gap persists even when superconductivity is suppressed, indicating its emergence from a pseudogap phase. Moreover, the pseudogap and superconductivity are both absent when MATBG is aligned with hexagonal boron nitride. These findings and other observations reported here provide a preponderance of evidence for a non-BCS mechanism for superconductivity in MATBG.
Collapse
|
15
|
Esat T, Borgens P, Yang X, Coenen P, Cherepanov V, Raccanelli A, Tautz FS, Temirov R. A millikelvin scanning tunneling microscope in ultra-high vacuum with adiabatic demagnetization refrigeration. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:063701. [PMID: 34243501 DOI: 10.1063/5.0050532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/23/2021] [Indexed: 06/13/2023]
Abstract
We present the design and performance of an ultra-high vacuum scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature ranging between 30 mK and 1 K with an accuracy of up to 7 μK rms. At the same time, high magnetic fields of up to 8 T can be applied perpendicular to the sample surface. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h. The single-shot adiabatic demagnetization refrigerator can be regenerated automatically within 7 h while keeping the STM temperature below 5 K. The whole setup is located in a vibrationally isolated, electromagnetically shielded laboratory with no mechanical pumping lines penetrating its isolation walls. The 1 K pot of the adiabatic demagnetization refrigeration cryostat can be operated silently for more than 20 days in a single-shot mode using a custom-built high-capacity cryopump. A high degree of vibrational decoupling together with the use of a specially designed minimalistic STM head provides outstanding mechanical stability, demonstrated by the tunneling current noise, STM imaging, and scanning tunneling spectroscopy measurements, all performed on an atomically clean Al(100) surface.
Collapse
Affiliation(s)
- Taner Esat
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Borgens
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Xiaosheng Yang
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Peter Coenen
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Vasily Cherepanov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | - F Stefan Tautz
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ruslan Temirov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
16
|
Lodge MS, Yang SA, Mukherjee S, Weber B. Atomically Thin Quantum Spin Hall Insulators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008029. [PMID: 33893669 DOI: 10.1002/adma.202008029] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Atomically thin topological materials are attracting growing attention for their potential to radically transform classical and quantum electronic device concepts. Among them is the quantum spin Hall (QSH) insulator-a 2D state of matter that arises from interplay of topological band inversion and strong spin-orbit coupling, with large tunable bulk bandgaps up to 800 meV and gapless, 1D edge states. Reviewing recent advances in materials science and engineering alongside theoretical description, the QSH materials library is surveyed with focus on the prospects for QSH-based device applications. In particular, theoretical predictions of nontrivial superconducting pairing in the QSH state toward Majorana-based topological quantum computing are discussed, which are the next frontier in QSH materials research.
Collapse
Affiliation(s)
- Michael S Lodge
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shengyuan A Yang
- Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centres in Diamond and Emergent Materials (QCenDiem)-Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
- Computational Materials Science Group, IIT Madras, Chennai, Tamil Nadu, 600036, India
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
- Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Techonologies (FLEET), School of Physics, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
17
|
Adhikari R, Doesinger K, Lindner P, Faina B, Bonanni A. Low temperature and high magnetic field performance of a commercial piezo-actuator probed via laser interferometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:035002. [PMID: 33820055 DOI: 10.1063/5.0034569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
The advances in the fields of scanning probe microscopy, scanning tunneling spectroscopy, point contact spectroscopy, and point contact Andreev reflection spectroscopy to study the properties of conventional and quantum materials under cryogenic conditions have prompted the development of nanopositioners and nanoscanners with enhanced spatial resolution. Piezoelectric-actuator stacks as nanopositioners with working strokes of 10 μm and positioning resolution ∼(1-10) nm are desirable for both basic research and industrial applications. However, information on the performance of most commercial piezoelectric actuators in cryogenic environment and in the presence of magnetic fields in excess of 5 T is generally not available. In particular, the magnitude, the rate, and the associated hysteresis of the piezo-displacement at cryogenic temperatures are the most relevant parameters that determine whether a particular piezoelectric actuator can be used as a nanopositioner. Here, the design and realization of an experimental setup based on interferometric techniques to characterize a commercial piezoelectric actuator over a temperature range of 2 K ≤ T ≤ 260 K and magnetic fields up to 6 T are presented. The studied piezoelectric actuator has a maximum displacement of 30 μm at room temperature for a maximum driving voltage of 75 V, which reduces to 1.2 μm with an absolute hysteresis of 9.1±3.3nm at T = 2 K. The magnetic field is shown to have no substantial effect on the piezo-properties of the studied piezoelectric-actuator stack.
Collapse
Affiliation(s)
- R Adhikari
- Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
| | - K Doesinger
- Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
| | - P Lindner
- Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
| | - B Faina
- Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
| | - A Bonanni
- Institut für Halbleiter-und-Festkörperphysik, Johannes Kepler University, Altenbergerstr. 69, A-4040 Linz, Austria
| |
Collapse
|
18
|
Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature 2020; 588:610-615. [PMID: 33318688 DOI: 10.1038/s41586-020-3028-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022]
Abstract
Interactions between electrons and the topology of their energy bands can create unusual quantum phases of matter. Most topological electronic phases appear in systems with weak electron-electron interactions. The instances in which topological phases emerge only as a result of strong interactions are rare and mostly limited to those realized in intense magnetic fields1. The discovery of flat electronic bands with topological character in magic-angle twisted bilayer graphene (MATBG) has created a unique opportunity to search for strongly correlated topological phases2-9. Here we introduce a local spectroscopic technique using a scanning tunnelling microscope to detect a sequence of topological insulators in MATBG with Chern numbers C = ±1, ±2 and ±3, which form near filling factors of ±3, ±2 and ±1 electrons per moiré unit cell, respectively, and are stabilized by modest magnetic fields. One of the phases detected here (C = +1) was previously observed when the sublattice symmetry of MATBG was intentionally broken by a hexagonal boron nitride substrate, with interactions having a secondary role9. We demonstrate that strong electron-electron interactions alone can produce not only the previously observed phase, but also other unexpected Chern insulating phases in MATBG. The full sequence of phases that we observe can be understood by postulating that strong correlations favour breaking time-reversal symmetry to form Chern insulators that are stabilized by weak magnetic fields. Our findings illustrate that many-body correlations can create topological phases in moiré systems beyond those anticipated from weakly interacting models.
Collapse
|
19
|
Schwenk J, Kim S, Berwanger J, Ghahari F, Walkup D, Slot MR, Le ST, Cullen WG, Blankenship SR, Vranjkovic S, Hug HJ, Kuk Y, Giessibl FJ, Stroscio JA. Achieving μeV tunneling resolution in an in-operando scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:071101. [PMID: 32752869 PMCID: PMC7678032 DOI: 10.1063/5.0005320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Research in new quantum materials requires multi-mode measurements spanning length scales, correlations of atomic-scale variables with a macroscopic function, and spectroscopic energy resolution obtainable only at millikelvin temperatures, typically in a dilution refrigerator. In this article, we describe a multi-mode instrument achieving a μeV tunneling resolution with in-operando measurement capabilities of scanning tunneling microscopy, atomic force microscopy, and magnetotransport inside a dilution refrigerator operating at 10 mK. We describe the system in detail including a new scanning probe microscope module design and sample and tip transport systems, along with wiring, radio-frequency filtering, and electronics. Extensive benchmarking measurements were performed using superconductor-insulator-superconductor tunnel junctions, with Josephson tunneling as a noise metering detector. After extensive testing and optimization, we have achieved less than 8 μeV instrument resolving capability for tunneling spectroscopy, which is 5-10 times better than previous instrument reports and comparable to the quantum and thermal limits set by the operating temperature at 10 mK.
Collapse
Affiliation(s)
- Johannes Schwenk
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Sungmin Kim
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Julian Berwanger
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Fereshte Ghahari
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Daniel Walkup
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Marlou R. Slot
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Physics, Georgetown University, Washington, DC 20007, USA
| | - Son T. Le
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - William G. Cullen
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Steven R. Blankenship
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sasa Vranjkovic
- Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Hans J. Hug
- Institute of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
| | - Young Kuk
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Franz J. Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Joseph A. Stroscio
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
20
|
Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 2020; 582:198-202. [PMID: 32528095 DOI: 10.1038/s41586-020-2339-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/16/2020] [Indexed: 11/08/2022]
Abstract
Magic-angle twisted bilayer graphene exhibits a variety of electronic states, including correlated insulators1-3, superconductors2-4 and topological phases3,5,6. Understanding the microscopic mechanisms responsible for these phases requires determination of the interplay between electron-electron interactions and quantum degeneracy (the latter is due to spin and valley degrees of freedom). Signatures of strong electron-electron correlations have been observed at partial fillings of the flat electronic bands in recent spectroscopic measurements7-10, and transport experiments have shown changes in the Landau level degeneracy at fillings corresponding to an integer number of electrons per moiré unit cell2-4. However, the interplay between interaction effects and the degeneracy of the system is currently unclear. Here we report a cascade of transitions in the spectroscopic properties of magic-angle twisted bilayer graphene as a function of electron filling, determined using high-resolution scanning tunnelling microscopy. We find distinct changes in the chemical potential and a rearrangement of the low-energy excitations at each integer filling of the moiré flat bands. These spectroscopic features are a direct consequence of Coulomb interactions, which split the degenerate flat bands into Hubbard sub-bands. We find these interactions, the strength of which we can extract experimentally, to be surprisingly sensitive to the presence of a perpendicular magnetic field, which strongly modifies the spectroscopic transitions. The cascade of transitions that we report here characterizes the correlated high-temperature parent phase11,12 from which various insulating and superconducting ground-state phases emerge at low temperatures in magic-angle twisted bilayer graphene.
Collapse
|