1
|
Singh M, Tiwary SK, Nejat R, Douglas JF, Karim A. Anomalously High Dielectric Strength and Capacitive Energy Density of Thin Entangled Glassy Polymer Films. JACS AU 2025; 5:121-135. [PMID: 39886577 PMCID: PMC11775671 DOI: 10.1021/jacsau.4c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/27/2024] [Indexed: 02/01/2025]
Abstract
The influence of high-intensity electric fields on the stability of polymeric materials is a problem of interest in the design of next-generation energy storage and electronic devices, and for understanding the limits of stability of polymer films exposed to large electric fields generally. Here, we show that the dielectric strength of entangled glassy polymer films increases as an inverse power-law of the film thickness h for "ultrathin" films below a micron in thickness. The dielectric strength enhancement in these polymer films becomes as large as ≈2 GV/m in films thinner than 100 nm, but in this thickness regime, the increase of the dielectric strength depends strongly on the polymer mass, sample aging time, and the method of film preparation. The enhancement of the dielectric breakdown strength is attributed to the mechanical instability of the elastic film subjected to sufficiently large electric fields and a large, but not generally well-understood, enhancement of effective stiffness of entangled glassy polymer films subject to large deformations, an effect that has previously been observed to become greatly enhanced when such films are made thinner. As a proof of principle regarding applications, we utilize ultrathin glassy polymer films of the type studied in our paper to fabricate polymeric nanocapacitors having ultrahigh discharge energy densities (U d max) as large as 27 J/cm3 and having efficiencies greater than 80%. These efficiency values at comparable charge densities are significantly higher than those of competing ferroelectric polymer materials, and we anticipate that our observations will inspire the creation of practical high-energy density nanocapacitor devices for advanced energy storage applications.
Collapse
Affiliation(s)
- Maninderjeet Singh
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Saurabh Kr. Tiwary
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Roushanak Nejat
- Materials
Engineering Program, University of Houston, Houston, Texas 77204, United States
| | - Jack F. Douglas
- Material
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alamgir Karim
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
2
|
Merrill J, Han Y, Roth CB. A Bayesian Inference Approach to Accurately Fitting the Glass Transition Temperature in Thin Polymer Films. Macromolecules 2024; 57:11055-11074. [PMID: 39678045 PMCID: PMC11636260 DOI: 10.1021/acs.macromol.4c01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024]
Abstract
We present a Bayesian inference-based nonlinear least-squares fitting approach developed to reliably fit challenging, noisy data in an automated and robust manner. The advantages of using Bayesian inference for nonlinear fitting are demonstrated by applying this approach to a set of temperature-dependent film thickness h(T) data collected by ellipsometry for thin films of polystyrene (PS) and poly(2-vinylpyridine) (P2VP). The glass transition experimentally presents as a continuous transition in thickness characterized by a change in slope that in thin films with broadened transitions can become particularly subtle and challenging to fit. This Bayesian fitting approach is implemented using existing open-source Python libraries that make these powerful methods accessible with desktop computers. We show how this Bayesian approach is more versatile and robust than existing methods by comparing it to common fitting methods currently used in the polymer science literature for identifying T g. As Bayesian inference allows for fitting to more complex models than existing methods in the literature do, our discussion includes an in-depth evaluation of the best functional form for capturing the behavior of h(T) data with temperature-dependent changes in thermal expansivity. This Bayesian fitting approach is easily automated, capable of reliably fitting noisy and challenging data in an unsupervised manner, and ideal for machine learning approaches to materials development.
Collapse
Affiliation(s)
- James
H. Merrill
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Yixuan Han
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Connie B. Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Luo P, Wolf SE, Govind S, Stephens RB, Kim DH, Chen CY, Nguyen T, Wąsik P, Zhernenkov M, Mcclimon B, Fakhraai Z. High-density stable glasses formed on soft substrates. NATURE MATERIALS 2024; 23:688-694. [PMID: 38413812 DOI: 10.1038/s41563-024-01828-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Enabled by surface-mediated equilibration, physical vapour deposition can create high-density stable glasses comparable with liquid-quenched glasses aged for millions of years. Deposition is often performed at various rates and temperatures on rigid substrates to control the glass properties. Here we demonstrate that on soft, rubbery substrates, surface-mediated equilibration is enhanced up to 170 nm away from the interface, forming stable glasses with densities up to 2.5% higher than liquid-quenched glasses within 2.5 h of deposition. Gaining similar properties on rigid substrates would require 10 million times slower deposition, taking ~3,000 years. Controlling the modulus of the rubbery substrate provides control over the glass structure and density at constant deposition conditions. These results underscore the significance of substrate elasticity in manipulating the properties of the mobile surface layer and thus the glass structure and properties, allowing access to deeper states of the energy landscape without prohibitively slow deposition rates.
Collapse
Affiliation(s)
- Peng Luo
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah E Wolf
- Department of Chemistry, State University of New York Cortland, Cortland, NY, USA
| | - Shivajee Govind
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard B Stephens
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Dong Hyup Kim
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Cindy Y Chen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Truc Nguyen
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Patryk Wąsik
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Mikhail Zhernenkov
- National Synchrotron Light Source II (NSLS-II), Brookhaven National Laboratory, Upton, NY, USA
| | - Brandon Mcclimon
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Zahra Fakhraai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Serna S, Wang T, Torkelson JM. Eliminating the Tg-confinement and fragility-confinement effects in poly(4-methylstyrene) films by incorporation of 3 mol % 2-ethylheyxl acrylate comonomer. J Chem Phys 2024; 160:034903. [PMID: 38235797 DOI: 10.1063/5.0189409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/22/2023] [Indexed: 01/19/2024] Open
Abstract
Nanoconfined poly(4-methylstyrene) [P(4-MS)] films exhibit reductions in glass transition temperature (Tg) relative to bulk Tg (Tg,bulk). Ellipsometry reveals that 15-nm-thick P(4-MS) films supported on silicon exhibit Tg - Tg,bulk = - 15 °C. P(4-MS) films also exhibit fragility-confinement effects; fragility decreases ∼60% in going from bulk to a 20-nm-thick film. Previous research found that incorporating 2-6 mol % 2-ethylhexyl acrylate (EHA) comonomer in styrene-based random copolymers eliminates Tg- and fragility-confinement effects in polystyrene. Here, we demonstrate that incorporating 3 mol % EHA in a 4-MS-based random copolymer, 97/3 P(4-MS/EHA), eliminates the Tg- and fragility-confinement effects. The invariance of fragility with nanoconfinement of 97/3 P(4-MS/EHA) films, hypothesized to originate from the interdigitation of ethylhexyl groups, indicates that the presence of EHA prevents the free surface from perturbing chain packing and the cooperative mobility associated with Tg. This method of eliminating confinement effects is advantageous as it relies on the simplest of polymerization methods and neat copolymer only slightly altered in composition from homopolymer. We also investigated whether we could eliminate the Tg-confinement effect with low levels of 2-ethylhexyl methacrylate (EHMA) in 4-MS-based or styrene-based copolymers. Although EHMA is structurally nearly identical to EHA, 4-MS-based and styrene-based copolymers incorporating 4 mol % EHMA exhibit Tg-confinement effects similar to P(4-MS) and polystyrene. These results support the special character of EHA in eliminating confinement effects originating at free surfaces.
Collapse
Affiliation(s)
- Sergio Serna
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - Tong Wang
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
| | - John M Torkelson
- Department of Chemical and Biological Engineering, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
5
|
Velasco Davoise L, Peña Capilla R, Díez-Pascual AM. Isotropic and Anisotropic Complex Refractive Index of PEDOT:PSS. Polymers (Basel) 2023; 15:3298. [PMID: 37571192 PMCID: PMC10422196 DOI: 10.3390/polym15153298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, the complex refractive indexes of seven PEDOT:PSS samples, three with isotropic behavior and four with optical anisotropy, were determined. For the anisotropic samples, the ordinary and extraordinary components of the refractive index were described. The effect of the film thickness, measurement technique and preparation method on the extinction coefficient (k) and refractive index (n) of each sample was also discussed. Important differences (up to 20% in the average n) were found among the samples investigated. In most anisotropic films, the mean value of the extraordinary component was between 7 and 10% higher than that of the ordinary. In the three isotropic films, the average k rose when the film thickness increased. Moreover, the different sets of refractive index data were fitted to three different models: the original Forouhi-Bloomer model, the Liu (2007) model and the revised version of the Forouhi-Bloomer model (2019). In general, Liu's model gave better results, with small errors in n and k (<7.81 and 4.68%, respectively, in all the cases). However, this model had seven fitting parameters, which led to significantly longer computation time than the other two models. The influence of the differences in the measurement of the complex refractive index on the simulation of the optical properties of PEDOT:PSS multilayers was discussed. The results showed that n must be known precisely to accurately calculate the light absorption in a multilayer, without ignoring the isotropic or anisotropic behavior of the material or the influence of the layer thickness on its optical properties. This study aids in the development of simulation and optimization tools that allow understanding the optical properties of PEDOT:PSS films for their potential applications in organic optoelectronic devices, such as organic solar cells.
Collapse
Affiliation(s)
- Lara Velasco Davoise
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | - Rafael Peña Capilla
- Universidad de Alcalá, Departamento de Teoría de la Señal y Comunicaciones, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain;
| |
Collapse
|
6
|
Omar H, Hidde G, Szymoniak P, Hertwig A, Schönhals A. Growth kinetics of the adsorbed layer of poly(bisphenol A carbonate) and its effect on the glass transition behavior in thin films. RSC Adv 2023; 13:14473-14483. [PMID: 37179996 PMCID: PMC10173819 DOI: 10.1039/d3ra02020g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The glass transition behavior of thin films of poly(bisphenol A carbonate) (PBAC) was studied employing ellipsometry. The glass transition temperature increases with the reduction of the film thickness. This result is attributed to the formation of an adsorbed layer with a reduced mobility compared to bulk PBAC. Therefore, for the first time, the growth kinetics of the adsorbed layer of PBAC was investigated, prepared by leaching samples from a 200 nm thin film which were annealed for several times at three different temperatures. The thickness of each prepared adsorbed layer was measured by multiple scans using atomic force microscopy (AFM). Additionally, an unannealed sample was measured. Comparison of the measurements of the unannealed and the annealed samples provides proof of a pre-growth regime for all annealing temperatures which was not observed for other polymers. For the lowest annealing temperature after the pre-growth stage only a growth regime with a linear time dependence is observed. For higher annealing temperatures the growth kinetics changes from a linear to a logarithmic growth regime at a critical time. At the longest annealing times the films showed signs of dewetting where segments of the adsorbed film were removed from the substrate (dewetting by desorption). The dependence of the surface roughness of the PBAC surface on annealing time also confirmed that the films annealed at highest temperatures for the longest times desorbed from the substrate.
Collapse
Affiliation(s)
- Hassan Omar
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-1617 +49 30/8104-3384
| | - Gundula Hidde
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-1617 +49 30/8104-3384
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-1617 +49 30/8104-3384
| | - Andreas Hertwig
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-1617 +49 30/8104-3384
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany +49 30/8104-1617 +49 30/8104-3384
| |
Collapse
|
7
|
Merrill JH, Li R, Roth CB. End-Tethered Chains Increase the Local Glass Transition Temperature of Matrix Chains by 45 K Next to Solid Substrates Independent of Chain Length. ACS Macro Lett 2023; 12:1-7. [PMID: 36516977 DOI: 10.1021/acsmacrolett.2c00582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The local glass transition temperature Tg of pyrene-labeled polystyrene (PS) chains intermixed with end-tethered PS chains grafted to a neutral silica substrate was measured by fluorescence spectroscopy. To isolate the impact of the grafted chains, the films were capped with bulk neat PS layers eliminating competing effects of the free surface. Results demonstrate that end-grafted chains strongly increase the local Tg of matrix chains by ≈45 K relative to bulk Tg, independent of grafted chain molecular weight from Mn = 8.6 to 212 kg/mol and chemical end-group, over a wide range of grafting densities σ = 0.003 to 0.33 chains/nm2 spanning the mushroom-to-brush transition regime. The tens-of-degree increase in local Tg resulting from immobilization of the chain ends by covalent bonding in this athermal system suggests a mechanism that substantially increases the local activation energy required for cooperative rearrangements.
Collapse
Affiliation(s)
- James H Merrill
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Ruoyu Li
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
8
|
Singh M, Dong M, Wu W, Nejat R, Tran DK, Pradhan N, Raghavan D, Douglas JF, Wooley KL, Karim A. Enhanced Dielectric Strength and Capacitive Energy Density of Cyclic Polystyrene Films. ACS POLYMERS AU 2022; 2:324-332. [PMID: 36254316 PMCID: PMC9562468 DOI: 10.1021/acspolymersau.2c00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The maximum capacitive
energy stored in polymeric dielectric capacitors,
which are ubiquitous in high-power-density devices, is dictated by
the dielectric breakdown strength of the dielectric polymer. The fundamental
mechanisms of the dielectric breakdown, however, remain unclear. Based
on a simple free-volume model of the polymer fluid state, we hypothesized
that the free ends of linear polymer chains might act as “defect”
sites, at which the dielectric breakdown can initiate. Thus, the dielectric
breakdown strength of cyclic polymers should exhibit enhanced stability
in comparison to that of their linear counterparts having the same
composition and similar molar mass. This hypothesis is supported by
the ∼50% enhancement in the dielectric breakdown strength and
∼80% enhancement in capacitive energy density of cyclic polystyrene
melt films in comparison to corresponding linear polystyrene control
films. Furthermore, we observed that cyclic polymers exhibit a denser
packing density than the linear chain melts, an effect that is consistent
with and could account for the observed property changes. Our work
demonstrates that polymer topology can significantly influence the
capacitive properties of polymer films, and correspondingly, we can
expect polymer topology to influence the gas permeability, shear modulus,
and other properties of thin films dependent on film density.
Collapse
Affiliation(s)
- Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Mei Dong
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Roushanak Nejat
- Materials Engineering Program, University of Houston, Houston, Texas 77204, United States
| | - David K. Tran
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Nihar Pradhan
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Dharmaraj Raghavan
- Department of Chemistry, Howard University, Washington, DC 20059, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, Texas A&M University, College Station, Texas 77842, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
9
|
Gorkowski K, Benedict KB, Carrico CM, Dubey MK. Complexities in Modeling Organic Aerosol Light Absorption. J Phys Chem A 2022; 126:4827-4833. [PMID: 35834798 PMCID: PMC9340763 DOI: 10.1021/acs.jpca.2c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Aerosol particles dynamically evolve in the atmosphere by physicochemical interactions with sunlight, trace chemical species, and water. Current modeling approaches fix properties such as aerosol refractive index, introducing spatial and temporal errors in the radiative impacts. Further progress requires a process-level description of the refractive indices as the particles age and experience physicochemical transformations. We present two multivariate modeling approaches of light absorption by brown carbon (BrC). The initial approach was to extend the modeling framework of the refractive index at 589 nm (nD), but that result was insufficient. We developed a second multivariate model using aromatic rings and functional groups to predict the imaginary part of the complex refractive index. This second model agreed better with measured spectral absorption peaks, showing promise for a simplified treatment of BrC optics. In addition to absorption, organic functionalities also alter the water affinity of the molecules, leading to a hygroscopic uptake and increased light absorption, which we show through measurements and modeling.
Collapse
Affiliation(s)
- Kyle Gorkowski
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine B. Benedict
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Christian M. Carrico
- New
Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Manvendra K. Dubey
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
10
|
Chandrappa H, Bhajantri RF, Ismayil, Ganesha KN. Development of
Zn
1−x
Ba
x
O
nanoparticles reinforced poly(vinyl alcohol) macromolecular nanocomposite films: Eco‐friendly integrated materials for optical systems. J Appl Polym Sci 2022. [DOI: 10.1002/app.52791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Halli Chandrappa
- Department of Studies in Physics Karnatak University, Pavatenagar Dharwad Karnataka India
- Department of Physics Smt. Rukmini Shedthi Memorial National Government First Grade College & Postgraduate Study Centre Barkur Karnataka India
| | | | - Ismayil
- Department of Physics Manipal Institute of Technology, Manipal Academy of Higher Education Manipal Karnataka India
| | - Kaliyur Nanjundaiah Ganesha
- Department of Physics Smt. Rukmini Shedthi Memorial National Government First Grade College & Postgraduate Study Centre Barkur Karnataka India
- Department of Physics Maharani's Science College for Women Mysore Karnataka India
| |
Collapse
|
11
|
Han Y, Roth CB. Gradient in refractive index reveals denser near free surface region in thin polymer films. J Chem Phys 2021; 155:144901. [PMID: 34654302 DOI: 10.1063/5.0062054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A gradient in refractive index that is linear in magnitude with depth into the film is used to fit ellipsometric data for thin polymer films of poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(2-vinyl pyridine) (P2VP). We find that the linear gradient model fits provide more physically realistic refractive index values for thin films compared with the commonly used homogeneous Cauchy layer model, addressing recent reports of physically unrealistic density increases. Counter to common expectations of a simple free volume correlation between density and dynamics, we find that the direction of refractive index (density) gradient indicates a higher density near the free surface, which we rationalize based on the observed faster free surface dynamics needed to create vapor deposited stable glasses with optimized denser molecular packings. The magnitude of refractive index gradient is observed to be three times larger for PMMA than for PS films, while P2VP films exhibit a more muted response possibly reflective of a decoupling in free surface and substrate dynamics in systems with strong interfacial interactions.
Collapse
Affiliation(s)
- Yixuan Han
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Simultaneous Determination of Refractive Index and Thickness of Submicron Optical Polymer Films from Transmission Spectra. Polymers (Basel) 2021; 13:polym13152545. [PMID: 34372148 PMCID: PMC8348323 DOI: 10.3390/polym13152545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
High-transparency polymers, called optical polymers (OPs), are used in many thin-film devices, for which the knowledge of film thickness (h) and refractive index (n) is generally required. Spectrophotometry is a cost-effective, simple and fast non-destructive method often used to determine these parameters simultaneously, but its application is limited to films where h > 500 nm. Here, a simple spectrophotometric method is reported to obtain simultaneously the n and h of a sub-micron OP film (down to values of a few tenths of a nm) from its transmission spectrum. The method is valid for any OP where the n dispersion curve follows a two-coefficient Cauchy function and complies with a certain equation involving n at two different wavelengths. Remarkably, such an equation is determined through the analysis of n data for a wide set of commercial OPs, and its general validity is demonstrated. Films of various OPs (pristine or doped with fluorescent compounds), typically used in applications such as thin-film organic lasers, are prepared, and n and h are simultaneously determined with the proposed procedure. The success of the method is confirmed with variable-angle spectroscopic ellipsometry.
Collapse
|
13
|
Abstract
When aged below the glass transition temperature, [Formula: see text], the density of a glass cannot exceed that of the metastable supercooled liquid (SCL) state, unless crystals are nucleated. The only exception is when another polyamorphic SCL state exists, with a density higher than that of the ordinary SCL. Experimentally, such polyamorphic states and their corresponding liquid-liquid phase transitions have only been observed in network-forming systems or those with polymorphic crystalline states. In otherwise simple liquids, such phase transitions have not been observed, either in aged or vapor-deposited stable glasses, even near the Kauzmann temperature. Here, we report that the density of thin vapor-deposited films of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) can exceed their corresponding SCL density by as much as 3.5% and can even exceed the crystal density under certain deposition conditions. We identify a previously unidentified high-density supercooled liquid (HD-SCL) phase with a liquid-liquid phase transition temperature ([Formula: see text]) ∼35 K below the nominal glass transition temperature of the ordinary SCL. The HD-SCL state is observed in glasses deposited in the thickness range of 25 to 55 nm, where thin films of the ordinary SCL have exceptionally enhanced surface mobility with large mobility gradients. The enhanced mobility enables vapor-deposited thin films to overcome kinetic barriers for relaxation and access the HD-SCL state. The HD-SCL state is only thermodynamically favored in thin films and transforms rapidly to the ordinary SCL when the vapor deposition is continued to form films with thicknesses more than 60 nm.
Collapse
|
14
|
Roth CB. Polymers under nanoconfinement: where are we now in understanding local property changes? Chem Soc Rev 2021; 50:8050-8066. [PMID: 34086025 DOI: 10.1039/d1cs00054c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers are increasingly being used in applications with nanostructured morphologies where almost all polymer molecules are within a few tens to hundreds of nanometers from some interface. From nearly three decades of study on polymers in simplified nanoconfined systems such as thin films, we have come to understand property changes in these systems as arising from interfacial effects where local dynamical perturbations are propagated deeper into the material. This review provides a summary of local glass transition temperature Tg changes near interfaces, comparing across different types of interfaces: free surface, substrate, liquid, and polymer-polymer. Local versus film-average properties in thin films are discussed, making connections to other related property changes, while highlighting several historically important studies. By experimental necessity, most studies are on high enough molecule weight chains to be well entangled, although aspects that connect to lower molecule weight materials are described. Emphasis is made to identify observations and open questions that have yet to be fully understood such as the evidence of long-ranged interfacial effects, finite domain size, interfacial breadth, and chain connectivity.
Collapse
Affiliation(s)
- Connie B Roth
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA.
| |
Collapse
|
15
|
Giermanska J, Ben Jabrallah S, Delorme N, Vignaud G, Chapel JP. Direct experimental evidences of the density variation of ultrathin polymer films with thickness. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|