1
|
Hauge JM, Pedersen JE, Bondu M, Laegsgaard J. Modeling and experimental characterization of two-wave mixing in Yb-doped fiber amplifiers. OPTICS EXPRESS 2024; 32:26896-26912. [PMID: 39538542 DOI: 10.1364/oe.514055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/11/2024] [Indexed: 11/16/2024]
Abstract
Two-wave mixing between forward- and backward-propagating signal light has recently been observed in frequency-modulated single-frequency fiber laser systems. The phenomenon is a potential limiting factor for power scaling of such frequency-tunable lasers. In this contribution, we derive a perturbative coupled-mode theory for two signals that counter-propagate in an Yb-doped fiber with a constant frequency detuning. We apply the theory to analyze experimental results dedicated to extracting the central material parameter that relates the Yb inversion to a (real) refractive-index change. The perturbative theory is derived to all orders, and argued to be convergent. The experimental results and our analysis support previous estimates of the ratio between changes in the gain coefficient and the refractive index.
Collapse
|
2
|
Hauge JM, Pedersen JE, Bondu M, Papior SR, Lægsgaard J. Theory and experiment of transient two-wave mixing in Yb-doped single-frequency fiber amplifiers induced by frequency modulation. OPTICS EXPRESS 2024; 32:14490-14505. [PMID: 38859392 DOI: 10.1364/oe.514057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/12/2024] [Indexed: 06/12/2024]
Abstract
This paper presents a theoretical and experimental characterization of an instability phenomenon observed in single-frequency fiber amplifiers when the frequency of the seed laser is modulated. The instability manifests itself as fluctuating elastic back-reflections that occur only when the frequency is decreasing with time. The theory is a generalization of a coupled-mode model developed for a single-frequency fiber amplifier back-seeded with a constant frequency shift relative to the main signal. It can explain most observed features of the experiments in a qualitative and semi-quantitative way. Open questions and directions for further developments are also discussed.
Collapse
|
3
|
Nordmann T, Wickenhagen S, Doležal M, Mehlstäubler TE. Bichromatic UV detection system for atomically-resolved imaging of ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:063305. [PMID: 37862543 DOI: 10.1063/5.0145409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/15/2023] [Indexed: 10/22/2023]
Abstract
We present a compact bichromatic imaging system, located outside of the vacuum chamber of a trapped ion apparatus that collects the fluorescence of 230.6 and 369.5 nm photons simultaneously on a shared electron-multiplying charge-coupled device (EMCCD) camera. The system contains two lens doublets, consisting of a sphere and an asphere. They provide a numerical aperture of 0.45 and 0.40 at 230.6 and 369.5 nm, respectively, and enable spatially resolved state detection with a large field of view of 300 μm for long 115In+/172Yb+ Coulomb crystals. Instead of diffraction-limited imaging for one wavelength, the focus in this system is on simultaneous single-ion resolved imaging of both species over a large field, with special attention to the deep UV wavelength (230.6 nm) and the low scattering rate of In+ ions. The introduced concept is applicable to other dual-species applications.
Collapse
Affiliation(s)
- T Nordmann
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
| | - S Wickenhagen
- Asphericon GmbH, Stockholmer Str. 9, 07747 Jena, Germany
| | - M Doležal
- Czech Metrology Institute (CMI), Okružní 31, 638 00 Brno, Czech Republic
| | - T E Mehlstäubler
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
- Laboratorium für Nano- und Quantenengineering, Leibniz Universität Hannover, Schneiderberg 39, 30167 Hannover, Germany
| |
Collapse
|
4
|
He L, Zhang J, Wang Z, Chang J, Wu Q, Lu Z, Zhang J. Ultra-stable cryogenic sapphire cavity laser with an instability reaching 2 × 10 -16 based on a low vibration level cryostat. OPTICS LETTERS 2023; 48:2519-2522. [PMID: 37186697 DOI: 10.1364/ol.488195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cryogenic ultra-stable lasers have extremely low thermal noise limits and frequency drifts, but they are more seriously affected by vibration noise from cryostats. Main material candidates for cryogenic ultra-stable cavities include silicon and sapphire. Although sapphire has many excellent properties at low temperature, the development of sapphire-based cavities is less advanced than that of silicon-based. Using a homemade cryogenic sapphire cavity, we develop an ultra-stable laser source with a frequency instability of 2(1) × 10-16. This is the best frequency instability level among similar systems using cryogenic sapphire cavities reported so far. Low vibration performance of the cryostat is demonstrated with a two-stage vibration isolation, and the vibration suppression is optimized by tuning the mixing ratio of the gas-liquid-helium. With this technique, the linear power spectral densities of vibrations at certain frequencies higher than tens of hertz are suppressed by two orders of magnitude in all directions.
Collapse
|
5
|
Hauge JM, Pedersen JE, Bondu M, Papior SR, Lægsgaard J. Observation of two-wave mixing in a single-frequency fiber amplifier induced by frequency modulation. OPTICS LETTERS 2022; 47:5497-5500. [PMID: 37219253 DOI: 10.1364/ol.473741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/01/2022] [Indexed: 05/24/2023]
Abstract
We report on the observation of unstable two-wave mixing in a Yb-doped optical fiber amplifier induced by frequency modulation of a single-frequency laser. What is believed to be a reflection of the main signal experiences a gain much higher than that provided by the optical pumping and potentially limits power scaling under frequency modulation. We propose an explanation for the effect based on the dynamic population and refractive index gratings formed by the interference between the main signal and its slightly frequency-detuned reflection.
Collapse
|
6
|
Schubert M, Kilzer L, Dubielzig T, Schilling M, Ospelkaus C, Hampel B. Active impedance matching of a cryogenic radio frequency resonator for ion traps. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093201. [PMID: 36182479 DOI: 10.1063/5.0097583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
A combination of direct current (DC) fields and high amplitude radio frequency (RF) fields is necessary to trap ions in a Paul trap. Such high electric RF fields are usually reached with the help of a resonator in close proximity to the ion trap. Ion trap based quantum computers profit from good vacuum conditions and low heating rates that cryogenic environments provide. However, an impedance matching network between the resonator and its RF source is necessary, as an unmatched resonator would require higher input power due to power reflection. The reflected power would not contribute to the RF trapping potential, and the losses in the cable induce additional heat into the system. The electrical properties of the matching network components change during cooling, and a cryogenic setup usually prohibits physical access to integrated components while the experiment is running. This circumstance leads to either several cooling cycles to improve the matching at cryogenic temperatures or the operation of poorly matched resonators. In this work, we demonstrate an RF resonator that is actively matched to the wave impedance of coaxial cables and the signal source. The active part of the matching circuit consists of a varactor diode array. Its capacitance depends on the DC voltage applied from outside the cryostat. We present measurements of the power reflection, the Q-factor, and higher harmonic signals resulting from the nonlinearity of the varactor diodes. The RF resonator is tested in a cryostat at room temperature and cryogenic temperatures, down to 4.3 K. A superior impedance matching for different ion traps can be achieved with this type of resonator.
Collapse
Affiliation(s)
- M Schubert
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Hans-Sommer Strasse 66, 38106 Braunschweig, Germany
| | - L Kilzer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - T Dubielzig
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - M Schilling
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Hans-Sommer Strasse 66, 38106 Braunschweig, Germany
| | - C Ospelkaus
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - B Hampel
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Hans-Sommer Strasse 66, 38106 Braunschweig, Germany
| |
Collapse
|
7
|
Barr K, Cookson T, Lagoudakis KG. Operation of a continuous flow liquid helium magnetic microscopy cryostat as a closed cycle system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:123701. [PMID: 34972427 DOI: 10.1063/5.0065560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate successful operation of a continuous flow liquid helium magnetic cryostat (Oxford Instruments, Microstat MO) in closed cycle operation using a modular cryocooling system (ColdEdge Technologies, Stinger). For the system operation, we have developed a custom gas handling manifold and we show that despite the lower cooling power of the cryocooler with respect to the nominal cryostat cooling power requirements, the magnetic cryostat can be operated in a stable manner. We provide the design of the gas handling manifold and a detailed analysis of the system performance in terms of cooling times, magnetic field ramping rates, and vibrations at the sample. Base temperatures can be reached within 10 h while the superconducting magnet can be energized at a ramping rate of 0.5 T/min. Vibrations are measured interferometrically and show amplitudes with a root mean square on the order of 5 nm, permitting the use of the system for sensitive magnetic microscopy experiments.
Collapse
Affiliation(s)
- K Barr
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - T Cookson
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - K G Lagoudakis
- Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| |
Collapse
|
8
|
Stark J, Warnecke C, Bogen S, Chen S, Dijck EA, Kühn S, Rosner MK, Graf A, Nauta J, Oelmann JH, Schmöger L, Schwarz M, Liebert D, Spieß LJ, King SA, Leopold T, Micke P, Schmidt PO, Pfeifer T, Crespo López-Urrutia JR. An ultralow-noise superconducting radio-frequency ion trap for frequency metrology with highly charged ions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:083203. [PMID: 34470420 DOI: 10.1063/5.0046569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We present a novel ultrastable superconducting radio-frequency (RF) ion trap realized as a combination of an RF cavity and a linear Paul trap. Its RF quadrupole mode at 34.52 MHz reaches a quality factor of Q ≈ 2.3 × 105 at a temperature of 4.1 K and is used to radially confine ions in an ultralow-noise pseudopotential. This concept is expected to strongly suppress motional heating rates and related frequency shifts that limit the ultimate accuracy achieved in advanced ion traps for frequency metrology. Running with its low-vibration cryogenic cooling system, electron-beam ion trap, and deceleration beamline supplying highly charged ions (HCIs), the superconducting trap offers ideal conditions for optical frequency metrology with ionic species. We report its proof-of-principle operation as a quadrupole-mass filter with HCIs and trapping of Doppler-cooled 9Be+ Coulomb crystals.
Collapse
Affiliation(s)
- J Stark
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C Warnecke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Bogen
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Chen
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - E A Dijck
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Kühn
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M K Rosner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Graf
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Nauta
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J-H Oelmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Schmöger
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - M Schwarz
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - D Liebert
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L J Spieß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S A King
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - T Leopold
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - P Micke
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P O Schmidt
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
9
|
Ye Y, He L, Sun Y, Zhang F, Wang Z, Lu Z, Zhang J. Vibration Property of a Cryogenic Optical Resonator within a Pulse-Tube Cryostat. SENSORS 2021; 21:s21144696. [PMID: 34300435 PMCID: PMC8309549 DOI: 10.3390/s21144696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022]
Abstract
Cryogenic ultrastable laser cavities push laser stability to new levels due to their lower thermal noise limitation. Vibrational noise is one of the major obstacles to achieve a thermal-noise-limited cryogenic ultrastable laser system. Here, we carefully analyze the vibrational noise contribution to the laser frequency. We measure the vibrational noise from the top of the pulse-tube cryocooler down to the experiment space. Major differences emerge between room and cryogenic temperature operation. We cooled a homemade 6 cm sapphire optical resonator down to 3.4 K. Locking a 1064 nm laser to the resonator, we measure a frequency stability of 1.3×10−15. The vibration sensitivities change at different excitation frequencies. The vibrational noise analysis of the laser system paves the way for in situ accurate evaluation of vibrational noise for cryogenic systems. This may help in cryostat design and cryogenic precision measurements.
Collapse
|
10
|
He R, Cui JM, Li RR, Qian ZH, Chen Y, Ai MZ, Huang YF, Li CF, Guo GC. An ion trap apparatus with high optical access in multiple directions. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:073201. [PMID: 34340438 DOI: 10.1063/5.0043985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Optical controls provided by lasers are the most important and essential techniques in trapped ion and cold atom systems. It is crucial to increase the optical accessibility of the setup to enhance these optical capabilities. Here, we present the design and construction of a new segmented-blade ion trap integrated with a compact glass vacuum cell, in place of the conventional bulky metal vacuum chamber. The distance between the ion and four outside surfaces of the glass cell is 15 mm, which enables us to install four high-numerical-aperture (NA) lenses (with two NA ⩽ 0.32 lenses and two NA ⩽ 0.66 lenses) in two orthogonal transverse directions, while leaving enough space for laser beams in the oblique and longitudinal directions. The high optical accessibility in multiple directions allows the application of small laser spots for addressable Raman operations, programmable optical tweezer arrays, and efficient fluorescence collection simultaneously. We have successfully loaded and cooled a string of 174Yb+ and 171Yb+ ions in the trap, which verifies the trapping stability. This compact high-optical-access trap setup not only can be used as an extendable module for quantum information processing but also facilitates experimental studies on quantum chemistry in a cold hybrid ion-atom system.
Collapse
Affiliation(s)
- Ran He
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jin-Ming Cui
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Rui-Rui Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Hua Qian
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yan Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ming-Zhong Ai
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yun-Feng Huang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|