1
|
Li SS, Xue CD, Hu SY, Li YJ, Chen XM, Zhao Y, Qin KR. Long-Term Stable and Multifeature Microfluidic Impedance Flow Cytometry Based on a Constricted Channel for Single-Cell Mechanical Phenotyping. Anal Chem 2024; 96:17754-17764. [PMID: 39431959 DOI: 10.1021/acs.analchem.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The microfluidic impedance flow cytometer (m-IFC) using constricted microchannels is an appealing choice for the high-throughput measurement of single-cell mechanical properties. However, channels smaller than the cells are susceptible to irreversible blockage, extremely affecting the stability of the system and the throughput. Meanwhile, the common practice of extracting a single quantitative index, i.e., total cell passage time, through the constricted part is inadequate to decipher the complex mechanical properties of individual cells. Herein, this study presents a long-term stable and multifeature m-IFC based on a constricted channel for single-cell mechanical phenotyping. The blockage problem is effectively overcome by adding tiny xanthan gum (XG) polymers. The cells can pass through the constricted channel at a flow rate of 500 μL/h without clogging, exhibiting high throughput (∼240 samples per second) and long-term stability (∼2 h). Moreover, six detection regions were implemented to capture the multiple features related to the whole process of a single cell passing through the long-constricted channel, e.g., creep, friction, and relaxation stages. To verify the performance of the multifeature m-IFC, cells treated with perturbations of microtubules and microfilaments within the cytoskeleton were detected, respectively. It suggests that the extracted features provide more comprehensive clues for single-cell analysis in structural and mechanical transformation. Overall, our proposed multifeature m-IFC exhibits the advantages of nonclogging and high throughput, which can be extended to other cell types for nondestructive and real-time mechanical phenotyping in cost-effective applications.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Chun-Dong Xue
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Si-Yu Hu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yong-Jiang Li
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yan Zhao
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P. R. China
| | - Kai-Rong Qin
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
2
|
Li SS, Xue CD, Li YJ, Chen XM, Zhao Y, Qin KR. Microfluidic characterization of single-cell biophysical properties and the applications in cancer diagnosis. Electrophoresis 2024; 45:1212-1232. [PMID: 37909658 DOI: 10.1002/elps.202300177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
Single-cell biophysical properties play a crucial role in regulating cellular physiological states and functions, demonstrating significant potential in the fields of life sciences and clinical diagnostics. Therefore, over the last few decades, researchers have developed various detection tools to explore the relationship between the biophysical changes of biological cells and human diseases. With the rapid advancement of modern microfabrication technology, microfluidic devices have quickly emerged as a promising platform for single-cell analysis offering advantages including high-throughput, exceptional precision, and ease of manipulation. Consequently, this paper provides an overview of the recent advances in microfluidic analysis and detection systems for single-cell biophysical properties and their applications in the field of cancer. The working principles and latest research progress of single-cell biophysical property detection are first analyzed, highlighting the significance of electrical and mechanical properties. The development of data acquisition and processing methods for real-time, high-throughput, and practical applications are then discussed. Furthermore, the differences in biophysical properties between tumor and normal cells are outlined, illustrating the potential for utilizing single-cell biophysical properties for tumor cell identification, classification, and drug response assessment. Lastly, we summarize the limitations of existing microfluidic analysis and detection systems in single-cell biophysical properties, while also pointing out the prospects and future directions of their applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Chun-Dong Xue
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yong-Jiang Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning, P. R. China
| | - Yan Zhao
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Kai-Rong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, P. R. China
| |
Collapse
|
3
|
Sabri E, Brosseau C. Electromechanical interactions between cell membrane and nuclear envelope: Beyond the standard Schwan's model of biological cells. Bioelectrochemistry 2024; 155:108583. [PMID: 37883860 DOI: 10.1016/j.bioelechem.2023.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
We investigate little-appreciated features of the hierarchical core-shell (CS) models of the electrical, mechanical, and electromechanical interactions between the cell membrane (CM) and nuclear envelope (NE). We first consider a simple model of an individual cell based on a coupled resistor-capacitor (Schwan model (SM)) network and show that the CM, when exposed to ac electric fields, acts as a low pass filter while the NE acts as a wide and asymmetric bandpass filter. We provide a simplified calculation for characteristic time associated with the capacitive charging of the NE and parameterize its range of behavior. We furthermore observe several new features dealing with mechanical analogs of the SM based on elementary spring-damper combinations. The chief merit of these models is that they can predict creep compliance responses of an individual cell under static stress and their effective retardation time constants. Next, we use an alternative and a more accurate CS physical model solved by finite element simulations for which geometrical cell reshaping under electromechanical stress (electrodeformation (ED)) is included in a continuum approach with spatial resolution. We show that under an electric field excitation, the elongated nucleus scales differently compared to the electrodeformed cell.
Collapse
Affiliation(s)
- Elias Sabri
- Univ Brest, CNRS, Lab-STICC, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France
| | - Christian Brosseau
- Univ Brest, CNRS, Lab-STICC, CS 93837, 6 avenue Le Gorgeu, 29238 Brest Cedex 3, France.
| |
Collapse
|
4
|
Geng X, Zhou ZA, Mi Y, Wang C, Wang M, Guo C, Qu C, Feng S, Kim I, Yu M, Ji H, Ren X. Glioma Single-Cell Biomechanical Analysis by Cyclic Conical Constricted Microfluidics. Anal Chem 2023; 95:15585-15594. [PMID: 37843131 DOI: 10.1021/acs.analchem.3c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Determining the grade of glioma is a critical step in choosing patients' treatment plans in clinical practices. The pathological diagnosis of patient's glioma samples requires extensive staining and imaging procedures, which are expensive and time-consuming. Current advanced uniform-width-constriction-channel-based microfluidics have proven to be effective in distinguishing cancer cells from normal tissues, such as breast cancer, ovarian cancer, prostate cancer, etc. However, the uniform-width-constriction channels can result in low yields on glioma cells with irregular morphologies and high heterogeneity. In this research, we presented an innovative cyclic conical constricted (CCC) microfluidic device to better differentiate glioma cells from normal glial cells. Compared with the widely used uniform-width-constriction microchannels, the new CCC configuration forces single cells to deform gradually and obtains the biophysical attributes from each deformation. The human-derived glioma cell lines U-87 and U-251, as well as the human-derived normal glial astrocyte cell line HA-1800 were selected as the proof of concept. The results showed that CCC channels can effectively obtain the biomechanical characteristics of different 12-25 μm glial cell lines. The patient glioma samples with WHO grades II, III, and IV were tested by CCC channels and compared between Elastic Net (ENet) and Lasso analysis. The results demonstrated that CCC channels and the ENet can successfully select critical biomechanical parameters to differentiate the grades of single-glioma cells. This CCC device can be potentially further applied to the extensive family of brain tumors at the single-cell level.
Collapse
Affiliation(s)
- Xin Geng
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Zi-Ang Zhou
- Department of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Yang Mi
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chunhong Wang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Meng Wang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chenjia Guo
- Department of Pathology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Chongxiao Qu
- Department of Pathology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Shilun Feng
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Inyoung Kim
- Department of Statistics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Miao Yu
- Department of Research and Development, Stedical Scientific, Carlsbad, California 92010, United States
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
| | - Xiang Ren
- Department of Neurosurgery, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030012, China
- Department of Microelectronics, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Tsitlakidis A, Tsingotjidou AS, Kritis A, Cheva A, Selviaridis P, Aifantis EC, Foroglou N. Atomic Force Microscope Nanoindentation Analysis of Diffuse Astrocytic Tumor Elasticity: Relation with Tumor Histopathology. Cancers (Basel) 2021; 13:4539. [PMID: 34572766 PMCID: PMC8465072 DOI: 10.3390/cancers13184539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims to investigate the influence of isocitrate dehydrogenase gene family (IDH) mutations, World Health Organization (WHO) grade, and mechanical preconditioning on glioma and adjacent brain elasticity through standard monotonic and repetitive atomic force microscope (AFM) nanoindentation. The elastic modulus was measured ex vivo on fresh tissue specimens acquired during craniotomy from the tumor and the peritumoral white matter of 16 diffuse glioma patients. Linear mixed-effects models examined the impact of tumor traits and preconditioning on tissue elasticity. Tissues from IDH-mutant cases were stiffer than those from IDH-wildtype ones among anaplastic astrocytoma patients (p = 0.0496) but of similar elasticity to IDH-wildtype cases for diffuse astrocytoma patients (p = 0.480). The tumor was found to be non-significantly softer than white matter in anaplastic astrocytomas (p = 0.070), but of similar elasticity to adjacent brain in diffuse astrocytomas (p = 0.492) and glioblastomas (p = 0.593). During repetitive indentation, both tumor (p = 0.002) and white matter (p = 0.003) showed initial stiffening followed by softening. Stiffening was fully reversed in white matter (p = 0.942) and partially reversed in tumor (p = 0.015). Tissue elasticity comprises a phenotypic characteristic closely related to glioma histopathology. Heterogeneity between patients should be further explored.
Collapse
Affiliation(s)
- Abraham Tsitlakidis
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (P.S.); (N.F.)
| | - Anastasia S. Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- Laboratory of Physiology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis Selviaridis
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (P.S.); (N.F.)
| | - Elias C. Aifantis
- Laboratory of Mechanics and Materials, Polytechnic School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nicolas Foroglou
- First Department of Neurosurgery, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (P.S.); (N.F.)
| |
Collapse
|