1
|
Hutchins W, Zare S, Hirt DM, Tomko JA, Matson JR, Diaz-Granados K, Long M, He M, Pfeifer T, Li J, Edgar JH, Maria JP, Caldwell JD, Hopkins PE. Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon-polariton modes in hexagonal boron nitride. NATURE MATERIALS 2025; 24:698-706. [PMID: 40097600 PMCID: PMC12048350 DOI: 10.1038/s41563-025-02154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/27/2025] [Indexed: 03/19/2025]
Abstract
Thermal transport across solid-solid interfaces is vital for advanced electronic and photonic applications, yet conventional conduction pathways often restrict performance. In polar crystals, hybridized vibrational modes called phonon polaritons offer a promising avenue to overcome the limitations of intrinsic phonon heat conduction. Here our work demonstrates that volume-confined hyperbolic phonon polariton (HPhP) modes can transfer energy across solid-solid interfaces at rates far exceeding phonon-phonon conduction. Using pump-probe thermoreflectance with a mid-infrared, tunable probe pulse with subpicosecond resolution, we remotely and selectively observe HPhP modes in hexagonal boron nitride (hBN) via broadband radiative heating from a gold source. Our measurements ascertain that hot electrons impinging at the interface radiate directly into the HPhPs of hBN in the near field, bypassing the phonon-phonon transport pathway. Such polaritonic coupling enables thermal transport speeds in solids orders of magnitude faster than possible through diffusive phonon processes. We thereby showcase a pronounced thermal transport enhancement across the gold-hBN interface via phonon-polariton coupling, advancing the limits of interfacial heat transfer.
Collapse
Affiliation(s)
- William Hutchins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Saman Zare
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Dan M Hirt
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - John A Tomko
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Joseph R Matson
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Katja Diaz-Granados
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Mackey Long
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mingze He
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Thomas Pfeifer
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jiahan Li
- Tim Taylor Deptartment of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - James H Edgar
- Tim Taylor Deptartment of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jon-Paul Maria
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA
| | - Joshua D Caldwell
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Patrick E Hopkins
- Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Physics, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Jakob DS, Schwartz JJ, Pavlidis G, Grutter KE, Centrone A. Understanding AFM-IR Signal Dependence on Sample Thickness and Laser Excitation: Experimental and Theoretical Insights. Anal Chem 2024; 96:16195-16202. [PMID: 39365177 DOI: 10.1021/acs.analchem.4c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Photothermal induced resonance (PTIR), also known as atomic force microscopy-infrared (AFM-IR), enables nanoscale IR absorption spectroscopy by transducing the local photothermal expansion and contraction of a sample with the tip of an atomic force microscope. PTIR spectra enable material identification at the nanoscale and can measure sample composition at depths >1 μm. However, implementation of quantitative, multivariate, nanoscale IR analysis requires an improved understanding of PTIR signal transduction and of the intensity dependence on sample characteristics and measurement parameters. Here, PTIR spectra measured on three-dimensional printed conical structures up to 2.5 μm tall elucidate the signal dependence on sample thickness for different IR laser repetition rates and pulse lengths. Additionally, we develop a model linking sample thermal expansion dynamics to cantilever excitation amplitudes that includes samples that do not fully thermalize between consecutive pulses. Remarkable qualitative agreement between experiments and theory demonstrates a monotonic increase in the PTIR signal intensity with thickness, with decreasing sensitivities at higher repetition rates, while signal intensity is nearly unaffected by laser pulse length. Although we observe slight deviations from linearity over the entire 2.5 μm thickness range, the signal's approximate linearity for bands of sample thicknesses up to ≈500 nm suggests that samples with comparably low topographic variations are most amenable to quantitative analysis. Importantly, we measure absorptive undistorted profiles in PTIR spectra for strongly absorbing modes, up to ≈1650 nm, and >2500 nm for other modes. These insights are foundational toward quantitative nanoscale PTIR analyses and material identification, furthering their impact across many applications.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey J Schwartz
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karen E Grutter
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
3
|
Bai S, Li Y, Cui X, Fu S, Zhou S, Wang X, Zhang Q. Spatial Shifts of Reflected Light Beam on Hexagonal Boron Nitride/Alpha-Molybdenum Trioxide Structure. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1625. [PMID: 38612140 PMCID: PMC11012424 DOI: 10.3390/ma17071625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/14/2024]
Abstract
This investigation focuses on the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts on the surface of the uniaxial hyperbolic material hexagonal boron nitride (hBN) based on the biaxial hyperbolic material alpha-molybdenum (α-MoO3) trioxide structure, where the anisotropic axis of hBN is rotated by an angle with respect to the incident plane. The surface with the highest degree of anisotropy among the two crystals is selected in order to analyze and calculate the GH- and IF-shifts of the system, and obtain the complex beam-shift spectra. The addition of α-MoO3 substrate significantly amplified the GH shift on the system's surface, as compared to silica substrate. With the p-polarization light incident, the GH shift can reach 381.76λ0 at about 759.82 cm-1, with the s-polarization light incident, the GH shift can reach 288.84λ0 at about 906.88 cm-1, and with the c-polarization light incident, the IF shift can reach 3.76λ0 at about 751.94 cm-1. The adjustment of the IF shift, both positive and negative, as well as its asymmetric nature, can be achieved by manipulating the left and right circular polarization light and torsion angle. The aforementioned intriguing phenomena offer novel insights for the advancement of sensor technology and optical encoder design.
Collapse
Affiliation(s)
- Song Bai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (S.B.); (Y.L.); (X.C.); (X.W.)
| | - Yubo Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (S.B.); (Y.L.); (X.C.); (X.W.)
| | - Xiaoyin Cui
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (S.B.); (Y.L.); (X.C.); (X.W.)
| | - Shufang Fu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (S.B.); (Y.L.); (X.C.); (X.W.)
| | - Sheng Zhou
- Department of Basic Courses, Guangzhou Maritime University, Guangzhou 510725, China;
| | - Xuanzhang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (S.B.); (Y.L.); (X.C.); (X.W.)
| | - Qiang Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; (S.B.); (Y.L.); (X.C.); (X.W.)
| |
Collapse
|
4
|
Schultz JF, Krylyuk S, Schwartz JJ, Davydov AV, Centrone A. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2024; 13:10.1515/nanoph-2023-0717. [PMID: 38846933 PMCID: PMC11155493 DOI: 10.1515/nanoph-2023-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nanophotonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a naturally hyperbolic material, meaning that its dielectric function deterministically controls the directional propagation of in-plane HPhPs within its reststrahlen bands. Strategies such as substrate engineering, nano- and heterostructuring, and isotopic enrichment are being developed to alter the intrinsic die ectric functions of natural hyperbolic materials and to control the confinement and propagation of HPhPs. Since isotopic disorder can limit phonon-based processes such as HPhPs, here we synthesize isotopically enriched 92MoO3 (92Mo: 99.93 %) and 100MoO3 (100Mo: 99.01 %) crystals to tune the properties and dispersion of HPhPs with respect to natural α-MoO3, which is composed of seven stable Mo isotopes. Real-space, near-field maps measured with the photothermal induced resonance (PTIR) technique enable comparisons of inplane HPhPs in α-MoO3 and isotopically enriched analogues within a reststrahlen band (≈820 cm-1 to ≈ 972 cm-1). Results show that isotopic enrichment (e.g., 92MoO3 and 100MoO3) alters the dielectric function, shifting the HPhP dispersion (HPhP angular wavenumber × thickness vs IR frequency) by ≈-7% and ≈ +9 %, respectively, and changes the HPhP group velocities by ≈ ±12 %, while the lifetimes (≈ 3 ps) in 92MoO3 were found to be slightly improved (≈ 20 %). The latter improvement is attributed to a decrease in isotopic disorder. Altogether, isotopic enrichment was found to offer fine control over the properties that determine the anisotropic in-plane propagation of HPhPs in α-MoO3, which is essential to its implementation in nanophotonic applications.
Collapse
Affiliation(s)
- Jeremy F. Schultz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; and Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
5
|
Janzen E, Schutte H, Plo J, Rousseau A, Michel T, Desrat W, Valvin P, Jacques V, Cassabois G, Gil B, Edgar JH. Boron and Nitrogen Isotope Effects on Hexagonal Boron Nitride Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306033. [PMID: 37705372 DOI: 10.1002/adma.202306033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/22/2023] [Indexed: 09/15/2023]
Abstract
The unique physical, mechanical, chemical, optical, and electronic properties of hexagonal boron nitride (hBN) make it a promising 2D material for electronic, optoelectronic, nanophotonic, and quantum devices. Here, the changes in hBN's properties induced by isotopic purification in both boron and nitrogen are reported. Previous studies on isotopically pure hBN have focused on purifying the boron isotope concentration in hBN from its natural concentration (≈20 at% 10 B, 80 at% 11 B) while using naturally abundant nitrogen (99.6 at% 14 N, 0.4 at% 15 N), that is, almost pure 14 N. In this study, the class of isotopically purified hBN crystals to 15 N is extended. Crystals in the four configurations, namely h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N, are grown by the metal flux method using boron and nitrogen single isotope (> 99%) enriched sources, with nickel plus chromium as the solvent. In-depth Raman and photoluminescence spectroscopies demonstrate the high quality of the monoisotopic hBN crystals with vibrational and optical properties of the 15 N-purified crystals at the state-of-the-art of currently available 14 N-purified hBN. The growth of high-quality h10 B14 N, h11 B14 N, h10 B15 N, and h11 B15 N opens exciting perspectives for thermal conductivity control in heat management, as well as for advanced functionalities in quantum technologies.
Collapse
Affiliation(s)
- Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 1701A Platt St., Manhattan, KS, 66506-5102, USA
| | - Hannah Schutte
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 1701A Platt St., Manhattan, KS, 66506-5102, USA
| | - Juliette Plo
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Adrien Rousseau
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Thierry Michel
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Wilfried Desrat
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Pierre Valvin
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Vincent Jacques
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Guillaume Cassabois
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - Bernard Gil
- Laboratoire Charles Coulomb, Université de Montpellier and CNRS, Montpellier, 34095, France
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1005 Durland Hall, 1701A Platt St., Manhattan, KS, 66506-5102, USA
| |
Collapse
|
6
|
Cheng SW, Xu D, Su H, Baxter JM, Holtzman LN, Watanabe K, Taniguchi T, Hone JC, Barmak K, Delor M. Optical Imaging of Ultrafast Phonon-Polariton Propagation through an Excitonic Sensor. NANO LETTERS 2023; 23:9936-9942. [PMID: 37852205 DOI: 10.1021/acs.nanolett.3c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Hexagonal boron nitride (hBN) hosts phonon polaritons (PhP), hybrid light-matter states that facilitate electromagnetic field confinement and exhibit long-range ballistic transport. Extracting the spatiotemporal dynamics of PhPs usually requires "tour de force" experimental methods such as ultrafast near-field infrared microscopy. Here, we leverage the remarkable environmental sensitivity of excitons in two-dimensional transition metal dichalcogenides to image PhP propagation in adjacent hBN slabs. Using ultrafast optical microscopy on monolayer WSe2/hBN heterostructures, we image propagating PhPs from 3.5 K to room temperature with subpicosecond and few-nanometer precision. Excitons in WSe2 act as transducers between visible light pulses and infrared PhPs, enabling visible-light imaging of PhP transport with far-field microscopy. We also report evidence of excitons in WSe2 copropagating with hBN PhPs over several micrometers. Our results provide new avenues for imaging polar excitations over a large frequency range with extreme spatiotemporal precision and new mechanisms to realize ballistic exciton transport at room temperature.
Collapse
Affiliation(s)
- Shan-Wen Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ding Xu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Haowen Su
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - James M Baxter
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Luke N Holtzman
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Milan Delor
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Matson J, Wasserroth S, Ni X, Obst M, Diaz-Granados K, Carini G, Renzi EM, Galiffi E, Folland TG, Eng LM, Michael Klopf J, Mastel S, Armster S, Gambin V, Wolf M, Kehr SC, Alù A, Paarmann A, Caldwell JD. Controlling the propagation asymmetry of hyperbolic shear polaritons in beta-gallium oxide. Nat Commun 2023; 14:5240. [PMID: 37640711 PMCID: PMC10462611 DOI: 10.1038/s41467-023-40789-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3 has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal β-Ga2O3 (bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.
Collapse
Affiliation(s)
| | - Sören Wasserroth
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Xiang Ni
- School of Physics, Central South University, Changsha, Hunan, China
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Maximilian Obst
- Institute of Applied Physics, TUD Dresden University of Technology, Dresden, Germany
| | | | - Giulia Carini
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Enrico Maria Renzi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, USA
| | - Emanuele Galiffi
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | | | - Lukas M Eng
- Institute of Applied Physics, TUD Dresden University of Technology, Dresden, Germany
| | | | | | - Sean Armster
- NG NEXT, Northrop Grumman Corporation, Redondo Beach, CA, USA
| | - Vincent Gambin
- NG NEXT, Northrop Grumman Corporation, Redondo Beach, CA, USA
| | - Martin Wolf
- Fritz Haber Institute of the Max Planck Society, Berlin, Germany
| | - Susanne C Kehr
- Institute of Applied Physics, TUD Dresden University of Technology, Dresden, Germany
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, USA
| | | | | |
Collapse
|
8
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev 2022; 51:5248-5267. [PMID: 35616225 DOI: 10.1039/d2cs00095d] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, MD 20740, USA.,Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St., NW Washington D.C., 20057, USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|