1
|
Bousso I, Genin G, Thomopoulos S. Achieving tendon enthesis regeneration across length scales. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100547. [PMID: 39219714 PMCID: PMC11364215 DOI: 10.1016/j.cobme.2024.100547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Surgical reattachment of tendon to bone is a clinical challenge, with unacceptably high retear rates in the early period after repair. A primary reason for these repeated tears is that the multiscale toughening mechanisms found at the healthy tendon enthesis are not regenerated during tendon-to-bone healing. The need for technologies to improve these outcomes is pressing, and the tissue engineering community has responded with many advances that hold promise for eventually regenerating the multiscale tissue interface that transfers loads between the two dissimilar materials, tendon, and bone. This review provides an assessment of the state of these approaches, with the aim of identifying a critical agenda for future progress.
Collapse
Affiliation(s)
- Ismael Bousso
- Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Guy Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, MO USA
| | - Stavros Thomopoulos
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Orthopaedic Surgery, Columbia University, New York, NY USA
| |
Collapse
|
2
|
Böl M, Leichsenring K, Kohn S, Ehret AE. The anisotropic and region-dependent mechanical response of wrap-around tendons under tensile, compressive and combined multiaxial loads. Acta Biomater 2024; 183:157-172. [PMID: 38838908 DOI: 10.1016/j.actbio.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The present work reports on the multiaxial region and orientation-dependent mechanical properties of two porcine wrap-around tendons under tensile, compressive and combined loads based on an extensive study with n=175 samples. The results provide a detailed dataset of the anisotropic tensile and compressive longitudinal properties and document a pronounced tension-compression asymmetry. Motivated by the physiological loading conditions of these tendons, which include transversal compression at bony abutments in addition to longitudinal tension, we systematically investigated the change in axial tension when the tendon is compressed transversally along one or both perpendicular directions. The results reveal that the transversal compression can increase axial tension (proximal-distal direction) in both cases to orders of 30%, yet by a larger amount in the first case (transversal compression in anterior-posterior direction), which seems to be more relevant for wrap-around tendons in-vivo. These quantitative measurements are in line with earlier findings on auxetic properties of tendon tissue, but show for the first time the influence of this property on the stress response of the tendon, and may thus reveal an important functional principle within these essential elements of force transmission in the body. STATEMENT OF SIGNIFICANCE: The work reports for the first time on multiaxial region and orientation-dependent mechanical properties of wrap-around tendons under various loads. The results indicate that differences in the mechanical properties exist between zones that are predominantly in a uniaxial tensile state and those that experience complex load states. The observed counterintuitive increase of the axial tension upon lateral compression points at auxetic properties of the tendon tissue which may be pivotal for the function of the tendon as an element of the musculoskeletal system. It suggests that the tendon's performance in transmitting forces is not diminished but enhanced when the action line is deflected by a bony pulley around which the tendon wraps, representing an important functional principle of tendon tissue.
Collapse
Affiliation(s)
- Markus Böl
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany.
| | - Kay Leichsenring
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Stephan Kohn
- Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany
| | - Alexander E Ehret
- Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland; Institute for Mechanical Systems, ETH Zurich, Zürich, CH-8092, Switzerland
| |
Collapse
|
3
|
Yu HP, Zhu YJ. Guidelines derived from biomineralized tissues for design and construction of high-performance biomimetic materials: from weak to strong. Chem Soc Rev 2024; 53:4490-4606. [PMID: 38502087 DOI: 10.1039/d2cs00513a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Living organisms in nature have undergone continuous evolution over billions of years, resulting in the formation of high-performance fracture-resistant biomineralized tissues such as bones and teeth to fulfill mechanical and biological functions, despite the fact that most inorganic biominerals that constitute biomineralized tissues are weak and brittle. During the long-period evolution process, nature has evolved a number of highly effective and smart strategies to design chemical compositions and structures of biomineralized tissues to enable superior properties and to adapt to surrounding environments. Most biomineralized tissues have hierarchically ordered structures consisting of very small building blocks on the nanometer scale (nanoparticles, nanofibers or nanoflakes) to reduce the inherent weaknesses and brittleness of corresponding inorganic biominerals, to prevent crack initiation and propagation, and to allow high defect tolerance. The bioinspired principles derived from biomineralized tissues are indispensable for designing and constructing high-performance biomimetic materials. In recent years, a large number of high-performance biomimetic materials have been prepared based on these bioinspired principles with a large volume of literature covering this topic. Therefore, a timely and comprehensive review on this hot topic is highly important and contributes to the future development of this rapidly evolving research field. This review article aims to be comprehensive, authoritative, and critical with wide general interest to the science community, summarizing recent advances in revealing the formation processes, composition, and structures of biomineralized tissues, providing in-depth insights into guidelines derived from biomineralized tissues for the design and construction of high-performance biomimetic materials, and discussing recent progress, current research trends, key problems, future main research directions and challenges, and future perspectives in this exciting and rapidly evolving research field.
Collapse
Affiliation(s)
- Han-Ping Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Yang F, Das D, Karunakaran K, Genin GM, Thomopoulos S, Chasiotis I. Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils. Acta Biomater 2023; 163:63-77. [PMID: 35259515 PMCID: PMC9441475 DOI: 10.1016/j.actbio.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/16/2022] [Accepted: 03/02/2022] [Indexed: 11/01/2022]
Abstract
The viscoelastic mechanical behavior of collagenous tissues has been studied extensively at the macroscale, yet a thorough quantitative understanding of the time-dependent mechanics of the basic building blocks of tissues, the collagen fibrils, is still missing. In order to address this knowledge gap, stress relaxation and creep tests at various stress (5-35 MPa) and strain (5-20%) levels were performed with individual collagen fibrils (average diameter of fully hydrated fibrils: 253 ± 21 nm) in phosphate buffered saline (PBS). The experimental results showed that the time-dependent mechanical behavior of fully hydrated individual collagen fibrils reconstituted from Type I calf skin collagen, is described by strain-dependent stress relaxation and stress-dependent creep functions in both the heel-toe and the linear regimes of deformation in monotonic stress-strain curves. The adaptive quasilinear viscoelastic (QLV) model, originally developed to capture the nonlinear viscoelastic response of collagenous tissues, provided a very good description of the nonlinear stress relaxation and creep behavior of the collagen fibrils. On the other hand, the nonlinear superposition (NSP) model fitted well the creep but not the stress relaxation data. The time constants and rates extracted from the adaptive QLV and the NSP models, respectively, pointed to a faster rate for stress relaxation than creep. This nonlinear viscoelastic behavior of individual collagen fibrils agrees with prior studies of macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. STATEMENT OF SIGNIFICANCE: Pure stress relaxation and creep experiments were conducted for the first time with fully hydrated individual collagen fibrils. It is shown that collagen nanofibrils have a nonlinear time-dependent behavior which agrees with prior studies on macroscale collagenous tissues, thus demonstrating consistent time-dependent behavior across length scales and tissue hierarchies. This new insight into the non-linear viscoelastic behavior of the building blocks of mammalian collagenous tissues may serve as the foundation for improved macroscale tissue models that capture the mechanical behavior across length scales.
Collapse
Affiliation(s)
- Fan Yang
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Debashish Das
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kathiresan Karunakaran
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Guy M Genin
- Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130, USA
| | - Stavros Thomopoulos
- Orthopedic Surgery, Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Ioannis Chasiotis
- Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Lin AH, Slater CA, Martinez CJ, Eppell SJ, Yu SM, Weiss JA. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point. Acta Biomater 2023; 155:461-470. [PMID: 36400348 PMCID: PMC9805521 DOI: 10.1016/j.actbio.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Collagen molecules are the base structural unit of tendons, which become denatured during mechanical overload. We recently demonstrated that during tendon stretch, collagen denaturation occurs at the yield point of the stress-strain curve in both positional and energy-storing tendons. We were interested in investigating how this load is transferred throughout the collagen hierarchy, and sought to determine the onset of collagen denaturation when collagen fibrils are stretched. Fibrils are one level above the collagen molecule in the collagen hierarchy, allowing more direct probing of the effect of strain on collagen molecules. We isolated collagen fibrils from both positional and energy-storing tendon types and stretched them using a microelectromechanical system device to various levels of strain. We stained the fibrils with fluorescently labeled collagen hybridizing peptides that specifically bind to denatured collagen, and examined whether samples stretched beyond the yield point of the stress-strain curve exhibited increased amounts of denatured collagen. We found that collagen denaturation in collagen fibrils from both tendon types occurs at the yield point. Greater amounts of denatured collagen were found in post-yield positional fibrils than in energy-storing fibrils. This is despite a greater yield strain and yield stress in fibrils from energy-storing tendons compared to positional tendons. Interestingly, the peak modulus of collagen fibrils from both tendon types was the same. These results are likely explained by the greater crosslink density found in energy-storing tendons compared to positional tendons. The insights gained from this study could help management of tendon and other musculoskeletal injuries by targeting collagen molecular damage at the fibril level. STATEMENT OF SIGNIFICANCE: When tendons are stretched or torn, this can lead to collagen denaturation (damage). Depending on their biomechanical function, tendons are considered positional or energy-storing with different crosslink profiles. By stretching collagen fibrils instead of fascicles from both tendon types, we can more directly examine the effect of tensile stretch on the collagen molecule in tendons. We found that regardless of tendon type, collagen denaturation in fibrils occurs when they are stretched beyond the yield point of the stress-strain curve. This provides insight into how load affects different tendon sub-structures during tendon injuries and failure, which will help clinicians and researchers understand mechanisms of injuries and potentially target collagen molecular damage as a treatment strategy, leading to improved clinical outcomes following injury.
Collapse
Affiliation(s)
- Allen H Lin
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Christopher A Slater
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - Callie-Jo Martinez
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, Case Western Reserve University, United States
| | - S Michael Yu
- Department of Biomedical Engineering, University of Utah, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, United States
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, United States; Scientific Computing and Imaging Institute, University of Utah, United States; Department of Orthopaedics, University of Utah, United States.
| |
Collapse
|