1
|
Sarkar D, Maffeo C, Sutter M, Aksimentiev A, Kerfeld CA, Vermaas JV. Atomic view of photosynthetic metabolite permeability pathways and confinement in synthetic carboxysome shells. Proc Natl Acad Sci U S A 2024; 121:e2402277121. [PMID: 39485798 PMCID: PMC11551347 DOI: 10.1073/pnas.2402277121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Carboxysomes are protein microcompartments found in cyanobacteria, whose shell encapsulates rubisco at the heart of carbon fixation in the Calvin cycle. Carboxysomes are thought to locally concentrate CO2 in the shell interior to improve rubisco efficiency through selective metabolite permeability, creating a concentrated catalytic center. However, permeability coefficients have not previously been determined for these gases, or for Calvin-cycle intermediates such as bicarbonate ([Formula: see text]), 3-phosphoglycerate, or ribulose-1,5-bisphosphate. Starting from a high-resolution cryogenic electron microscopy structure of a synthetic [Formula: see text]-carboxysome shell, we perform unbiased all-atom molecular dynamics to track metabolite permeability across the shell. The synthetic carboxysome shell structure, lacking the bacterial microcompartment trimer proteins and encapsulation peptides, is found to have similar permeability coefficients for multiple metabolites, and is not selectively permeable to [Formula: see text] relative to CO2. To resolve how these comparable permeabilities can be reconciled with the clear role of the carboxysome in the CO2-concentrating mechanism in cyanobacteria, complementary atomic-resolution Brownian Dynamics simulations estimate the mean first passage time for CO2 assimilation in a crowded model carboxysome. Despite a relatively high CO2 permeability of approximately 10-2 cm/s across the carboxysome shell, the shell proteins reflect enough CO2 back toward rubisco that 2,650 CO2 molecules can be fixed by rubisco for every 1 CO2 molecule that escapes under typical conditions. The permeabilities determined from all-atom molecular simulation are key inputs into flux modeling, and the insight gained into carbon fixation can facilitate the engineering of carboxysomes and other bacterial microcompartments for multiple applications.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
| | - Christopher Maffeo
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL61801
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL61801
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Josh V. Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| |
Collapse
|
2
|
Aristoff D, Johnson M, Simpson G, Webber RJ. The fast committor machine: Interpretable prediction with kernels. J Chem Phys 2024; 161:084113. [PMID: 39193940 DOI: 10.1063/5.0222798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
In the study of stochastic systems, the committor function describes the probability that a system starting from an initial configuration x will reach a set B before a set A. This paper introduces an efficient and interpretable algorithm for approximating the committor, called the "fast committor machine" (FCM). The FCM uses simulated trajectory data to build a kernel-based model of the committor. The kernel function is constructed to emphasize low-dimensional subspaces that optimally describe the A to B transitions. The coefficients in the kernel model are determined using randomized linear algebra, leading to a runtime that scales linearly with the number of data points. In numerical experiments involving a triple-well potential and alanine dipeptide, the FCM yields higher accuracy and trains more quickly than a neural network with the same number of parameters. The FCM is also more interpretable than the neural net.
Collapse
Affiliation(s)
- David Aristoff
- Mathematics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Mats Johnson
- Mathematics, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Gideon Simpson
- Mathematics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - Robert J Webber
- Mathematics, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
3
|
Lelièvre T, Pigeon T, Stoltz G, Zhang W. Analyzing Multimodal Probability Measures with Autoencoders. J Phys Chem B 2024; 128:2607-2631. [PMID: 38466759 DOI: 10.1021/acs.jpcb.3c07075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Finding collective variables to describe some important coarse-grained information on physical systems, in particular metastable states, remains a key issue in molecular dynamics. Recently, machine learning techniques have been intensively used to complement and possibly bypass expert knowledge in order to construct collective variables. Our focus here is on neural network approaches based on autoencoders. We study some relevant mathematical properties of the loss function considered for training autoencoders and provide physical interpretations based on conditional variances and minimum energy paths. We also consider various extensions in order to better describe physical systems, by incorporating more information on transition states at saddle points, and/or allowing for multiple decoders in order to describe several transition paths. Our results are illustrated on toy two-dimensional systems and on alanine dipeptide.
Collapse
Affiliation(s)
- Tony Lelièvre
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Thomas Pigeon
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
- IFP Energies Nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, 69360 Solaize, France
| | - Gabriel Stoltz
- CERMICS, École des Ponts ParisTech, 6-8 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France
- MATHERIALS Team-project, Inria Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Wei Zhang
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
- Zuse Institute Berlin, Takustraße 7, 14195 Berlin, Germany
| |
Collapse
|
4
|
Rydzewski J, Gökdemir T. Learning Markovian dynamics with spectral maps. J Chem Phys 2024; 160:091102. [PMID: 38436438 DOI: 10.1063/5.0189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
The long-time behavior of many complex molecular systems can often be described by Markovian dynamics in a slow subspace spanned by a few reaction coordinates referred to as collective variables (CVs). However, determining CVs poses a fundamental challenge in chemical physics. Depending on intuition or trial and error to construct CVs can lead to non-Markovian dynamics with long memory effects, hindering analysis. To address this problem, we continue to develop a recently introduced deep-learning technique called spectral map [J. Rydzewski, J. Phys. Chem. Lett. 14, 5216-5220 (2023)]. Spectral map learns slow CVs by maximizing a spectral gap of a Markov transition matrix describing anisotropic diffusion. Here, to represent heterogeneous and multiscale free-energy landscapes with spectral map, we implement an adaptive algorithm to estimate transition probabilities. Through a Markov state model analysis, we validate that spectral map learns slow CVs related to the dominant relaxation timescales and discerns between long-lived metastable states.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Tuğçe Gökdemir
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| |
Collapse
|
5
|
Post M, Wolf S, Stock G. Investigation of Rare Protein Conformational Transitions via Dissipation-Corrected Targeted Molecular Dynamics. J Chem Theory Comput 2023; 19:8978-8986. [PMID: 38011829 DOI: 10.1021/acs.jctc.3c01017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
To sample rare events, dissipation-corrected targeted molecular dynamics (dcTMD) applies a constant velocity constraint along a one-dimensional reaction coordinate s, which drives an atomistic system from an initial state into a target state. Employing a cumulant approximation of Jarzynski's identity, the free energy ΔG(s) is calculated from the mean external work and dissipated work of the process. By calculating the friction coefficient Γ(s) from the dissipated work, in a second step, the equilibrium dynamics of the process can be studied by propagating a Langevin equation. While so far dcTMD has been mostly applied to study the unbinding of protein-ligand complexes, here its applicability to rare conformational transitions within a protein and the prediction of their kinetics are investigated. As this typically requires the introduction of multiple collective variables {xj} = x, a theoretical framework is outlined to calculate the associated free energy ΔG(x) and friction Γ(x) from dcTMD simulations along coordinate s. Adopting the α-β transition of alanine dipeptide as well as the open-closed transition of T4 lysozyme as representative examples, the virtues and shortcomings of dcTMD to predict protein conformational transitions and the related kinetics are studied.
Collapse
Affiliation(s)
- Matthias Post
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg 79104, Germany
| | - Steffen Wolf
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg 79104, Germany
| | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
6
|
Domingues TS, Coifman RR, Haji-Akbari A. Robust Estimation of Position-Dependent Anisotropic Diffusivity Tensors from Molecular Dynamics Trajectories. J Phys Chem B 2023; 127:8644-8659. [PMID: 37757480 DOI: 10.1021/acs.jpcb.3c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Confinement breaks translational and rotational symmetry in materials and makes all physical properties functions of position. Such spatial variations are key to modulating material properties at the nanoscale, and characterizing them accurately is therefore an intense area of research in the molecular simulations community. This is relatively easy to accomplish for basic mechanical observables. Determining spatial profiles of transport properties, such as diffusivity, is, however, much more challenging, as it requires calculating position-dependent autocorrelations of mechanical observables. In our previous paper (Domingues, T.S.; Coifman, R.; Haji-Akbari, A. J. Phys. Chem. B 2023, 127, 5273 10.1021/acs.jpcb.3c00670), we analytically derive and numerically validate a set of filtered covariance estimators (FCEs) for quantifying spatial variations of the diffusivity tensor from stochastic trajectories. In this work, we adapt these estimators to extract diffusivity profiles from MD trajectories and validate them by applying them to a Lennard-Jones fluid within a slit pore. We find our MD-adapted estimator to exhibit the same qualitative features as its stochastic counterpart, as it accurately estimates the lateral diffusivity across the pore while systematically underestimating the normal diffusivity close to hard boundaries. We introduce a conceptually simple and numerically efficient correction scheme based on simulated annealing and diffusion maps to resolve the latter artifact and obtain normal diffusivity profiles that are consistent with the self-part of the van Hove correlation functions. Our findings demonstrate the potential of this MD-adapted estimator in accurately characterizing spatial variations of diffusivity in confined materials.
Collapse
Affiliation(s)
- Tiago S Domingues
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Ronald R Coifman
- Department of Mathematics, Yale University, New Haven, Connecticut 06520, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Sarkar D, Lee H, Vant JW, Turilli M, Vermaas JV, Jha S, Singharoy A. Adaptive Ensemble Refinement of Protein Structures in High Resolution Electron Microscopy Density Maps with Radical Augmented Molecular Dynamics Flexible Fitting. J Chem Inf Model 2023; 63:5834-5846. [PMID: 37661856 DOI: 10.1021/acs.jcim.3c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Recent advances in cryo-electron microscopy (cryo-EM) have enabled modeling macromolecular complexes that are essential components of the cellular machinery. The density maps derived from cryo-EM experiments are often integrated with manual, knowledge-driven or artificial intelligence-driven and physics-guided computational methods to build, fit, and refine molecular structures. Going beyond a single stationary-structure determination scheme, it is becoming more common to interpret the experimental data with an ensemble of models that contributes to an average observation. Hence, there is a need to decide on the quality of an ensemble of protein structures on-the-fly while refining them against the density maps. We introduce such an adaptive decision-making scheme during the molecular dynamics flexible fitting (MDFF) of biomolecules. Using RADICAL-Cybertools, the new RADICAL augmented MDFF implementation (R-MDFF) is examined in high-performance computing environments for refinement of two prototypical protein systems, adenylate kinase and carbon monoxide dehydrogenase. For these test cases, use of multiple replicas in flexible fitting with adaptive decision making in R-MDFF improves the overall correlation to the density by 40% relative to the refinements of the brute-force MDFF. The improvements are particularly significant at high, 2-3 Å map resolutions. More importantly, the ensemble model captures key features of biologically relevant molecular dynamics that are inaccessible to a single-model interpretation. Finally, the pipeline is applicable to systems of growing sizes, which is demonstrated using ensemble refinement of capsid proteins from the chimpanzee adenovirus. The overhead for decision making remains low and robust to computing environments. The software is publicly available on GitHub and includes a short user guide to install R-MDFF on different computing environments, from local Linux-based workstations to high-performance computing environments.
Collapse
Affiliation(s)
- Daipayan Sarkar
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Hyungro Lee
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - John W Vant
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Matteo Turilli
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, East Lansing, Michigan 48824, United States
| | - Shantenu Jha
- Electrical & Computer Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|