1
|
Multhaup A, Huppertz B, Göhner C, Böhringer M, Mai M, Markert U, Schleußner E, Groten T. N-cadherin knockdown leads to disruption of trophoblastic and endothelial cell interaction in a 3D cell culture model - New insights in trophoblast invasion failure. Cell Adh Migr 2017; 12:259-270. [PMID: 29231798 DOI: 10.1080/19336918.2017.1386822] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Trophoblast homing to maternal spiral arteries is mandatory for successful placentation. Cell-cell adhesion molecules regulate this process and adhesion molecule expression is altered in impaired placentation. We hypothesize that, similar to immune cell recruitment, trophoblast cell adherence and rolling are primarily mediated by adhesion molecules like, cadherins, immunoglobulins, selectins and their partnering ligands. Here, the interdependence of adhesion molecule expression in trophoblastic cell lines of diverse origin was investigated in relation to their interaction with endothelial cell networks on Matrigel® co-cultures and the effect of specific adhesion molecule knockdown analyzed. METHODS Trophoblastic cells were labeled in red and co-cultured with green HUVEC networks on Matrigel®. Association was quantified after collection of fluorescence microscopy pictures using Wimasis® internet platform and software. Expression of adhesion molecules was analyzed by PCR and Western blot, immuno-fluorescence and flow cytometry. The impact of adhesion molecules on trophoblast-endothelial-cell interaction was investigated using siRNA technique. RESULTS N-cadherin and CD162 were specifically expressed in the trophoblast cell line HTR-8/SVneo, which closely adhere to and actively migrate toward HUVEC networks on Matrigel®. Suppression of N-cadherin led to a significant alteration in trophoblast-endothelial cell interaction. Expression of VE-cadherin in closely interacting trophoblast cells was not confirmed in vitro. DISCUSSION We identified N-cadherin to mediate specific interaction between HUVEC and the migrating trophoblast cells HTR-8/SVneo in a Matrigel® co-culture model. VE-cadherin contribution could not be confirmed in vitro. Our results support the hypothesis that impaired N-cadherin but not VE-cadherin expression is involved in trophoblast recruitment to the maternal endothelium.
Collapse
Affiliation(s)
- A Multhaup
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - B Huppertz
- b Institute of Cell Biology, Histology and Embryology, Medical University Graz , Graz, Austria
| | - C Göhner
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - M Böhringer
- c Septomics Research Centre, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute , Jena , Germany
| | - M Mai
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - U Markert
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - E Schleußner
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| | - T Groten
- a Department of Obstetrics , University Hospital Jena, Friedrich-Schiller-University , Jena , Germany
| |
Collapse
|
2
|
O’Sullivan JA, Carroll DJ, Bochner BS. Glycobiology of Eosinophilic Inflammation: Contributions of Siglecs, Glycans, and Other Glycan-Binding Proteins. Front Med (Lausanne) 2017; 4:116. [PMID: 28824909 PMCID: PMC5539825 DOI: 10.3389/fmed.2017.00116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The historical focus on protein-protein interactions in biological systems, at the expense of attention given to interactions between other classes of molecules, has overlooked important and clinically relevant processes and points of potential clinical intervention. For example, the significance of protein-carbohydrate interactions, especially in the regulation of immune responses, has recently received greater recognition and appreciation. This review discusses several ways by which cell-surface lectin-glycan interactions can modulate eosinophil function, particularly at the levels of eosinophil recruitment and survival, and how such interactions can be exploited therapeutically. A primary focus is on discoveries concerning Siglec-8, a glycan-binding protein selectively expressed on human eosinophils, and its closest functional paralog in the mouse, Siglec-F. Recent advances in the synthesis of polymeric ligands, the identification of physiological ligands for Siglec-8 and Siglec-F in the airway, and the determination of the basis of glycan ligand discrimination of Siglec-8 are discussed. Important similarities and differences between these siglecs are outlined. Eosinophil expression of additional glycan-binding proteins or their glycan ligands, including interactions involving members of the selectin, galectin, and siglec families, is summarized. The roles of these molecules in eosinophil recruitment, survival, and inflammation are described. Finally, the modulation of these interactions and potential therapeutic exploitation of glycan-binding proteins and their ligands to ameliorate eosinophil-associated diseases are considered.
Collapse
Affiliation(s)
- Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniela J. Carroll
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
3
|
Bochner BS. "Siglec"ting the allergic response for therapeutic targeting. Glycobiology 2016; 26:546-52. [PMID: 26911285 DOI: 10.1093/glycob/cww024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/09/2023] Open
Abstract
As a physician-scientist, I have pursued research related to translational immunology with the goal of improving our ability to diagnose and treat allergic, immunologic and other diseases involving eosinophils, basophils and mast cells. We have tried to delineate novel mechanisms of human disease, working whenever possible with primary human cells and tissues, attempting to identify targets that might be amenable to the development of new therapies. As a general strategy, we have compared eosinophils, basophils, mast cells and neutrophils to look for pathways in inflammation that were unique to distinct subsets of these cells. In doing so, the concepts of glycobiology did not enter my mind until we began noticing some intriguing functional differences involving selectins and their ligands among these cell types. One simple observation, that neutrophils were coated with a glycan that allowed them to interact with an endothelial adhesion molecule while eosinophils lacked this structure, pried open the glyco-door for me. Fruitful collaborations with card-carrying glycobiologists soon followed that have forever positively influenced our science, and have enhanced our hypotheses, experimental design, research opportunities and discoveries. Within a few years, we helped to discover Siglec-8, an I-type lectin expressed only on human eosinophils, basophils, mast cells. This receptor, together with its closest mouse counterpart Siglec-F, has been the primary focus of our work now for over a decade. If not for those in the fields of glycobiology and glycoimmunology, my lab would not have made much progress toward the goal of leveraging Siglec-8 for therapeutic purposes.
Collapse
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Abstract
Skeletal muscle continuously adapts to changes in its mechanical environment through modifications in gene expression and protein stability that affect its physiological function and mass. However, mechanical stresses commonly exceed the parameters that induce adaptations, producing instead acute injury. Furthermore, the relatively superficial location of many muscles in the body leaves them further vulnerable to acute injuries by exposure to extreme temperatures, contusions, lacerations or toxins. In this article, the molecular, cellular, and mechanical factors that underlie muscle injury and the capacity of muscle to repair and regenerate are presented. Evidence shows that muscle injuries that are caused by eccentric contractions result from direct mechanical damage to myofibrils. However, muscle pathology following other acute injuries is largely attributable to damage to the muscle cell membrane. Many feaures in the injury-repair-regeneration cascade relate to the unregulated influx of calcium through membrane lesions, including: (i) activation of proteases and hydrolases that contribute muscle damage, (ii) activation of enzymes that drive the production of mitogens and motogens for muscle and immune cells involved in injury and repair, and (iii) enabling protein-protein interactions that promote membrane repair. Evidence is also presented to show that the myogenic program that is activated by acute muscle injury and the inflammatory process that follows are highly coordinated, with myeloid cells playing a central role in modulating repair and regeneration. The early-invading, proinflammatory M1 macrophages remove debris caused by injury and express Th1 cytokines that play key roles in regulating the proliferation, migration, and differentiation of satellite cells. The subsequent invasion by anti-inflammatory, M2 macrophages promotes tissue repair and attenuates inflammation. Although this system provides an effective mechanism for muscle repair and regeneration following acute injury, it is dysregulated in chronic injuries. In this article, the process of muscle injury, repair and regeneration that occurs in muscular dystrophy is used as an example of chronic muscle injury, to highlight similarities and differences between the injury and repair processes that occur in acutely and chronically injured muscle.
Collapse
Affiliation(s)
- James G Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA.
| |
Collapse
|
5
|
Lim LHK, Burdick MM, Hudson SA, Mustafa FB, Konstantopoulos K, Bochner BS. Stimulation of human endothelium with IL-3 induces selective basophil accumulation in vitro. THE JOURNAL OF IMMUNOLOGY 2006; 176:5346-53. [PMID: 16622002 DOI: 10.4049/jimmunol.176.9.5346] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Basophils have been shown to accumulate in allergic airways and other extravascular sites. Mechanisms responsible for the selective recruitment of basophils from the blood into tissue sites remain poorly characterized. In this study, we characterized human basophil rolling and adhesion on HUVECs under physiological shear flow conditions. Interestingly, treatment of endothelial cells with the basophil-specific cytokine IL-3 (0.01-10 ng/ml) promoted basophil and eosinophil, but not neutrophil, rolling and exclusively promoted basophil adhesion. Preincubation of HUVECs with an IL-3R-blocking Ab (CD123) before the addition of IL-3 inhibited basophil rolling and adhesion, implicating IL-3R activation on endothelial cells. Incubation of basophils with neuraminidase completely abolished both rolling and adhesion, indicating the involvement of sialylated structures in the process. Abs to the beta(1) integrins, CD49d and CD49e, as well as to P-selectin and P-selectin glycoprotein ligand 1, inhibited basophil rolling and adhesion. Furthermore, blocking chemokine receptors expressed by basophils, such as CCR2, CCR3, and CCR7, demonstrated that CCR7 was involved in the observed recruitment of basophils. These data provide novel insights into how IL-3, acting directly on endothelium, can cause basophils to preferentially interact with blood vessels under physiological flow conditions and be selectively recruited to sites of inflammation.
Collapse
Affiliation(s)
- Lina H K Lim
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Kepley CL, Andrews RP, Brown DC, Chigaev A, Sklar LA, Oliver JM, Larson RS. Regulation of human basophil adhesion to endothelium under flow conditions: Different very late antigen 4 regulation on umbilical cord blood-derived and peripheral blood basophils. J Allergy Clin Immunol 2002; 110:469-75. [PMID: 12209096 DOI: 10.1067/mai.2002.126462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although soluble mediators released by basophils in tissue sites contribute to the chronic injury that occurs in hypersensitivity diseases, only limited information is available about how circulating basophils are recruited to tissues. In particular, the interaction of basophils with endothelium under conditions that mimic physiologic flow has not been explored. OBJECTIVE We sought to identify adhesion molecules regulating the attachment of human basophils to IL-4-activated human umbilical vein endothelial cells (HUVECs) under flow conditions. METHODS A parallel-plate flow chamber and blocking mAbs were used to define the adhesion molecules involved in the interactions of peripheral blood basophils (PBBs) and cord blood-derived basophils (CBDBs) with IL-4-activated HUVECs and with Chinese hamster ovary (CHO) cell transfectants expressing specific adhesion molecules. A fluorescent ligand specific for very late antigen 4 (VLA-4) was used to directly examine the VLA-4 affinity state of basophils. RESULTS Flowing PBBs and CBDBs attached to activated HUVECs and to CHO cells expressing P- or E-selectin. However, only CBDBs attached to vascular cell adhesion molecule 1 (VCAM-1)-transfected CHO cells under flow conditions. The attachment of CBDBs to CHO cells was blocked by mAbs directed against E-selectin, P-selectin, and VCAM-1, whereas attachment of PBBs was blocked by E-selectin and P-selectin mAbs. Activating VLA-4 with Mn(2+) on PBBs resulted in adhesion to the VCAM-1-transfected CHO cells, indicating that VLA-4 activity on PBBs can be regulated, at least in part, through affinity changes. The Mn(2+)-induced upregulation of basophil VLA-4 affinity was demonstrated directly by using a fluorescent ligand for VLA-4 and flow cytometry. CONCLUSIONS The interaction of human CBDBs and PBBs with endothelium under flow conditions is mediated in part by both P- and E-selectin. VLA-4 additionally contributes to the adhesion of flowing CBDBs. However, the affinity of VLA-4 is too low to support the adhesion under flow conditions of unstimulated PBBs.
Collapse
Affiliation(s)
- Christopher L Kepley
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Leukocyte trafficking is characterized by sequential cell adhesion and activation events that deliver specific leukocyte subsets to distinct extravascular locations under different pathophysiological circumstances. E-, P- and/or L-selectin-dependent leukocyte-endothelial cell adhesive interactions contribute essentially to this process. Selectin counter-receptor activity on leukocyte and high endothelial venules is borne by specific glycoproteins whose ability to support adhesion requires specific post-translational modifications. These modifications are typified by serine/threonine-linked oligosaccharides capped with the sialyl Lewis x moiety, an alpha2-3sialylated, alpha1-3ucosylated tetrasaccharide synthesized by specific glycosyltransferases. Recent advances in glycan structure analysis and in characterizing mice with targeted deletions of glycosyltransferase and sulfotransferase genes discloses an essential role for 6-O GlcNAc sulfate modification of the sialyl Lewis x tetrasaccharide in L-selectin counter-receptor activity. Related studies identify novel extended Core 1 type O-glycans bearing the 6-sulfosialyl Lewis x moiety, define the molecular nature of the MECA-79 epitope, and disclose a requirement for the alpha1-3fucosyltransferases FucT-IV and FucT-VII in the elaboration of L-selectin counter-receptor activities. Parallel studies also demonstrate that these 2 fucosyltransferases, a core 2 GlcNAc transferase, and core 2-type sialyl Lewis x determinants make essential contributions to leukocyte P-selectin counter-receptor activity, and figure prominently in the control of leukocyte E-selectin counter-receptor activity.
Collapse
Affiliation(s)
- John B Lowe
- Howard Hughes Medical Institute, Department of Pathology, University of Michigan Medical School, Ann Arbor, 48109-0650, USA.
| |
Collapse
|