1
|
De Sutter PJ, Hermans E, De Cock P, Van Bocxlaer J, Gasthuys E, Vermeulen A. Penetration of Antibiotics into Subcutaneous and Intramuscular Interstitial Fluid: A Meta-Analysis of Microdialysis Studies in Adults. Clin Pharmacokinet 2024; 63:965-980. [PMID: 38955946 DOI: 10.1007/s40262-024-01394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND AND OBJECTIVE The interstitial fluid of tissues is the effect site for antibiotics targeting extracellular pathogens. Microdialysis studies investigating these concentrations in muscle and subcutaneous tissue have reported notable variability in tissue penetration. This study aimed to comprehensively summarise the existing data on interstitial fluid penetration in these tissues and to identify potential factors influencing antibiotic distribution. METHODS A literature review was conducted, focusing on subcutaneous and intramuscular microdialysis studies of antibiotics in both adult healthy volunteers and patients. Random-effect meta-analyses were used to aggregate effect size estimates of tissue penetration. The primary parameter of interest was the unbound penetration ratio, which represents the ratio of the area under the concentration-time curve in interstitial fluid relative to the area under the concentration-time curve in plasma, using unbound concentrations. RESULTS In total, 52 reports were incorporated into this analysis. The unbound antibiotic exposure in the interstitial fluid of healthy volunteers was, on average, 22% lower than in plasma. The unbound penetration ratio values were higher after multiple dosing but did not significantly differ between muscle and subcutaneous tissue. Unbound penetration ratio values were lower for acids and bases compared with neutral antibiotics. Neither the molecular weight nor the logP of the antibiotics accounted for the variations in the unbound penetration ratio. Obesity was associated with lower interstitial fluid penetration. Conditions such as sepsis, tissue inflammation and tissue ischaemia were not significantly associated with altered interstitial fluid penetration. CONCLUSIONS This study highlights the variability and generally lower exposure of unbound antibiotics in the subcutaneous and intramuscular interstitial fluid compared with exposure in plasma. Future research should focus on understanding the therapeutic relevance of these differences and identify key covariates that may influence them.
Collapse
Affiliation(s)
- Pieter-Jan De Sutter
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| | - Eline Hermans
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
- Department of Pediatrics, Ghent University Hospital, Ghent, Belgium
| | - Pieter De Cock
- Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
- Department of Pharmacy, Ghent University Hospital, Ghent, Belgium
| | - Jan Van Bocxlaer
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| |
Collapse
|
2
|
Deitchman AN, Heinrichs MT, Khaowroongrueng V, Jadhav SB, Derendorf H. Utility of Microdialysis in Infectious Disease Drug Development and Dose Optimization. AAPS JOURNAL 2016; 19:334-342. [PMID: 27943149 DOI: 10.1208/s12248-016-0020-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023]
Abstract
Adequate drug penetration to a site of infection is absolutely imperative to ensure sufficient antimicrobial treatment. Microdialysis is a minimally invasive, versatile technique, which can be used to study the penetration of an antiinfective agent in virtually any tissue of interest. It has been used to investigate drug distribution and pharmacokinetics in variable patient populations, as a tool in dose optimization, a potential utility in therapeutic drug management, and in the study of biomarkers of disease progression. While all of these applications have not been fully explored in the field of antiinfectives, this review provides an overview of how microdialysis has been applied in various phases of drug development, a focus on the specific applications in the subspecialties of infectious disease (treatment of bacterial, fungal, viral, parasitic, and mycobacterial infections), and developing applications (biomarkers and therapeutic drug management).
Collapse
Affiliation(s)
- Amelia N Deitchman
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - M Tobias Heinrichs
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Vipada Khaowroongrueng
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Satyawan B Jadhav
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA
| | - Hartmut Derendorf
- Department of Pharmaceutics, University of Florida, 1345 Center Drive, PO Box 100494, Gainesville, Florida, 32610, USA.
| |
Collapse
|
3
|
Roberts JA, Lipman J. Tissue Distribution of Beta-Lactam Antibiotics: Continuous versus Bolus Dosing. JOURNAL OF PHARMACY PRACTICE AND RESEARCH 2015. [DOI: 10.1002/j.2055-2335.2009.tb00457.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jason A Roberts
- School of Medicine; The University of Queensland, and Clinical Pharmacist, Royal Brisbane and Women's Hospital
| | - Jeffrey Lipman
- Department of Intensive Care; Royal Brisbane and Women's Hospital; Brisbane Queensland
| |
Collapse
|
4
|
Kiang TKL, Häfeli UO, Ensom MHH. A comprehensive review on the pharmacokinetics of antibiotics in interstitial fluid spaces in humans: implications on dosing and clinical pharmacokinetic monitoring. Clin Pharmacokinet 2015; 53:695-730. [PMID: 24972859 DOI: 10.1007/s40262-014-0152-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The objective of the current review was to provide an updated and comprehensive summary on pharmacokinetic data describing the distribution of antimicrobials into interstitial fluid (ISF) by comparing drug concentration versus time profiles between ISF and blood/plasma in healthy individuals and/or diseased populations. An extensive literature search identified 55 studies detailing 87 individual comparisons. For each antibiotic (antibacterial) (or antibiotic class), we comment on dosing implications based on tissue ISF distribution characteristics and determine the suitability of conducting clinical pharmacokinetic monitoring (CPM) using a previously published scoring algorithm. Using piperacillin as an example, there is evidence supporting different degrees of drug penetration into the ISF of different tissues. A higher dose of piperacillin may be required to achieve an adequate ISF concentration in soft tissue infections. To achieve these higher doses, alternative administration regimens such as intravenous infusions may be utilized. Data also suggest that piperacillin can be categorized as a 'likely suitable' agent for CPM in ISF. Regression analyses of data from the published studies, including protein binding, molecular weight, and predicted partition coefficient (using XlogP3) as dependent variables, indicated that protein binding was the only significant predictor for the extent of drug distribution as determined by ratios of the area under the concentration-time curve between muscle ISF/total plasma (R (2) = 0.65, p < 0.001) and adipose ISF/total plasma (R (2) = 0.48, p < 0.004). Although recurrent limitations (i.e., small sample size, lack of statistical comparisons, lack of steady-state conditions, high individual variability) were identified in many studies, these data are still valuable and allowed us to generate general dosing guidelines and assess the suitability of using ISF for CPM.
Collapse
Affiliation(s)
- Tony K L Kiang
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
5
|
Castagnola E, Ginocchio F. Rescue therapy of difficult-to-treat indwelling central venous catheter-related bacteremias in cancer patients: a review for practical purposes. Expert Rev Anti Infect Ther 2014; 11:179-86. [DOI: 10.1586/eri.12.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clin Microbiol Rev 2013; 26:274-88. [PMID: 23554417 DOI: 10.1128/cmr.00092-12] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For the optimization of dosing regimens of anti-infective agents, it is imperative to have a good understanding of pharmacokinetics (PK) and pharmacodynamics (PD). Whenever possible, drug efficacy needs to be related to unbound concentrations at the site of action. For anti-infective drugs, the infection site is typically located outside plasma, and a drug must diffuse through capillary membranes to reach its target. Disease- and drug-related factors can contribute to differential tissue distribution. As a result, the assumption that the plasma concentration of drugs represents a suitable surrogate of tissue concentrations may lead to erroneous conclusions. Quantifying drug exposure in tissues represents an opportunity to relate the pharmacologically active concentrations to an observed pharmacodynamic parameter, such as the MIC. Selection of an appropriate specimen to sample and the advantages and limitations of the available sampling techniques require careful consideration. Ultimately, the goal will be to assess the appropriateness of a drug and dosing regimen for a specific pathogen and infection.
Collapse
|
7
|
A Model-Based PK/PD Antimicrobial Chemotherapy Drug Development Platform to Simultaneously Combat Infectious Diseases and Drug Resistance. CLINICAL TRIAL SIMULATIONS 2011. [DOI: 10.1007/978-1-4419-7415-0_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Dhanani J, Roberts JA, Chew M, Lipman J, Boots RJ, Paterson DL, Fraser JF. Antimicrobial chemotherapy and lung microdialysis: a review. Int J Antimicrob Agents 2010; 36:491-500. [PMID: 20952164 DOI: 10.1016/j.ijantimicag.2010.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 08/18/2010] [Indexed: 10/18/2022]
Abstract
Pneumonia is a form of lung infection that may be caused by various micro-organisms. The predominant site of infection in pneumonia is debatable. Advances in the fields of diagnostic and therapeutic medicine have had a less than optimal effect on the outcome of pneumonia and one of the many causes is likely to be inadequate antimicrobial concentrations at the site of infection in lung tissue. Traditional antimicrobial therapy guidelines are based on indirect modelling from blood antimicrobial levels. However, studies both in humans and animals have shown the fallacy of this concept in various tissues. Many different methods have been employed to study lung tissue antimicrobial levels with limited success, and each has limitations that diminish their utility. An emerging technique being used to study the pharmacokinetics of antimicrobial agents in lung tissue is microdialysis. Development of microdialysis catheters, along with improvement in analytical techniques, has improved the accuracy of the data. Unfortunately, very few studies have reported the use of microdialysis in lung tissue, and even fewer antimicrobial classes have been studied. These studies generally suggest that this technique is a safe and effective way of assessing the pharmacokinetics of antimicrobial agents in lung tissue. Further descriptive studies need to be conducted to study the pharmacokinetics and pharmacodynamics of different antimicrobial classes in lung tissue. Data emanating from these studies could inform decisions for appropriate dosing schedules of antimicrobial agents in pneumonia.
Collapse
Affiliation(s)
- Jayesh Dhanani
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| | | | | | | | | | | | | |
Collapse
|
9
|
Soft-tissue penetration of ceftobiprole in healthy volunteers determined by in vivo microdialysis. Antimicrob Agents Chemother 2009; 53:2773-6. [PMID: 19364847 DOI: 10.1128/aac.01409-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole is a promising new broad-spectrum cephalosporin with activity against several multidrug-resistant gram-positive and gram-negative species, including methicillin-resistant Staphylococcus aureus. In order to make efficacy predications against these resistant bacteria in soft-tissue infections, i.e., skin and skin structure infections, ceftobiprole's ability to reach the site of action should be explored. Therefore, a microdialysis study was conducted in 12 healthy volunteers to determine the penetration of ceftobiprole into skeletal muscle and subcutaneous (s.c.) adipose tissue after a single intravenous dose of 500 mg. Plasma and tissue interstitial space fluid (ISF) drug concentrations were measured for 24 h from the start of the 2-h intravenous infusion. Pharmacokinetic parameters were determined using noncompartmental analysis. The penetration of ceftobiprole into the ISF of tissues was assessed by comparing the ratios between tissue and plasma of the free drug area under the concentration-time curve (fAUC). It was found that ceftobiprole distributes into the muscle (fAUC(muscle)/fAUC(plasma) of 0.69 +/- 0.13) and s.c. adipose tissue (fAUC(s.c.adipose)/fAUC(plasma) of 0.49 +/- 0.28). The concentrations in both skeletal muscle and s.c. adipose tissue met the efficacy breakpoint (percentage of the time that free drug concentrations remained above the MIC) for at least 40% of the 8-h dosing interval for organisms with a MIC of 2 mg/liter. Therefore, ceftobiprole qualifies as a potential agent with drug penetration capabilities to treat complicated skin and skin structure infections due to both gram-negative and gram-positive pathogens with MICs equal to or below 2 mg/liter.
Collapse
|
10
|
Piperacillin penetration into tissue of critically ill patients with sepsis--bolus versus continuous administration? Crit Care Med 2009; 37:926-33. [PMID: 19237898 DOI: 10.1097/ccm.0b013e3181968e44] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To describe a pharmacokinetic model of piperacillin concentrations in plasma and subcutaneous tissue when administered by bolus dosing and continuous infusion in critically ill patients with sepsis on days 1 and 2 of antibiotic therapy and to compare results against previous results for piperacillin from a cohort of patients with septic shock. DESIGN Prospective randomized controlled trial. SETTING Eighteen-bed intensive care unit at 918-bed tertiary referral hospital. PATIENTS Thirteen critically ill adult patients with known or suspected sepsis in whom the treating physician deemed piperacillin-tazobactam appropriate therapy were conveniently sampled. INTERVENTIONS Patients were randomized to receive different daily doses of piperacillin-tazobactam by bolus dosing or continuous infusion (continuous infusion--six patients; bolus dosing--seven patients). Serial plasma and tissue concentrations were determined on days 1 and 2 of treatment. Tissue concentrations of piperacillin were determined using a subcutaneously inserted microdialysis catheter. Separate pharmacokinetic models were developed for both bolus and continuous dosing. MEASUREMENTS AND MAIN RESULTS This is the first known article to report concurrent plasma and subcutaneous tissue concentrations of a beta-lactam antibiotic administered by bolus and continuous dosing in critically ill patients with sepsis. With a 25% lower piperacillin dose administered to the continuous infusion group, the infusion group had statistically significantly higher median plasma concentrations than the bolus group on day 2 (16.6 vs. 4.9 mg/L; p = 0.007). There was a trend to higher median plasma concentrations on day 1 in the bolus dosing group (8.9 vs. 4.9 mg/L; p = 0.078). Median tissue concentrations were not statistically different on day 1 (infusion group 2.4 mg/L vs. bolus group 2.2 mg/L; p = 0.48) and day 2 (infusion group 5.2 mg/L vs. bolus group 0.8 mg/L; p = 0.45). A two-compartment pharmacokinetic model was found to describe the data best. Tissue pharmacodynamic targets were achieved more successfully with infusion dosing. CONCLUSIONS Patients with sepsis do not seem to have the same level of impairment of tissue distribution as described for patients with septic shock. A 25% lower dose of piperacillin administered by continuous infusion seems to maintain higher trough concentrations compared with standard bolus dosing. It is likely that the clinical advantages of continuous infusion are most likely to be evident when treating pathogens with high minimum inhibitory concentration, although without therapeutic drug monitoring and subsequent dose adjustment, infusions may never achieve target concentrations of organisms with very high minimum inhibitory concentrations in a small number of patients.
Collapse
|
11
|
Kasiakou SK, Lawrence KR, Choulis N, Falagas ME. Continuous versus intermittent intravenous administration of antibacterials with time-dependent action: a systematic review of pharmacokinetic and pharmacodynamic parameters. Drugs 2006; 65:2499-511. [PMID: 16296874 DOI: 10.2165/00003495-200565170-00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We performed a systematic review of randomised clinical trials to evaluate the comparative pharmacokinetic and pharmacodynamic properties of the continuous versus intermittent mode of intravenous administration of various antibacterials. Data were identified from PubMed (January 1950 to January 2005), Current Contents, the Cochrane central register of controlled trials, and references from relevant articles and reviews. Seventeen randomised clinical trials comparing continuous with intermittent intravenous administration of the same antibacterial regimen and examining the pharmacokinetic and pharmacodynamic properties were included in this systematic review. We reviewed data regarding the clinical setting, number of participants, antibacterial agents and dosages used, as well as maximum serum concentration (Cmax), trough serum concentration (Cmin), steady-state or plateau serum concentration (Css), area under the concentration-time curve (AUC), time above the minimum inhibitory concentration (MIC) [T>MIC], AUC: MIC, elimination rate constant, elimination half-life, volume of distribution and systematic clearance. The mean Cmax of the intermittently administered antibacterials was higher compared with Css achieved by the continuous infusion of the same antibacterial in all eligible studies (Cmax was on average 5.5 times higher than Css, range 1.9-11.2). Css was on average 5.8 times higher than the Cmin of the intermittently administered antibacterials (range 1.2-15.6). In three of six studies the length of time that the drug concentration was above the MIC of the responsible pathogens was longer in patients receiving the antibacterials continuously. In conclusion, the reviewed data suggest that the continuous intravenous infusion of antibacterials with time-dependent bacterial killing seems to be superior than the intermittent intravenous administration, from a pharmacodynamic point of view, at least when treating bacteria with high MIC values for the studied antibacterials.
Collapse
Affiliation(s)
- Sofia K Kasiakou
- Alfa Institute of Biomedical Sciences (AIBS), and Alfa HealthCare, Athens, Greece
| | | | | | | |
Collapse
|
12
|
Kasiakou SK, Sermaides GJ, Michalopoulos A, Soteriades ES, Falagas ME. Continuous versus intermittent intravenous administration of antibiotics: a meta-analysis of randomised controlled trials. THE LANCET. INFECTIOUS DISEASES 2005; 5:581-9. [PMID: 16122681 DOI: 10.1016/s1473-3099(05)70218-8] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Intermittent intravenous administration of antibiotics is the first-line approach in the management of severe infections worldwide. However, the potential benefits of alternate modes of administration of antibiotics, including continuous intravenous infusion, deserve further evaluation. We did a meta-analysis of randomised controlled trials comparing continuous intravenous infusion with intermittent intravenous administration of the same antibiotic regimen. Nine randomised controlled trials studying beta-lactams, aminoglycosides, and vancomycin were included. Clinical failure was lower, although without statistical significance, in patients receiving continuous infusion of antibiotics (pooled OR 0.73, 95% CI 0.53-1.01); the difference was statistically significant in a subset of randomised controlled trials that used the same total daily antibiotic dose for both intervention arms (0.70, 0.50-0.98, fixed and random effects models). Regarding mortality and nephrotoxicity, no differences were found (mortality 0.89, 0.48-1.64; nephrotoxicity 0.91, 0.56-1.47). In conclusion, the data suggest that the administration of the same total antibiotic dose by continuous intravenous infusion may be more efficient, with regard to clinical effectiveness, compared with the intermittent mode. In an era of gradually increasing resistance among most pathogens, the potential advantages of continuous intravenous administration of antibiotics on several clinical outcomes should be further investigated.
Collapse
|
13
|
Liu P, Fuhrherr R, Webb AI, Obermann B, Derendorf H. Tissue penetration of cefpodoxime into the skeletal muscle and lung in rats. Eur J Pharm Sci 2005; 25:439-44. [PMID: 15905079 DOI: 10.1016/j.ejps.2005.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 04/06/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was to investigate the pharmacokinetics of cefpodoxime in interstitial tissue fluids (skeletal muscle and lung) in rats by microdialysis, and to examine the relationship between free drug levels in plasma and in tissues. METHODS Cefpodoxime was administered to anesthetized male Wistar rats as single intravenous bolus of 10 or 20 mg/kg and constant infusion of 260 microg/h with a loading dose. The protein binding of cefpodoxime in rat plasma was determined using ultrafiltration. RESULTS The average protein binding of cefpodoxime in rat plasma was 38%. The half-lives in plasma, muscle and lung were similar (approximately 5 h). After constant rate infusion, the free concentrations in the muscle and the lung were almost identical, but lower than total and free plasma concentrations. The data were modeled simultaneously using a two-compartmental body model. CONCLUSIONS Free interstitial levels of cefpodoxime in muscle and lung tissue are very similar. Since muscle is more accessible than lung, free muscle concentrations may serve as a good surrogate for unbound concentrations in lung.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, 1600 SW Archer Road, P.O. Box 100494, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
14
|
Liu P, Müller M, Grant M, Obermann B, Derendorf H. Tissue penetration of cefpodoxime and cefixime in healthy subjects. J Clin Pharmacol 2005; 45:564-9. [PMID: 15831780 DOI: 10.1177/0091270004273679] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microdialysis is a technique that allows the measurement of free antibiotic concentrations in different tissues, which are responsible for the antibacterial activity at the infection site. In an open, randomized, 2-way crossover study in healthy volunteers, the muscle penetration of orally administered cefpodoxime (400 mg) and cefixime (400 mg) was compared using microdialysis. The results show that the total plasma concentration-time profiles of each antibiotic were similar; the area under the curve for cefpodoxime was 22.4 +/- 8.7 versus 25.6 +/- 8.5 mg/L*h for cefixime. However, tissue penetration was twice as high for cefpodoxime (area under the curve 15.4 +/- 5.1 mg/L*h) as for cefixime (area under the curve 7.3 mg/L*h). This degree of tissue distribution is consistent with their protein binding of 21% for cefpodoxime and 65% for cefixime. After equilibration, the unbound tissue concentrations of both antibiotics were similar to their unbound plasma concentrations. Pharmacokinetic modeling was applied to describe the pharmacokinetic profiles in plasma and muscle. The study demonstrates that cefpodoxime shows greater tissue penetration than cefixime.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
15
|
Sauermann R, Delle-Karth G, Marsik C, Steiner I, Zeitlinger M, Mayer-Helm BX, Georgopoulos A, Müller M, Joukhadar C. Pharmacokinetics and pharmacodynamics of cefpirome in subcutaneous adipose tissue of septic patients. Antimicrob Agents Chemother 2005; 49:650-5. [PMID: 15673747 PMCID: PMC547217 DOI: 10.1128/aac.49.2.650-655.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 08/01/2004] [Accepted: 10/11/2004] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to evaluate whether cefpirome, a member of the latest class of broad-spectrum cephalosporins, sufficiently penetrates subcutaneous adipose tissue in septic patients. After the administration of the drug at 2 g, tissue cefpirome concentrations in septic patients (n = 11) and healthy controls (n = 7) were determined over a period of 4 h by means of microdialysis. To assess the antibacterial effect of cefpirome at the target site, the measured pharmacokinetic profiles were simulated in vitro with select strains of Staphylococcus aureus and Pseudomonas aeruginosa. The tissue penetration of cefpirome was significantly impaired in septic patients compared with that in healthy subjects. For subcutaneous adipose tissue, the area under the concentration-versus-time curve values from 0 to 240 min were 13.11 +/- 5.20 g . min/liter in healthy subjects and 6.90 +/- 2.56 g . min/liter in septic patients (P < 0.05). Effective bacterial growth inhibition was observed in all in vitro simulations. This was attributed to the significantly prolonged half-life in tissue (P < 0.05), which kept the tissue cefpirome levels above the MICs for relevant pathogens for extended periods in the septic group. By consideration of a dosing interval of 8 h, the values for the time above MIC (T > MIC) in tissue were greater than 60% for pathogens for which the MIC was =4 mg/liter in all septic patients. The present data indicate that cefpirome is an appropriate agent for the treatment of soft tissue infections in septic patients. However, due to the high interindividual variability of the pharmacokinetics of cefpirome in tissue, dosing intervals of not more than 8 h should be preferred to ensure that susceptible bacterial strains are killed in each patient.
Collapse
Affiliation(s)
- Robert Sauermann
- Department of Clinical Pharmacology, Division of Clinical Pharmacokinetics, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Microdialysis is a probe-based sampling method, which, if linked to analytical devices, allows for the measurement of drug concentration profiles in selected tissues. During the last two decades, microdialysis has become increasingly popular for preclinical and clinical pharmacokinetic studies. The advantage of in vivo microdialysis over traditional methods relates to its ability to continuously sample the unbound drug fraction in the interstitial space fluid (ISF). This is of particular importance because the ISF may be regarded as the actual target compartment for many drugs, e.g. antimicrobial agents or other drugs mediating their action through surface receptors. In contrast, plasma concentrations are increasingly recognised as inadequately predicting tissue drug concentrations and therapeutic success in many patient populations. Thus, the minimally invasive microdialysis technique has evolved into an important tool for the direct assessment of drug concentrations at the site of drug delivery in virtually all tissues. In particular, concentrations of transdermally applied drugs, neurotransmitters, antibacterials, cytotoxic agents, hormones, large molecules such as cytokines and proteins, and many other compounds were described by means of microdialysis. The combined use of microdialysis with non-invasive imaging methods such as positron emission tomography and single photon emission tomography opened the window to exactly explore and describe the fate and pharmacokinetics of a drug in the body. Linking pharmacokinetic data from the ISF to pharmacodynamic information appears to be a straightforward approach to predicting drug action and therapeutic success, and may be used for decision making for adequate drug administration and dosing regimens. Hence, microdialysis is nowadays used in clinical studies to test new drug candidates that are in the pharmaceutical industry drug development pipeline.
Collapse
Affiliation(s)
- Christian Joukhadar
- Department of Clinical Pharmacology, Division of Clinical Pharmacokinetics, Vienna University School of Medicine, Vienna General Hospital, Vienna, Austria.
| | | |
Collapse
|
17
|
Müller M, dela Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 2004; 48:1441-53. [PMID: 15105091 PMCID: PMC400530 DOI: 10.1128/aac.48.5.1441-1453.2004] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Markus Müller
- Health Science Center, Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610-0494, USA
| | | | | |
Collapse
|
18
|
Mueller M, de la Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: kill curves versus MIC. Antimicrob Agents Chemother 2004; 48:369-77. [PMID: 14742182 PMCID: PMC321563 DOI: 10.1128/aac.48.2.369-377.2004] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Markus Mueller
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
19
|
Bergeret M, Boutros N, Raymond J. In vitro combined bactericidal activity of cefpirome and glycopeptides against glycopeptides and oxacillin-resistant staphylococci. Int J Antimicrob Agents 2004; 23:247-53. [PMID: 15164965 DOI: 10.1016/j.ijantimicag.2003.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/05/2003] [Indexed: 11/17/2022]
Abstract
Infections caused by coagulase-negative staphylococci are becoming increasingly important, particularly those of nosocomial origin, as the organisms are frequently multi-resistant. New antimicrobial strategies are needed. The bactericidal activity of a combination of cefpirome with either vancomycin or teicoplanin against 12 strains of methicillin-resistant staphylococci with a decreased susceptibility to teicoplanin was determined in vitro by a time killing method. Strains Mu3 and Mu50 of Staphylococcus aureus were also studied. Cefpirome (0.125-0.5 x MIC) combined with vancomycin (0.25-1 x MIC) or teicoplanin (0.125-1 x MIC) acted synergically against 12 isolates over 18 h in most cases. A synergistic killing effect was also observed with the Mu3 and Mu50 strains of glycopeptide-intermediate S. aureus but over a longer period.
Collapse
Affiliation(s)
- M Bergeret
- Service Microbiologie, Hôpital Saint Vincent de Paul, 82, Avenue Denfert Rochereau 75014, Université Paris V, Paris, France
| | | | | |
Collapse
|
20
|
|
21
|
Zeitlinger MA, Marsik C, Georgopoulos A, Müller M, Heinz G, Joukhadar C. Target site bacterial killing of cefpirome and fosfomycin in critically ill patients. Int J Antimicrob Agents 2003; 21:562-7. [PMID: 12791470 DOI: 10.1016/s0924-8579(03)00047-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employed an in-vivo pharmacokinetic/in-vitro pharmacodynamic method to simulate bacterial killing in plasma and the interstitium of skeletal muscle tissue after intravenous administration of 2 g of cefpirome and 8 g of fosfomycin alone and in combination to patients with sepsis. Interstitial antimicrobial concentrations were determined by use of in-vivo microdialysis. CFU/ml of Staphylococcus aureus (ATCC 29213) and Pseudomonas aeruginosa (clinical isolate) decreased by approximately 2log(10) for plasma and muscle tissue 6 h after cefpirome and fosfomycin administration compared with the baseline, respectively. The simulation of plasma and tissue pharmacokinetics for the combined administration of these antibiotics resulted in complete eradication of S. aureus within 5 h after drug exposure. No bacterial re-growth occurred in any of the simulations within 6 h. The in-vitro simulation of in-vivo plasma and tissue pharmacokinetics of cefpirome and fosfomycin has shown that both antimicrobial agents kill S. aureus and P. aeruginosa strains effectively after single dose administration. This effect was most pronounced by the combined use of these antimicrobial agents. Therefore, this data corroborates antimicrobial strategies of simultaneous administration of cefpirome and fosfomycin in patients with severe soft tissue infection.
Collapse
Affiliation(s)
- M A Zeitlinger
- Department of Clinical Pharmacology, Division of Clinical Pharmacokinetics, Vienna University School of Medicine, Allgemeines Krankenhaus, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
22
|
Garrison KE, Pasas SA, Cooper JD, Davies MI. A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur J Pharm Sci 2002; 17:1-12. [PMID: 12356415 DOI: 10.1016/s0928-0987(02)00149-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This review provides an overview of membrane sampling techniques, microdialysis and ultrafiltration, and cites illustrations of their applications in pharmacokinetics, metabolism and/or pharmacodynamics. The review organizes applications by target tissue and general type of information gleaned. It focuses on recently published microdialysis studies (1999 to this writing) and offers the first review of ultrafiltration sampling studies. The advantages and limitations of using microdialysis and ultrafiltration sampling as tools for obtaining pharmacokinetic and metabolism data are discussed. Numerous examples are described including studies in which several types of data are collected simultaneously. Reports that study local metabolism of drug delivered through the probe are also presented.
Collapse
Affiliation(s)
- Kenneth E Garrison
- Department of Chemistry, College of the Ozarks, Point Lookout, MO 65726, USA
| | | | | | | |
Collapse
|
23
|
Neckel U, Joukhadar C, Frossard M, Jäger W, Müller M, Mayer BX. Simultaneous determination of levofloxacin and ciprofloxacin in microdialysates and plasma by high-performance liquid chromatography. Anal Chim Acta 2002. [DOI: 10.1016/s0003-2670(02)00429-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
de LPA, Brunner M, Eichler HG, Rehak E, Gross J, Thyroff-Friesinger U, Müller M, Derendorf H. Comparative target site pharmacokinetics of immediate- and modified-release formulations of cefaclor in humans. J Clin Pharmacol 2002; 42:403-11. [PMID: 11936565 DOI: 10.1177/00912700222011454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Optimal dosing of beta-lactam antibiotics aims at maximizing the time at which drug levels in the interstitial space fluid (ISF)--the fluid that surrounds the causative microorganisms at the target site--exceed the minimal inhibitory concentration (MIC). One potentially attractive strategy to achieve this goal is to administer antibiotics as oral sustained-release formulations. The present study was designed to test the hypothesis that sustained-release formulations could lead to a more suitable pharmacokinetic profile in the ISF at the relevant target site. For this purpose, time versus cefaclor concentration profiles attained in the ISF were measured following administration of two formulations, an immediate- (500 mg IR) and a modified-release formulation in two different doses (500 mg MR and 750 mgMR) in a three-way crossover study of healthy male volunteers (n = 12). For the measurement of unbound cefaclor concentrations in the ISF of human skeletal muscle, the in vivo microdialysis technique was employed. For all three formulations, unbound cefaclor concentration in the ISF closely followed individual plasma concentration profiles in a dose-dependent pattern, with ISF to unbound plasma ratios ranging from 0.67 to 0.73. The mean residence time was found to be significantly longer for the MR formulations versus the IR formulation. The data of the present study indicate that time above MIC values at the target site can be substantially prolonged if an antibiotic is administered as a sustained-release product.
Collapse
Affiliation(s)
- la Peña Amparo de
- Department of Pharmaceutics, University of Florida, Gainesville 32610, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Herkner H, Müller MR, Kreischitz N, Mayer BX, Frossard M, Joukhadar C, Klein N, Lackner E, Müller M. Closed-chest microdialysis to measure antibiotic penetration into human lung tissue. Am J Respir Crit Care Med 2002; 165:273-6. [PMID: 11790667 DOI: 10.1164/ajrccm.165.2.2106082] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The majority of bacterial lung infections are localized to the interstitial space fluid, which is therefore an important target site for antimicrobial chemotherapy. Direct measurement of interstitial concentrations of antimicrobial agents in human lung tissue would allow for a more informed approach to appropriate dosing of antimicrobial agents, but until now this was beyond technical reach. In this exploratory pharmacokinetic study, we measured the time versus concentration profile of cefpirome after a single intravenous dose administration of 2 g in the lung interstitial fluid by flexible microdialysis catheters, which were implanted during lung surgery for pulmonary tumors in five patients. Cefpirome concentrations in lung interstitial fluid were 66% of corresponding plasma values within the first 240 min, and exceeded minimal inhibitory concentrations of most relevant bacteria. The experimental procedure was well tolerated by the patients and no adverse events were observed. The present study provides evidence for the first time that closed chest microdialysis of the human lung is a feasible and safe method to measure lung concentrations in patients in vivo. The present data also corroborate the use of cefpirome as a valuable agent in the treatment of lung infections with most extracellular bacteria.
Collapse
Affiliation(s)
- Harald Herkner
- Department of Clinical Pharmacology, Division of Clinical Pharmacokinetics, University of Vienna Medical School, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The introduction of in vivo microdialysis (MD) to clinical pharmacological studies has opened the opportunity to obtain previously inaccessible information about the drug distribution process to the clinically relevant target site. The aim of this review is to provide a comprehensive overview of the current literature about MD in drug delivery studies from a clinical perspective. In particular the application of MD in clinical--antimicrobial, oncological and transdermal--and neurological research will be described and the scope of MD in pharmacokinetic-pharmacodynamic (PK-PD) studies will be discussed. It is concluded that MD has a great potential for both academic and industrial research, and may become the method of choice for drug distribution studies in humans.
Collapse
Affiliation(s)
- M Müller
- Department of Clinical Pharmacology, Division of Clinical Pharmacokinetics, Vienna University School of Medicine, Vienna General Hospital - AKH Wien, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|