1
|
Lu J, Zhao P, Ding X, Liu Y, Li H. N-Acetylcysteine assists muscle development in offspring of mice subjected to maternal heat stress during pregnancy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7895-7906. [PMID: 38828636 DOI: 10.1002/jsfa.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Heat stress (HS) has been shown to affect reproductive performance and muscle development negatively in animals. N-Acetylcysteine (NAC) plays a pivotal role in enhancing the antioxidant performance in animals as a recognized antioxidant. The present study assesses the potential of NAC to modulate the reproductive performance and antioxidant function in pregnant mice exposed to HS. The role of NAC in muscle development of offspring mice was also explored. RESULTS The results showed that NAC supplementation from day 12 to day 18 of gestation increased the number of litters and enhanced the antioxidant function in pregnant mice under HS exposure. It improved the weight and body condition significantly in the offspring mice (P < 0.05). The alleviation of HS-induced muscle impairment with NAC was consistent with the alleviation of apoptosis, the enrichment of the proliferation and differentiation in the offspring mice muscle. N-Acetylcysteine also reversed HS-induced reduction in the cross-sectional area of the leg muscle and increased the proportion of myosin heavy chain IIx (MYHCIIx) in the muscle fiber. CONCLUSION The results of the present study support the use of NAC at a dose of 100 mg kg-1 body weight as supplement for protecting the offspring derived from pregnant mice exposed to HS from muscle impairment by accelerating proliferation and differentiation. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiuhu Ding
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Lee JH, Joh JS, Choi S. Comparison of maternal and neonatal survival exposed to humidifier disinfectants during perinatal periods: a case-series study. Sci Rep 2023; 13:20026. [PMID: 37973969 PMCID: PMC10654421 DOI: 10.1038/s41598-023-47438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
A humidifier disinfectant (HD) has been prohibited by the government due to its serious effects on the human body. Several studies on the relationship between HD and lung diseases have been performed independently on children and adults. However, there have been no reports on the effects of HD exposure on pregnant women and their foetuses. Therefore, the present study was conducted to investigate the effects of HD exposure on the foetuses of women who encountered HD during pregnancy. A total of 56 cases were recruited from 2017 to 2019 through the Korea Environmental Industry & Technology Institute, and data obtained from the medical records included maternal date of birth, maternal date of death, maternal start and end date of HD exposure, maternal date of symptom onset, neonatal birthday, neonatal birthweight, gestational age, and neonatal survival status within 28 days. All data were retrospectively investigated through medical records. Of the 47 mothers, 20 (42.6%) mothers survived, and 27 (57.4%) mothers died. In the group of survivors, there was a shorter period of total HD use, period of HD use before pregnancy and period of HD use to onset of symptoms. Shorter durations of HD use resulted in higher survival rate of mothers. HD use caused an increase in gestational age surviving foetuses, and foetal mortality increased when clinical symptoms developed before birth.
Collapse
Affiliation(s)
- Jang Hoon Lee
- Department of Paediatrics, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Joon Sung Joh
- Department of Pulmonology, National Medical Center, Seoul, Republic of Korea
| | - Seoheui Choi
- Department of Paediatrics, Ajou University School of Medicine, 164 World Cup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea.
| |
Collapse
|
3
|
Beloosesky R, Gutzeit O, Ginsberg Y, Khatib N, Ross MG, Weiner Z, Zmora O. Intestine and brain TLR-4 modulation following N-acetyl-cysteine treatment in NEC rodent model. Sci Rep 2023; 13:8241. [PMID: 37217588 DOI: 10.1038/s41598-023-35019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
Necrotizing enterocolitis (NEC) brain injury is mediated through Toll-like receptor 4 (TLR4) on the intestinal epithelium and brain microglia. Our aim was to determine whether postnatal and/or prenatal NAC can modify NEC associated intestinal and brain TLR4 expression and brain glutathione levels in a rat model of NEC. Newborn Sprague-Dawley rats were randomized into three groups: Control (n = 33); NEC (n = 32)-hypoxia and formula feeding; and NEC-NAC (n = 34)-received NAC (300 mg/kg IP) in addition to NEC conditions. Two additional groups included pups of dams treated once daily with NAC (300 mg/kg IV) for the last 3 days of pregnancy: NAC-NEC (n = 33) or NAC-NEC-NAC (n = 36) with additional postnatal NAC. Pups were sacrificed on the fifth day, and ileum and brains harvested for TLR-4 and glutathione protein levels. Brain and ileum TLR-4 protein levels were significantly increased in NEC offspring as compared to control (brain 2.5 ± 0.6 vs. 0.88 ± 0.12 U and ileum 0.24 ± 0.04 vs. 0.09 ± 0.01, p < 0.05). When NAC was administered only to dams (NAC-NEC) a significant decrease in TLR-4 levels was demonstrated in both offspring brain (1.53 ± 0.41 vs. 2.5 ± 0.6 U, p < 0.05) and ileum (0.12 ± 0.03 vs. 0.24 ± 0.04 U, p < 0.05) as compared to NEC. The same pattern was demonstrated when NAC was administered only or postnatally. The decrease in brain and ileum glutathione levels observed in NEC offspring was reversed with all NAC treatment groups. NAC reverses the increase in ileum and brain TLR-4 levels and the decrease in brain and ileum glutathione levels associated with NEC in a rat model, and thus may protect from NEC associated brain injury.
Collapse
Affiliation(s)
- Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel.
- Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology - Technion, Haifa, Israel.
| | - Ola Gutzeit
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Osnat Zmora
- Department of Pediatric Surgery, Shamir Medical Center, Be'er Ya'acov, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Bonney EA. A Framework for Understanding Maternal Immunity. Immunol Allergy Clin North Am 2023; 43:e1-e20. [PMID: 37179052 PMCID: PMC10484232 DOI: 10.1016/j.iac.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This is an alternative and controversial framing of the data relevant to maternal immunity. It argues for a departure from classical theory to view, interrogate and interpret existing data.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Robert Larner College of Medicine, Given Building, Room C246, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| |
Collapse
|
5
|
Pavlidis I, Stock SJ. Preterm Birth Therapies to Target Inflammation. J Clin Pharmacol 2022; 62 Suppl 1:S79-S93. [PMID: 36106783 PMCID: PMC9545799 DOI: 10.1002/jcph.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022]
Abstract
Preterm birth (PTB; defined as delivery before 37 weeks of pregnancy) is the leading cause of morbidity and mortality in infants and children aged <5 years, conferring potentially devastating short- and long-term complications. Despite extensive research in the field, there is currently a paucity of medications available for PTB prevention and treatment. Over the past few decades, inflammation in gestational tissues has emerged at the forefront of PTB pathophysiology. Even in the absence of infection, inflammation alone can prematurely activate the main components of parturition resulting in uterine contractions, cervical ripening and dilatation, membrane rupture, and subsequent PTB. Mechanistic studies have identified critical elements of the complex inflammatory molecular pathways involved in PTB. Here, we discuss therapeutic options that target such key mediators with an aim to prevent, postpone, or treat PTB. We provide an overview of more traditional therapies that are currently used or being tested in humans, and we highlight recent advances in preclinical studies introducing novel approaches with therapeutic potential. We conclude that urgent collaborative action is required to address the unmet need of developing effective strategies to tackle the challenge of PTB and its complications.
Collapse
Affiliation(s)
- Ioannis Pavlidis
- University of Warwick Biomedical Research Unit in Reproductive HealthCoventryUK
| | | |
Collapse
|
6
|
Yan D, Qiang Y, Tian T, Lu D, Wu C. The Effect of Endotoxin on the Intestinal Mucus Layer in Non- and Post-pregnancy Mice. Front Vet Sci 2022; 8:824170. [PMID: 35224078 PMCID: PMC8866870 DOI: 10.3389/fvets.2021.824170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022] Open
Abstract
The intestine is the most extensive storage organ of bacteria and endotoxins, and the mucosal immune system is the first barrier of the intestine. Mucin-2 (MUC2) is the major component of the mucus layers. In this study, we explored whether MUC2 plays a role in how lipopolysaccharide (LPS) invades the fetus from the gut to the uterus in pregnant mice. The results showed that the LPS levels of the ileum, colon, and uterus were significantly increased, and the content of secretory IgA (sIgA) in the ileum, colon, and uterus tissues was significantly decreased in the LPS(+) group on the 35th day after LPS treatment. On the 16th day of pregnancy, compared with the LPS(-) group, the level of ileum LPS was significantly decreased, and the content of LPS in the fetus was significantly increased in the LPS(+) group. The sIgA content in the fetus was significantly decreased in the uterus and placenta. The expression of MUC2 in the uterus, ileum, and colon was increased significantly in the LPS(+) group, especially in the uterus. It is suggested that endotoxins accumulate in the uterus during non-pregnancy. The high expression of MUC2 in the uterus can prevent LPS from translocating into uterine tissue. After pregnancy, MUC2 still protects uterine tissue, allowing a large amount of LPS to enter the fetal body through blood circulation. Therefore, the level of sIgA significantly decreased, resulting in a decline in fetal innate immune function.
Collapse
Affiliation(s)
- Dujian Yan
- AKS Vocational and Technical College, Aksu, China
| | - Yuyun Qiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Tian Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Chenchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Gutziet O, Iluz R, Ben Asher H, Segal L, Ben Zvi D, Ginsberg Y, Khatib N, Zmora O, Ross MG, Weiner Z, Beloosesky R. Maternal N-Acetyl-Cysteine Prevents Neonatal Hypoxia-Induced Brain Injury in a Rat Model. Int J Mol Sci 2021; 22:ijms222413629. [PMID: 34948425 PMCID: PMC8709193 DOI: 10.3390/ijms222413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Perinatal hypoxia is a major cause of infant brain damage, lifelong neurological disability, and infant mortality. N-Acetyl-Cysteine (NAC) is a powerful antioxidant that acts directly as a scavenger of free radicals. We hypothesized that maternal-antenatal and offspring-postnatal NAC can protect offspring brains from hypoxic brain damage.Sixty six newborn rats were randomized into four study groups. Group 1: Control (CON) received no hypoxic intervention. Group 2: Hypoxia (HYP)-received hypoxia protocol. Group 3: Hypoxia-NAC (HYP-NAC). received hypoxia protocol and treated with NAC following each hypoxia episode. Group 4: NAC Hypoxia (NAC-HYP) treated with NAC during pregnancy, pups subject to hypoxia protocol. Each group was evaluated for: neurological function (Righting reflex), serum proinflammatory IL-6 protein levels (ELISA), brain protein levels: NF-κB p65, neuronal nitric oxide synthase (nNOS), TNF-α, and IL-6 (Western blot) and neuronal apoptosis (histology evaluation with TUNEL stain). Hypoxia significantly increased pups brain protein levels compared to controls. NAC administration to dams or offspring demonstrated lower brain NF-κB p65, nNOS, TNF-α and IL-6 protein levels compared to hypoxia alone. Hypoxia significantly increased brain apoptosis as evidenced by higher grade of brain TUNEL reaction. NAC administration to dams or offspring significantly reduce this effect. Hypoxia induced acute sensorimotor dysfunction. NAC treatment to dams significantly attenuated hypoxia-induced acute sensorimotor dysfunction. Prophylactic NAC treatment of dams during pregnancy confers long-term protection to offspring with hypoxia associated brain injury, measured by several pathways of injury and correlated markers with pathology and behavior. This implies we may consider prophylactic NAC treatment for patients at risk for hypoxia during labor.
Collapse
Affiliation(s)
- Ola Gutziet
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
- Correspondence: ; Tel.: +972-543088220; Fax: +972-4-7772453
| | - Roee Iluz
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Hila Ben Asher
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Linoy Segal
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Dikla Ben Zvi
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Osnat Zmora
- Department of Pediatric Surgery, Shamir Medical Center, Tzrifin 7073001, Israel;
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Michael G. Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and The Lundquist Institute, Torrance, CA 92270, USA;
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa 3525433, Israel; (R.I.); (H.B.A.); (L.S.); (D.B.Z.); (Y.G.); (N.K.); (Z.W.); (R.B.)
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525408, Israel
| |
Collapse
|
8
|
Spencer NR, Radnaa E, Baljinnyam T, Kechichian T, Tantengco OAG, Bonney E, Kammala AK, Sheller-Miller S, Menon R. Development of a mouse model of ascending infection and preterm birth. PLoS One 2021; 16:e0260370. [PMID: 34855804 PMCID: PMC8638907 DOI: 10.1371/journal.pone.0260370] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Microbial invasion of the intraamniotic cavity and intraamniotic inflammation are factors associated with spontaneous preterm birth. Understanding the route and kinetics of infection, sites of colonization, and mechanisms of host inflammatory response is critical to reducing preterm birth risk. OBJECTIVES This study developed an animal model of ascending infection and preterm birth with live bacteria (E. coli) in pregnant CD-1 mice with the goal of better understanding the process of microbial invasion of the intraamniotic cavity and intraamniotic inflammation. STUDY DESIGN Multiple experiments were conducted in this study. To determine the dose of E. coli required to induce preterm birth, CD-1 mice were injected vaginally with four different doses of E. coli (103, 106, 1010, or 1011 colony forming units [CFU]) in 40 μL of nutrient broth or broth alone (control) on an embryonic day (E)15. Preterm birth (defined as delivery before E18.5) was monitored using live video. E. coli ascent kinetics were measured by staining the E. coli with lipophilic tracer DiD for visualization through intact tissue with an in vivo imaging system (IVIS) after inoculation. The E. coli were also directly visualized in reproductive tissues by staining the bacteria with carboxyfluorescein succinimidyl ester (CFSE) prior to administration and via immunohistochemistry (IHC) by staining tissues with anti-E. coli antibody. Each pup's amniotic fluid was cultured separately to determine the extent of microbial invasion of the intraamniotic cavity at different time points. Intraamniotic inflammation resulting from E. coli invasion was assessed with IHC for inflammatory markers (TLR-4, P-NF-κB) and neutrophil marker (Ly-6G) for chorioamnionitis at 6- and 24-h post-inoculation. RESULTS Vaginally administered E. coli resulted in preterm birth in a dose-dependent manner with higher doses causing earlier births. In ex vivo imaging and IHC detected uterine horns proximal to the cervix had increased E. coli compared to the distal uterine horns. E. coli were detected in the uterus, fetal membranes (FM), and placenta in a time-dependent manner with 6 hr having increased intensity of E. coli positive signals in pups near the cervix and in all pups at 24 hr. Similarly, E. coli grew from the cultures of amniotic fluid collected nearest to the cervix, but not from the more distal samples at 6 hr post-inoculation. At 24 hr, all amniotic fluid cultures regardless of distance from the cervix, were positive for E. coli. TLR-4 and P-NF-κB signals were more intense in the tissues where E. coli was present (placenta, FM and uterus), displaying a similar trend toward increased signal in proximal gestational sacs compared to distal at 6 hr. Ly-6G+ cells, used to confirm chorioamnionitis, were increased at 24 hr compared to 6 hr post-inoculation and control. CONCLUSION We report the development of mouse model of ascending infection and the associated inflammation of preterm birth. Clinically, these models can help to understand mechanisms of infection associated preterm birth, determine targets for intervention, or identify potential biomarkers that can predict a high-risk pregnancy status early in pregnancy.
Collapse
Affiliation(s)
- Nicholas R. Spencer
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Enkhtuya Radnaa
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tuvshintugs Baljinnyam
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ourlad Alzeus G. Tantengco
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Elizabeth Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, VT, United States of America
| | - Ananth Kumar Kammala
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
9
|
Favrais G, Saliba E, Savary L, Bodard S, Gulhan Z, Gressens P, Chalon S. Partial protective effects of melatonin on developing brain in a rat model of chorioamnionitis. Sci Rep 2021; 11:22167. [PMID: 34773065 PMCID: PMC8589852 DOI: 10.1038/s41598-021-01746-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 12/27/2022] Open
Abstract
Melatonin has shown promising neuroprotective effects due to its anti-oxidant, anti-inflammatory and anti-apoptotic properties, making it a candidate drug for translation to humans in conditions that compromise the developing brain. Our study aimed to explore the impact of prenatal melatonin in an inflammatory/infectious context on GABAergic neurons and on oligodendrocytes (OLs), key cells involved in the encephalopathy of prematurity. An inflammatory/infectious agent (LPS, 300 μg/kg) was injected intraperitoneally (i.p.) to pregnant Wistar rats at gestational day 19 and 20. Melatonin (5 mg/kg) was injected i.p. following the same schedule. Immunostainings focusing on GABAergic neurons, OL lineage and myelination were performed on pup brain sections. Melatonin succeeded in preventing the LPS-induced decrease of GABAergic neurons within the retrospenial cortex, and sustainably promoted GABAergic neurons within the dentate gyrus in the inflammatory/infectious context. However, melatonin did not effectively prevent the LPS-induced alterations on OLs and myelination. Therefore, we demonstrated that melatonin partially prevented the deleterious effects of LPS according to the cell type. The timing of exposure related to the cell maturation stage is likely to be critical to achieve an efficient action of melatonin. Furthermore, it can be speculated that melatonin exerts a modest protective effect on extremely preterm infant brains.
Collapse
Affiliation(s)
- Geraldine Favrais
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France. .,Neonatology Unit, CHRU de Tours, Tours, France.
| | - Elie Saliba
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Léa Savary
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Sylvie Bodard
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | - Zuhal Gulhan
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| | | | - Sylvie Chalon
- i-Brain Team- UMR INSERM U1253, UFR de Médecine, Université de Tours, Bâtiment Thérèse Planiol, 10 Bd Tonnellé, BP 3223, 37032, Tours Cedex 1, France
| |
Collapse
|
10
|
Malnourishment-Associated Acetaminophen Toxicity in Pregnancy. Obstet Gynecol 2021; 137:877-880. [PMID: 33831932 DOI: 10.1097/aog.0000000000004351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although acetaminophen is commonly used in pregnancy, it can deplete glutathione concentrations and cause accumulation of 5-oxoproline, with subsequent metabolic acidosis. CASE A malnourished 25-year-old woman, G2P1001, with chronic acetaminophen use presented with abdominal pain and high anion gap metabolic acidosis. After ruling out other potential causes, her urine 5-oxoproline level was found to be elevated. She received N-acetylcysteine, with resolution of the acidosis. CONCLUSION Those who care for pregnant patients should remain alert to 5-oxoprolinemia as a cause of metabolic acidosis during pregnancy. Care must be taken when using acetaminophen in states of malnutrition. N-acetylcysteine seems to be an effective antidote.
Collapse
|
11
|
The Preventive Effects of Quercetin on Preterm Birth Based on Network Pharmacology and Bioinformatics. Reprod Sci 2021; 29:193-202. [PMID: 34231170 DOI: 10.1007/s43032-021-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Our previous study has shown that quercetin prevented lipopolysaccharide-induced preterm birth. This study aims to clarify the potential targets and biological mechanisms of quercetin in preventing preterm birth. We used bioinformatics databases to collect the candidate targets for quercetin and preterm birth. The biological functions and enriched pathways of the intersecting targets were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We obtained 105 targets for quercetin in preventing preterm birth. The biological processes of the intersecting targets are mainly involved in steroid metabolic process, drug metabolic process, oxidation-reduction process, omega-hydroxylase P450 pathway, positive regulation of cell migration, negative regulation of apoptotic process, and positive regulation of cell proliferation. The highly enriched pathways were steroid hormone biosynthesis, metabolism of xenobiotics by cytochrome P450, proteoglycans in cancer, focal adhesion, and arachidonic acid metabolism. The ten hub targets for quercetin in preventing preterm birth were AKT serine/threonine kinase 1, mitogen-activated protein kinase 3, epidermal growth factor receptor, prostaglandin-endoperoxide synthase 2, mitogen-activated protein kinase 1, estrogen receptor 1, heat shock protein 90 alpha family class A member 1, mitogen-activated protein kinase 8, androgen receptor, and matrix metallopeptidase 9. Molecular docking analysis showed good bindings between these proteins and quercetin. In conclusion, these findings highlight the key targets and molecular mechanisms of quercetin in preventing preterm birth.
Collapse
|
12
|
Zmora O, Gutzeit O, Segal L, Boulos S, Millo Z, Ginsberg Y, Khatib N, Fainaru O, Ross MG, Weiner Z, Beloosesky R. Maternal N-acetyl-cysteine prevents neonatal brain injury associated with necrotizing enterocolitis in a rat model. Acta Obstet Gynecol Scand 2021; 100:979-987. [PMID: 33247942 DOI: 10.1111/aogs.14054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Preterm infants with necrotizing enterocolitis (NEC) are at increased risk of cerebral injury and neurodevelopmental dysfunction. N-acetyl-cysteine (NAC) is a known anti-inflammatory and antioxidant agent. Currently, there is no prophylactic treatment in clinical use to prevent NEC and its neurodevelopmental sequelae. We sought to determine whether brain inflammation/apoptosis accompanies NEC systemic inflammation, and whether it can be attenuated by maternal NAC treatment during pregnancy and/or in the neonatal period in a rat model. MATERIAL AND METHODS An established NEC newborn model (hypoxia 5% O2 for 10 min and formula feeding thrice daily, beginning on day 1 for 4 days) was used in Sprague-Dawley rat pups (n = 32). An additional group of pups (n = 33) received NAC (300 mg/kg intraperitoneal thrice daily) in addition to NEC conditions (NEC-NAC). Control pups (n = 33) were nursed and remained with the dam in room air. Two additional groups included pups of dams treated once daily with NAC (300 mg/kg intravenous) in the last 3 days of pregnancy. After birth, pups were randomized into NAC-NEC (n = 33) with NEC conditions and NAC-NEC-NAC (n = 36) with additional postnatal NAC treatment. Pups were sacrificed on the fifth day of life. Pup serum interleukin (IL)-6 protein levels, and brain nuclear factor kappa B (NF-κB) p65, neuronal nitric oxide synthase (nNOS), Caspase 3, tumor necrosis factor alpha (TNF-α), IL-6 and IL-1β protein levels were determined by ELISA, western blot and TUNEL staining, and the groups were compared using analysis of variance (ANOVA). RESULTS NEC pups had significantly increased serum IL-6 levels compared with the control group as well as increased neuronal apoptosis and brain protein levels of NF-κB, nNOS, Caspase 3, TNF-α, IL-6 and IL-1β compared with control. In all NAC treatment groups, levels of serum IL-6, neuronal apoptosis and brain NF-κB, nNOS, Caspase 3, TNF-α, IL-6 and IL-1β protein levels were significantly reduced compared with the NEC group. The most pronounced decrease was demonstrated within the NAC-NEC-NAC group. CONCLUSIONS NAC treatment can attenuate newborn inflammatory response syndrome and decrease offspring brain neuroapoptosis and inflammation in a rat model of NEC by inhibition of NF-κB, nNOS and Caspase 3 pathways.
Collapse
Affiliation(s)
- Osnat Zmora
- Department of Pediatric Surgery, Shamir Medical Center, Zerifin, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ola Gutzeit
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Linoy Segal
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Sari Boulos
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Zvika Millo
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ofer Fainaru
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Michael G Ross
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center and Los Angeles Biomedical Institute, Torrance, CA, USA
| | - Zeev Weiner
- Department of Pediatric Surgery, Shamir Medical Center, Zerifin, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Ruth, and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
A striking result from antenatal exposure to N-acetylcysteine. Pediatr Res 2021; 89:14-15. [PMID: 32957113 DOI: 10.1038/s41390-020-01168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/08/2022]
|
14
|
Antenatal N-acetylcysteine to improve outcomes of premature infants with intra-amniotic infection and inflammation (Triple I): randomized clinical trial. Pediatr Res 2021; 89:175-184. [PMID: 32818949 PMCID: PMC7451831 DOI: 10.1038/s41390-020-01106-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Intrauterine infection and/or inflammation (Triple I) is an important cause of preterm birth (PTB) and adverse newborn outcomes. N-acetylcysteine (NAC) is a Food and Drug Administration (FDA)-approved drug safely administered to pregnant women with acetaminophen toxicity. METHODS We conducted a single-center, quadruple-blind, placebo-controlled trial of pregnant women with impending PTB due to confirmed Triple I. Participants (n = 67) were randomized to an intravenous infusion of NAC or placebo mimicking the FDA-approved regimen. Outcomes included clinical measures and mechanistic biomarkers. RESULTS Newborns exposed to NAC (n = 33) had significantly improved status at birth and required less intensive resuscitation compared to placebo (n = 34). Fewer NAC-exposed newborns developed two or more prematurity-related severe morbidities [NAC: 21% vs. placebo: 47%, relative risk, 0.45; 95% confidence interval (CI) 0.21-0.95] with the strongest protection afforded against bronchopulmonary dysplasia (BPD, NAC: 3% vs. placebo: 32%, relative risk, 0.10; 95% CI: 0.01-0.73). These effects were independent of gestational age, birth weight, sex, or race. Umbilical cord plasma NAC concentration correlated directly with cysteine, but not with plasma or whole blood glutathione. NAC reduced the placental expression of histone deacetylase-2, suggesting that epigenetic mechanisms may be involved. CONCLUSIONS These data provide support for larger studies of intrapartum NAC to reduce prematurity-related morbidity. IMPACT In this randomized clinical trial of 65 women and their infants, maternal intravenous NAC employing the FDA-approved dosing protocol resulted in lower composite neonatal morbidity independent of gestational age, race, sex, and birthweight. Administration of NAC in amniocentesis-confirmed Triple I resulted in a remarkably lower incidence of BPD. As prior studies have not shown a benefit of postnatal NAC in ventilated infants, our trial highlights the critical antenatal timing of NAC administration. Repurposing of NAC for intrapartum administration should be explored in larger clinical trials as a strategy to improve prematurity-related outcomes and decrease the incidence of BPD.
Collapse
|
15
|
Dijkstra DJ, Verkaik-Schakel RN, Eskandar S, Limonciel A, Stojanovska V, Scherjon SA, Plösch T. Mid-gestation low-dose LPS administration results in female-specific excessive weight gain upon a western style diet in mouse offspring. Sci Rep 2020; 10:19618. [PMID: 33184349 PMCID: PMC7665071 DOI: 10.1038/s41598-020-76501-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/15/2020] [Indexed: 01/03/2023] Open
Abstract
Gestational complications, including preeclampsia and gestational diabetes, have long-term adverse consequences for offspring's metabolic and cardiovascular health. A low-grade systemic inflammatory response is likely mediating this. Here, we examine the consequences of LPS-induced gestational inflammation on offspring's health in adulthood. LPS was administered to pregnant C57Bl/6J mice on gestational day 10.5. Maternal plasma metabolomics showed oxidative stress, remaining for at least 5 days after LPS administration, likely mediating the consequences for the offspring. From weaning on, all offspring was fed a control diet; from 12 to 24 weeks of age, half of the offspring received a western-style diet (WSD). The combination of LPS-exposure and WSD resulted in hyperphagia and increased body weight and body fat mass in the female offspring. This was accompanied by changes in glucose tolerance, leptin and insulin levels and gene expression in liver and adipose tissue. In the hypothalamus, expression of genes involved in food intake regulation was slightly changed. We speculate that altered food intake behaviour is a result of dysregulation of hypothalamic signalling. Our results add to understanding of how maternal inflammation can mediate long-term health consequences for the offspring. This is relevant to many gestational complications with a pro-inflammatory reaction in place.
Collapse
Affiliation(s)
- Dorieke J Dijkstra
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Rikst Nynke Verkaik-Schakel
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Sharon Eskandar
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands.,Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Sicco A Scherjon
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynaecology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, CB22, 9713GZ, Groningen, The Netherlands. .,Perinatal Neurobiology, Department of Human Medicine, School of Medicine and Health Sciences Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
16
|
Zhang Z, Lin YA, Kim SY, Su L, Liu J, Kannan RM, Kannan S. Systemic dendrimer-drug nanomedicines for long-term treatment of mild-moderate cerebral palsy in a rabbit model. J Neuroinflammation 2020; 17:319. [PMID: 33100217 PMCID: PMC7586697 DOI: 10.1186/s12974-020-01984-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Neuroinflammation mediated by microglia plays a central role in the pathogenesis of perinatal/neonatal brain injury, including cerebral palsy (CP). Therapeutics mitigating neuroinflammation potentially provide an effective strategy to slow the disease progression and rescue normal brain development. Building on our prior results which showed that a generation-4 hydroxyl poly(amidoamine) (PAMAM) dendrimer could deliver drugs specifically to activated glia from systemic circulation, we evaluated the sustained efficacy of a generation-6 (G6) hydroxyl-terminated PAMAM dendrimer that showed a longer blood circulation time and increased brain accumulation. N-acetyl-L-cysteine (NAC), an antioxidant and anti-inflammatory agent that has high plasma protein binding properties and poor brain penetration, was conjugated to G6-PAMAM dendrimer-NAC (G6D-NAC). The efficacy of microglia-targeted G6D-NAC conjugate was evaluated in a clinically relevant rabbit model of CP, with a mild/moderate CP phenotype to provide a longer survival of untreated CP kits, enabling the assessment of sustained efficacy over 15 days of life. METHODS G6D-NAC was conjugated and characterized. Cytotoxicity and anti-inflammatory assays were performed in BV-2 microglial cells. The efficacy of G6D-NAC was evaluated in a rabbit model of CP. CP kits were randomly divided into 5 groups on postnatal day 1 (PND1) and received an intravenous injection of a single dose of PBS, or G6D-NAC (2 or 5 mg/kg), or NAC (2 or 5 mg/kg). Neurobehavioral tests, microglia morphology, and neuroinflammation were evaluated at postnatal day 5 (PND5) and day 15 (PND15). RESULTS A single dose of systemic 'long circulating' G6D-NAC showed a significant penetration across the impaired blood-brain-barrier (BBB), delivered NAC specifically to activated microglia, and significantly reduced microglia-mediated neuroinflammation in both the cortex and cerebellum white matter areas. Moreover, G6D-NAC treatment significantly improved neonatal rabbit survival rate and rescued motor function to nearly healthy control levels at least up to 15 days after birth (PND15), while CP kits treated with free NAC died before PND9. CONCLUSIONS Targeted delivery of therapeutics to activated microglia in neonatal brain injury can ameliorate pro-inflammatory microglial responses to injury, promote survival rate, and improve neurological outcomes that can be sustained for a long period. Appropriate manipulation of activated microglia enabled by G6D-NAC can impact the injury significantly beyond inflammation.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Present address: Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Yi-An Lin
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA
| | - Soo-Young Kim
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA
| | - Lilly Su
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jinhuan Liu
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins School of Medicine, 400 North Broadway, Baltimore, MD, 21287, USA.
| | - Sujatha Kannan
- Department of Anesthesiology and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Anesthesiology and Critical Care Medicine, Charlotte Bloomberg Children's Center 6318D, 1800 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
17
|
Sodium Hydrogen Exchanger Regulatory Factor-1 (NHERF1) Regulates Fetal Membrane Inflammation. Int J Mol Sci 2020; 21:ijms21207747. [PMID: 33092043 PMCID: PMC7589612 DOI: 10.3390/ijms21207747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/20/2022] Open
Abstract
The fetal inflammatory response, a key contributor of infection-associated preterm birth (PTB), is mediated by nuclear factor kappa B (NF-kB) activation. Na+/H+ exchanger regulatory factor-1 (NHERF1) is an adapter protein that can regulate intracellular signal transduction and thus influence NF-kB activation. Accordingly, NHERF1 has been reported to enhance proinflammatory cytokine release and amplify inflammation in a NF-kB-dependent fashion in different cell types. The objective of this study was to examine the role of NHERF1 in regulating fetal membrane inflammation during PTB. We evaluated the levels of NHERF1 in human fetal membranes from term labor (TL), term not in labor (TNIL), and PTB and in a CD1 mouse model of PTB induced by lipopolysaccharide (LPS). Additionally, primary cultures of fetal membrane cells were treated with LPS, and NHERF1 expression and cytokine production were evaluated. Gene silencing methods using small interfering RNA targeting NHERF1 were used to determine the functional relevance of NHERF1 in primary cultures. NHERF1 expression was significantly (p < 0.001) higher in TL and PTB membranes compared to TNIL membranes, and this coincided with enhanced (p < 0.01) interleukin (IL)-6 and IL-8 expression levels. LPS-treated animals delivering PTB had increased levels of NHERF1, IL-6, and IL-8 compared to phosphate-buffered saline (PBS; control) animals. Silencing of NHERF1 expression resulted in a significant reduction in NF-kB activation and IL-6 and IL-8 production as well as increased IL-10 production. In conclusion, downregulation of NHERF1 increased anti-inflammatory IL-10, and reducing NHERF1 expression could be a potential therapeutic strategy to reduce the risk of infection/inflammation associated with PTB.
Collapse
|
18
|
Verbascoside-Rich Abeliophyllum distichum Nakai Leaf Extracts Prevent LPS-Induced Preterm Birth Through Inhibiting the Expression of Proinflammatory Cytokines from Macrophages and the Cell Death of Trophoblasts Induced by TNF-α. Molecules 2020; 25:molecules25194579. [PMID: 33036475 PMCID: PMC7583932 DOI: 10.3390/molecules25194579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Preterm birth is a known leading cause of neonatal mortality and morbidity. The underlying causes of pregnancy-associated complications are numerous, but infection and inflammation are the essential high-risk factors. However, there are no safe and effective preventive drugs that can be applied to pregnant women. Objective: The objectives of the study were to investigate a natural product, Abeliophyllum distichum leaf (ADL) extract, to examine the possibility of preventing preterm birth caused by inflammation. Methods: We used a mouse preterm birth model by intraperitoneally injecting lipopolysaccharides (LPS). ELISA, Western blot, real-time PCR and immunofluorescence staining analyses were performed to confirm the anti-inflammatory efficacy and related mechanisms of the ADL extracts. Cytotoxicity and cell death were measured using Cell Counting Kit-8 (CCK-8) analysis and flow cytometer. Results: A daily administration of ADL extract significantly reduced preterm birth, fetal loss, and fetal growth restriction after an intraperitoneal injection of LPS in mice. The ADL extract prevented the LPS-induced expression of TNF-α in maternal serum and amniotic fluid and attenuated the LPS-induced upregulation of placental proinflammatory genes, including IL-1β, IL-6, IL-12p40, and TNF-α and the chemokine gene CXCL-1, CCL-2, CCL3, and CCL-4. LPS-treated THP-1 cell-conditioned medium accelerated trophoblast cell death, and TNF-α played an essential role in this effect. The ADL extract reduced LPS-treated THP-1 cell-conditioned medium-induced trophoblast cell death by inhibiting MAPKs and the NF-κB pathway in macrophages. ADL extract prevented exogenous TNF-α-induced increased trophoblast cell death and decreased cell viability. Conclusions: We have demonstrated that the inhibition of LPS-induced inflammation by ADL extract can prevent preterm birth, fetal loss, and fetal growth restriction.
Collapse
|
19
|
Song Y, Kim Y, Ha S, Sheller-Miller S, Yoo J, Choi C, Park CH. The emerging role of exosomes as novel therapeutics: Biology, technologies, clinical applications, and the next. Am J Reprod Immunol 2020; 85:e13329. [PMID: 32846024 PMCID: PMC7900947 DOI: 10.1111/aji.13329] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
The extracellular vesicles (EVs) research area has grown rapidly because of their pivotal roles in intercellular communications and maintaining homeostasis of individual organism. As a subtype of EVs, exosomes are made via unique biogenesis pathway and exhibit disparate functional and phenotypic characteristics. Functionally, exosomes transfer biological messages from donor cell to recipient cell, which makes exosomes as a novel therapeutic platform delivering therapeutic materials to the target tissue/cell. Currently, both academia and industry try to develop exosome platform‐based therapeutics for disease management, some of which are already in clinical trials. In this review, we will discuss focusing on therapeutic values of exosomes, recent advances in therapeutic exosome platform development, and late development of exosome therapeutics in diverse therapeutic areas.
Collapse
Affiliation(s)
| | | | - Sunhyung Ha
- ILIAS Biologics Inc, Daejeon, Republic of Korea
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, TX, USA
| | | | - Chulhee Choi
- ILIAS Biologics Inc, Daejeon, Republic of Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea
| | | |
Collapse
|
20
|
Luo J, Ao Z, Duan Z, Ao Y, Wei S, Chen W, Chen X. Effects of N-Acetylcysteine on the reproductive performance, oxidative stress and RNA sequencing of Nubian goats. Vet Med Sci 2020; 7:156-163. [PMID: 32812379 PMCID: PMC7840200 DOI: 10.1002/vms3.338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
N-acetylcysteine (NAC) has been found to enhance the protective ability of cells to counter balance oxidative stress and inflammation. To investigate the effects of dietary NAC supplementation on the reproductive performance of goats, the reproductive performance and endometrial transcriptome of goats fed with diets with NAC (NAC group) and without NAC supplementation (control group) were compared. Results showed that the goats fed with 0.03% and 0.05% NAC had similar litter size, birth weight, nitric oxide (NO), sex hormones and amino acids levels compared with the goats of the control group. However, feeding with 0.07% NAC supplementation from day 0 to day 30 of gestation remarkably increased the litter size of goats. The goats of the 0.07% NAC group presented increased levels of NO relative to the control group, but their sex hormones and amino acids showed no differences. Comparative transcriptome analysis identified 207 differentially expressed genes (DEGs) in the endometrium between the control and the 0.07% NAC groups. These DEGs included 146 upregulated genes and 61 downregulated genes in the 0.07% NAC group. They were primarily involved in the cellular response to toxic substances, oxidoreductase activity, immune receptor activity, signalling receptor binding, cytokine-cytokine receptor interactions, PI3K-Akt signalling pathway and PPAR signalling pathway. In conclusion, results showed that dietary 0.07% NAC supplementation exerted a beneficial effect on the survival of goat embryos at the early pregnancy stage. Such positive outcome might be due to the increased NO production and affected expression of genes involved in the anti-inflammation pathways of the endometrium.
Collapse
Affiliation(s)
- Jinhong Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,Guizhou Institute of Prataculture, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Zhiqiang Duan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Ye Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Shinan Wei
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Wei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China.,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
21
|
Zmora O, Gutzeit O, Segal L, Boulos S, Millo Z, Ginsberg Y, Khatib N, Dabbah-Assad F, Fainaru O, Weiner Z, Beloosesky R. Prophylactic antenatal N-Acetyl Cysteine administration combined with postnatal administration can decrease mortality and injury markers associated with necrotizing enterocolitis in a rat model. PLoS One 2020; 15:e0233612. [PMID: 32479520 PMCID: PMC7263616 DOI: 10.1371/journal.pone.0233612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/08/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of neonates, especially premature neonates. To date, there is no prophylactic treatment against NEC, except breast milk and slow increase in enteral feeding, and there is no antenatal prophylaxis. AIMS To assess possible protective effects of antenatal N-Acetyl Cysteine (NAC) against the intestinal pathophysiological changes associated with NEC in a rat model of NEC and against its associated mortality. METHODS Newborn Sprague-Dawley rats were divided into 5 groups: control (n = 33); NEC (n = 32)-subjected to hypoxia and formula feeding for 4 days to induce NEC; NEC-NAC (n = 34)-with induced NEC and concomitant postnatal NAC administration; NAC-NEC (n = 33)-born to dams treated with NAC for the last 3 days of pregnancy starting at gestational age of 18 days, and then subjected to induced NEC after birth; NAC-NEC-NAC (n = 36)-subjected to induced NEC with both prenatal and postnatal NAC treatment. At day of life 5, weight and survival of pups in the different groups were examined, and pups were euthanized. Ileal TNF-α, IL-6, IL-1β, IL-10, NFkB p65, iNOS and cleaved caspase 3 protein levels (western blot) and mRNA expression (RT-PCR) were compared between groups. RESULTS Pup mortality was significantly reduced in the NAC-NEC-NAC group compared to NEC (11% vs. 34%, P<0.05). Ileal protein levels and mRNA expression of all injury markers tested except IL-10 were significantly increased in NEC compared to control. These markers were significantly reduced in all NAC treatment groups (NEC-NAC, NAC-NEC, and NAC-NEC-NAC) compared to NEC. The most pronounced decrease was observed in the NAC-NEC NAC group. CONCLUSIONS Antenatal NAC decreases injury markers and mortality associated with NEC in a rat model. Antenatal administration of NAC may present a novel approach for NEC prophylaxis in pregnancies with risk for preterm birth.
Collapse
Affiliation(s)
- Osnat Zmora
- Department of Pediatric Surgery, Shamir Medical Center, Zerifin, Israel
| | - Ola Gutzeit
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Linoy Segal
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Sari Boulos
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Zvika Millo
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Fadwa Dabbah-Assad
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Ofer Fainaru
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
22
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
23
|
Triggs T, Kumar S, Mitchell M. Experimental drugs for the inhibition of preterm labor. Expert Opin Investig Drugs 2020; 29:507-523. [PMID: 32290715 DOI: 10.1080/13543784.2020.1752661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Preterm birth is the leading cause of neonatal morbidity and mortality globally and poses a substantial economic burden. Consequently, there is a need for the identification of therapeutic targets and novel experimental drugs for the inhibition of preterm labor to improve neonatal outcomes. AREAS COVERED The authors review the pathophysiology of labor and the inflammatory pathways underpinning it. The interruption of these pathways forms the basis of therapeutic targets to inhibit preterm labor. Current drugs available for the treatment of preterm labor are reviewed, followed by experimental drugs including toll-like receptor 4 (TLR-4) antagonists, cytokine suppressive anti-inflammatory drugs (CSAIDs), N-acetyl cysteine (NAC), Sulfasalazine (SSZ), tumor necrosis factor-alpha (TNF-α) antagonists, interleukin-1 receptor (IL-1) inhibitors, omega-3 polyunsaturated fatty acids and lipid metabolites, and the polyphenols. EXPERT OPINION A number of new therapeutic strategies for the prevention of preterm labor are being investigated. These have the potential to improve neurodevelopmental outcomes and survival in babies born preterm, reducing the economic and healthcare costs of caring for the complex needs of these children in the immediate and long term. It is likely that over the next decade there will be a new treatment option that targets the pathological inflammatory processes involved in preterm labor.
Collapse
Affiliation(s)
- Tegan Triggs
- Women's & Newborn Services, Royal Brisbane and Women's Hospital , Herston, Queensland, Australia
| | - Sailesh Kumar
- Women's & Newborn Services, Royal Brisbane and Women's Hospital , Herston, Queensland, Australia
| | - Murray Mitchell
- Women's & Newborn Services, Royal Brisbane and Women's Hospital , Herston, Queensland, Australia
| |
Collapse
|
24
|
Stefanovic V, Andersson S, Vento M. Oxidative stress - Related spontaneous preterm delivery challenges in causality determination, prevention and novel strategies in reduction of the sequelae. Free Radic Biol Med 2019; 142:52-60. [PMID: 31185254 DOI: 10.1016/j.freeradbiomed.2019.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022]
Abstract
Spontaneous preterm birth (PTB) is one of the major complications of pregnancy and the main cause of neonatal mortality and morbidity. Despite the efforts devoted to the understanding of this obstetrical syndrome and improved medical care, there has been a tendency for the PTB rate to increase in the last decades globally. The costs of the screening for spontaneous PTB, its management, and treatment of the sequelae represent a major burden to the health service economy of high-income countries. In this scenario, it has been widely acknowledged that oxidative stress (OS) plays an important role in the pathogenicity of human disease in wide range of areas of medicine. There is an emerging evidence that an imbalance between pro-and-antioxidants may be associated with spontaneous PTB. However, there are still many controversies on the mechanisms by which OS are involved in the pathogenesis of prematurity. Moreover, the crucial question whether the OS is the cause or consequence of the disease is yet to be answered. The purpose of this article is to briefly summarize the current knowledge and controversies on oxidative stress-related spontaneous PTB and to give a critical approach on future perspectives on this topic as a classical example of translational medicine. Placenta-mediated pregnancy adverse outcome associated with OS leading to iatrogenic PTB (e.g. pre-eclampsia, intrauterine growth restriction, gestational diabetes) will not be discussed.
Collapse
Affiliation(s)
- Vedran Stefanovic
- Department of Obstetrics and Gynecology, Fetomaternal Medical Center, Helsinki University and Helsinki University Hospital, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.
| |
Collapse
|
25
|
Oral cholecalciferol supplementation alleviates lipopolysaccharide-induced preterm delivery partially through regulating placental steroid hormones and prostaglandins in mice. Int Immunopharmacol 2019; 69:235-244. [DOI: 10.1016/j.intimp.2019.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/24/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022]
|
26
|
Therapeutic N-Acetyl-Cysteine (Nac) Following Initiation of Maternal Inflammation Attenuates Long-Term Offspring Cerebral Injury, as Evident in Magnetic Resonance Imaging (MRI). Neuroscience 2019; 403:118-124. [DOI: 10.1016/j.neuroscience.2018.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 11/21/2022]
|
27
|
Ellery SJ, Kelleher M, Grigsby P, Burd I, Derks JB, Hirst J, Miller SL, Sherman LS, Tolcos M, Walker DW. Antenatal prevention of cerebral palsy and childhood disability: is the impossible possible? J Physiol 2018; 596:5593-5609. [PMID: 29928763 DOI: 10.1113/jp275595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/15/2018] [Indexed: 12/11/2022] Open
Abstract
This review covers our current knowledge of the causes of perinatal brain injury leading to cerebral palsy-like outcomes, and argues that much of this brain damage is preventable. We review the experimental evidence that there are treatments that can be safely administered to women in late pregnancy that decrease the likelihood and extent of perinatal brain damage that occurs because of acute and severe hypoxia that arises during some births, and the additional impact of chronic fetal hypoxia, infection, inflammation, growth restriction and preterm birth. We discuss the types of interventions required to ameliorate or even prevent apoptotic and necrotic cell death, and the vulnerability of all the major cell types in the brain (neurons, astrocytes, oligodendrocytes, microglia, cerebral vasculature) to hypoxia/ischaemia, and whether a pan-protective treatment given to the mother before birth is a realistic prospect.
Collapse
Affiliation(s)
- Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Meredith Kelleher
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Peta Grigsby
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Irina Burd
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Jan B Derks
- Department of Perinatal Medicine University Medical Center Utrecht, The Netherlands, Gynaecology, Monash University, Melbourne, Australia
| | - Jon Hirst
- University of Newcastle, Newcastle, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia
| | - Larry S Sherman
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mary Tolcos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| | - David W Walker
- The Ritchie Centre, Hudson Institute of Medical Research and Department of Obstetrics and Gynaecology, Monash University, Melbourne, Australia.,School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Australia
| |
Collapse
|
28
|
Kumar D, Moore RM, Sharma A, Mercer BM, Mansour JM, Moore JJ. In an in-vitro model using human fetal membranes, α-lipoic acid inhibits inflammation induced fetal membrane weakening. Placenta 2018; 68:9-14. [PMID: 30055672 DOI: 10.1016/j.placenta.2018.06.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/04/2018] [Accepted: 06/18/2018] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We established an in-vitro model for the study of human fetal membrane (FM) weakening leading to pPROM. In this model, granulocyte-macrophage colony-stimulating factor (GM-CSF) is a critical intermediate for both tumor necrosis factor-α (TNF; modeling infection/inflammation) and thrombin (modeling decidual bleeding/abruption)-induced weakening. Thus, inhibitors of FM weakening can be categorized as targeting GM-CSF production, GM-CSF downstream action, or both. Most progestogens inhibit both, except 17-α hydroxyprogesterone caproate which inhibits FM weakening at only one point, GM-CSF production. α-lipoic acid (LA), an over-the-counter dietary supplement, has also been previously shown to inhibit TNF and thrombin induced FM weakening. OBJECTIVE To determine the point of action of LA inhibition of FM weakening. METHODS FM fragments were mounted in Transwell inserts and preincubated with/without LA/24 h, then with/without addition of TNF, thrombin or GM-CSF. After 48 h, medium was assayed for GM-CSF, and FM fragments were rupture-strength tested. RESULTS TNF and thrombin both weakened FM and increased GM-CSF levels. GM-CSF also weakened FM. LA inhibited both TNF and thrombin induced FM weakening and concomitantly inhibited the increase in GM-CSF in a concentration-dependent manner. In addition, LA inhibited GM-CSF induced FM weakening in a concentration dependent manner. CONCLUSIONS LA blocks TNF and thrombin induced FM weakening at two points, inhibiting both GM-CSF production and downstream action. Thus, we speculate that LA may be a potential standalone therapeutic agent, or supplement to current therapy for prevention of pPROM related spontaneous preterm birth, if preclinical studies to examine feasibility and safety during pregnancy are successfully accomplished.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Robert M Moore
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Anudeepa Sharma
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Brian M Mercer
- Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Joseph M Mansour
- Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - John J Moore
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Reproductive Biology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Bidne KL, Dickson MJ, Ross JW, Baumgard LH, Keating AF. Disruption of female reproductive function by endotoxins. Reproduction 2018; 155:R169-R181. [DOI: 10.1530/rep-17-0406] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Endotoxemia can be caused by obesity, environmental chemical exposure, abiotic stressors and bacterial infection. Circumstances that deleteriously impact intestinal barrier integrity can induce endotoxemia, and controlled experiments have identified negative impacts of lipopolysaccharide (LPS; an endotoxin mimetic) on folliculogenesis, puberty onset, estrus behavior, ovulation, meiotic competence, luteal function and ovarian steroidogenesis. In addition, neonatal LPS exposures have transgenerational female reproductive impacts, raising concern about early life contacts to this endogenous reproductive toxicant. Aims of this review are to identify physiological stressors causing endotoxemia, to highlight potential mechanism(s) by which LPS compromises female reproduction and identify knowledge gaps regarding how acute and/or metabolic endotoxemia influence(s) female reproduction.
Collapse
|
30
|
Knabl J, Vattai A, Ye Y, Jueckstock J, Hutter S, Kainer F, Mahner S, Jeschke U. Role of Placental VDR Expression and Function in Common Late Pregnancy Disorders. Int J Mol Sci 2017; 18:ijms18112340. [PMID: 29113124 PMCID: PMC5713309 DOI: 10.3390/ijms18112340] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/14/2022] Open
Abstract
Vitamin D, besides its classical role in bone metabolism, plays a distinct role in multiple pathways of the feto-maternal unit. Calcitriol is the major active ligand of the nuclear vitamin D receptor (VDR). The vitamin D receptor (VDR) is expressed in different uteroplacental parts and exerts a variety of functions in physiologic pregnancy. It regulates decidualisation and implantation, influences hormone secretion and placental immune modulations. This review highlights the role of the vitamin D receptor in physiologic and disturbed pregnancy, as preeclampsia, fetal growth restriction, gestational diabetes and preterm birth. We discuss the existing literature regarding common VDR polymorphisms in these pregnancy disorders.
Collapse
Affiliation(s)
- Julia Knabl
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
- Department of Obstetrics and Gynecology, Klinik Hallerwiese, 90419 Nürnberg, Germany.
| | - Aurelia Vattai
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
| | - Yao Ye
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
| | - Julia Jueckstock
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
| | - Stefan Hutter
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
| | - Franz Kainer
- Department of Obstetrics and Gynecology, Klinik Hallerwiese, 90419 Nürnberg, Germany.
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians Universität München, 80337 Munich, Germany.
| |
Collapse
|
31
|
A comparison of the effects of lindane and FeCl 3/ADP on spontaneous contractions in isolated rat or human term myometrium. Reprod Toxicol 2017; 74:164-173. [PMID: 28970134 DOI: 10.1016/j.reprotox.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/22/2022]
Abstract
Oxidative stress affects the contractile behavior of smooth muscle resulting in complications during labor. Toxicants such as lindane and ferric chloride (FeCl3)/adenosine diphosphate (ADP) cause oxidative stress and have previously been shown to inhibit smooth muscle contraction. In this study we examined the effects of the oxygen species scavengers, ascorbic acid and N-acetylcysteine on lindane and FeCl3/ADP's inhibition of spontaneous myometrial contractions in rat and human myometrium. Lindane and FeCl3/ADP gave rise to concentration-dependent reductions in rat (EC50 11.8×10-6M and 0.9×10-3M) and human myometrial contractions (EC50 16.3×10-6M and 1.1×10-3M, respectively). Pre-treatment with N-acetylcysteine significantly increased the EC50 for the effects of lindane on motility index of human tissue and reduced the maximum inhibitory effect of FeCl3/ADP on contractions in both rat and human myometrium. Ascorbic acid reduced the effects of FeCl3/ADP in rat tissue only. In conclusion pre-treatment with specific antioxidants may protect both rat and human myometrium from the inhibitory effects of lindane and FeCl3/ADP.
Collapse
|
32
|
Modulatory Mechanism of Polyphenols and Nrf2 Signaling Pathway in LPS Challenged Pregnancy Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8254289. [PMID: 29138679 PMCID: PMC5613688 DOI: 10.1155/2017/8254289] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/16/2017] [Indexed: 12/16/2022]
Abstract
Early embryonic loss and adverse birth outcomes are the major reproductive disorders that affect both human and animals. The LPS induces inflammation by interacting with robust cellular mechanism which was considered as a plethora of numerous reproductive disorders such as fetal resorption, preterm birth, teratogenicity, intrauterine growth restriction, abortion, neural tube defects, fetal demise, and skeletal development retardation. LPS-triggered overproduction of free radicals leads to oxidative stress which mediates inflammation via stimulation of NF-κB and PPARγ transcription factors. Flavonoids, which exist in copious amounts in nature, possess a wide array of functions; their supplementation during pregnancy activates Nrf2 signaling pathway which encounters pregnancy disorders. It was further presumed that the development of strong antioxidant uterine environment during gestation can alleviate diseases which appear at adult stages. The purpose of this review is to focus on modulatory properties of flavonoids on oxidative stress-mediated pregnancy insult and abnormal outcomes and role of Nrf2 activation in pregnancy disorders. These findings would be helpful for providing new insights in ameliorating oxidative stress-induced pregnancy disorders.
Collapse
|
33
|
Maternal dendrimer-based therapy for inflammation-induced preterm birth and perinatal brain injury. Sci Rep 2017; 7:6106. [PMID: 28733619 PMCID: PMC5522481 DOI: 10.1038/s41598-017-06113-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 06/08/2017] [Indexed: 01/06/2023] Open
Abstract
Preterm birth is a major risk factor for adverse neurological outcomes in ex-preterm children, including motor, cognitive, and behavioral disabilities. N-acetyl-L-cysteine therapy has been used in clinical studies; however, it requires doses that cause significant side effects. In this study, we explore the effect of low dose N-acetyl-L-cysteine therapy, delivered using a targeted, systemic, maternal, dendrimer nanoparticle (DNAC), in a mouse model of intrauterine inflammation. Our results demonstrated that intraperitoneal maternal DNAC administration significantly reduced the preterm birth rate and altered placental immune profile with decreased CD8+ T-cell infiltration. Furthermore, we demonstrated that DNAC improved neurobehavioral outcomes and reduced fetal neuroinflammation and long-term microglial activation in offspring. Our study is the first to provide evidence for the role of CD8+ T-cell in the maternal-fetal interface during inflammation and further support the efficacy of DNAC in preventing preterm birth and prematurity-related outcomes.
Collapse
|
34
|
Khatib N, Weiner Z, Ginsberg Y, Awad N, Beloosesky R. Protective Effect of N-Acetyl-Cysteine (NAC) in Lipopolysaccharide (LPS)-Associated Inflammatory Response in Rat Neonates. Rambam Maimonides Med J 2017; 8:RMMJ.10303. [PMID: 28467758 PMCID: PMC5415372 DOI: 10.5041/rmmj.10303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Increased inflammatory response may be associated with adverse clinical outcomes, especially in the neonatal period. The aims of this study were to determine whether N-acetyl-cysteine (NAC), an anti-inflammatory agent, attenuates the inflammatory response in young rats and to determine the most effective route of administration. METHODS Four groups of Sprague-Dawley rats (in each group four rats) were studied at 30 days of age. One hour following intraperitoneal (IP) injection of lipopolysaccharide 50 μg/kg, the rats were randomized to subcutaneous (SC), per os (PO), or intraperitoneal (IP) injection of NAC 300 mg/kg, or saline. The control group received saline injection (IP). Three hours following the N-acetyl-cysteine injection the rats were sacrificed, then serum tumor necrosis factor-α (TNF-α) and IL-6 levels were determined by ELISA. RESULTS Lipopolysaccharide significantly increased the neonatal serum IL-6 and TNF-α (2051.0±349 and 147.0±25.8 pg/mL, respectively; P<0.01) levels compared to 10 pg/mL in the controls. N-acetyl-cysteine administered one hour following lipopolysaccharide injection significantly attenuated the inflammatory response. Intraperitoneal administration of NAC decreased IL-6 and TNF-α concentration to 294.6 and 17.1 pg/mL, respectively, and was more effective than SC or PO administration. CONCLUSIONS N-acetyl-cysteine attenuated the inflammatory response in the neonatal rats, and IP was the most effective administration route.
Collapse
Affiliation(s)
- Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Zeev Weiner
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Nibal Awad
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
| | - Ron Beloosesky
- Department of Obstetrics and Gynecology, Rambam Health Care Campus, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
35
|
Zhang M, Han X, Bao J, Yang J, Shi SQ, Garfield RE, Liu H. Choline Supplementation During Pregnancy Protects Against Gestational Lipopolysaccharide-Induced Inflammatory Responses. Reprod Sci 2017; 25:74-85. [PMID: 28436303 DOI: 10.1177/1933719117702247] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To estimate the effects and mechanisms of choline, an essential nutrient and a selective α7 nicotinic acetylcholine receptor (α7nAChR) agonist, on the prevention of symptoms and the effects on the cholinergic anti-inflammatory pathways (CAP) in a lipopolysaccharide (LPS)-induced inflammatory response in a rat model. METHODS Inflammation was induced by LPS treatment (1.0 μg LPS/kg body weight) on gestational day (GD) 14. Nonpregnant and pregnant Sprague Dawley rats were placed on a normal choline diet (1.1 g/kg) or supplemented choline diet (5.0 g/kg) from GDs 1 to 20. Systolic blood pressure (SBP), urinary albumin, and pregnancy outcomes were recorded. On GD 20, serum and placentas were assayed for cytokines. Western blots were used to determine the expression of placenta α7nAChR and components of the α7nAChR-CAP, including nuclear factor-κB (NF-κB) and protein kinase B (AKT). Immunohistochemistry was used to localize placental sites for the p65 subunit of NF-κB. RESULTS Lipopolysaccharide significantly increased SBP and urinary albumin and decreased pregnancy outcomes, and these effects were partially reversed by higher choline treatment. Choline supplementation also significantly attenuated the LPS-induced increase in serum and placental inflammatory cytokines, decreased the expression of placental α7nAChR, lowered the activation of NF-κB signaling in placenta mononuclear cells, and inhibited placental AKT phosphorylation. CONCLUSION This study confirms that LPS induces inflammatory conditions in pregnant rats and shows that choline supplementation protects against the inflammatory symptoms through its action on α7nAChR and CAP. These observations have important implications for the prevention and treatment of inflammatory responses associated with pregnancy.
Collapse
Affiliation(s)
- Min Zhang
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinjia Han
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Juejie Bao
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jinying Yang
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shao-Qing Shi
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Robert E Garfield
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- 1 Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
36
|
Kadam L, Gomez-Lopez N, Mial TN, Kohan-Ghadr HR, Drewlo S. Rosiglitazone Regulates TLR4 and Rescues HO-1 and NRF2 Expression in Myometrial and Decidual Macrophages in Inflammation-Induced Preterm Birth. Reprod Sci 2017; 24:1590-1599. [PMID: 28322133 DOI: 10.1177/1933719117697128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Elevated inflammation accounts for approximately 30% of preterm birth (PTB) cases. We previously reported that targeting the peroxisome proliferator-activated receptor gamma (PPARγ) pathway reduced the incidence of PTB in the mouse model of endotoxin-induced PTB. The PPARγ has proven anti-inflammatory functions and its activation via rosiglitazone significantly downregulated the systemic inflammatory response and reduced PTB and stillbirth rate by 30% and 41%, respectively, in our model. Oxidative stress is inseparable from inflammation, and rosiglitazone has a reported antioxidative activity. In the current study, we therefore aimed to evaluate whether rosiglitazone treatment had effects outside of inflammatory pathway, specifically on the antioxidation pathway in our model. METHODS Pregnant C57BL/6J mice (E16.5) were treated with phosphate-buffered saline (PBS), rosiglitazone (Rosi), lipopolysaccharide (LPS; 10µg in 200µL 1XPBS), or LPS + Rosi (6 hours after the LPS injection). The myometrial and decidual tissues were collected and processed for macrophage isolation using magnetic cell sorting and F4/80+ antibody. Expression levels of antioxidative factors- Nrf2 and Ho-1-along with the LPS receptor Tlr4 were quantified by quantitative polymerase chain reaction. The protein levels were assessed by immunofluorescence staining. RESULTS Both the decidual and myometrial macrophages from the LPS-treated animals showed significantly lowered expression of Ho-1 and Nrf2 and higher expression of Tlr4 when compared to the PBS control group. The macrophages from the animals in the LPS + Rosi group had significantly elevated expression of Ho-1 and Nrf2 and downregulated expression of Tlr4 when compared to the LPS group. CONCLUSION Rosiglitazone administration prevents PTB by downregulating inflammation and upregulating antioxidative response.
Collapse
Affiliation(s)
- Leena Kadam
- 1 Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Services, Detroit, MI, USA.,4 Department of Immunology and Microbiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Tara N Mial
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Services, Detroit, MI, USA
| | - Hamid-Reza Kohan-Ghadr
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Sascha Drewlo
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
37
|
Zhou Y, Chen YH, Fu L, Yu Z, Xia MZ, Hu XG, Wang H, Xu DX. Vitamin D3 pretreatment protects against lipopolysaccharide-induced early embryo loss through its anti-inflammatory effects. Am J Reprod Immunol 2017; 77. [PMID: 28045211 DOI: 10.1111/aji.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/19/2016] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Increasing evidence demonstrates that inflammatory cytokines are involved in LPS-induced adverse pregnant outcomes including early embryo loss. Vitamin D3 (VitD3) has anti-inflammatory activity. We aimed to investigate the effects of vitamin D3 (VitD3) on LPS-induced early embryo loss in mice. METHOD OF STUDY All pregnant mice except controls were intraperitoneally (ip) injected with LPS on GD7. In VitD3 alone and LPS+VitD3 groups, pregnant mice were pretreated with VitD3 by gavage daily from GD5 to GD7. RESULTS LPS caused 62.5% pregnant mice with early embryo loss. Interestingly, the rate of abortion dropped to 14.3% when pregnant mice were pretreated with VitD3. Additional experiment showed that VitD3 significantly attenuated LPS-evoked elevation on TNF-α, IFN-γ, MIP-2, and nitrate plus nitrite in maternal serum. In addition, VitD3 alleviated LPS-induced COX-2 expression in the decidua and attenuated the elevation of PGF2α in maternal serum. Although VitD3 had no effect on IL-10 in maternal serum, it induced further elevation of serum IL-10 level in LPS-treated mice. Further analysis showed that VitD3 activated VDR signaling, simultaneously inhibited LPS-induced nuclear translocation of NF-κB p65 subunits in the decidua. CONCLUSIONS VitD3 protects mice from LPS-induced early embryo loss at least partially through its anti-inflammatory effects.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Yuan-Hua Chen
- Department of Histology and Embryology, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Zhen Yu
- Department of Toxicology, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Mi-Zhen Xia
- School of Biological Science, Anhui Medical University, Hefei, China
| | - Xiao-Guang Hu
- Department of Toxicology, Anhui Medical University, Hefei, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, China.,Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| |
Collapse
|
38
|
Miller BJ, Goldsmith DR. Towards an Immunophenotype of Schizophrenia: Progress, Potential Mechanisms, and Future Directions. Neuropsychopharmacology 2017; 42:299-317. [PMID: 27654215 PMCID: PMC5143505 DOI: 10.1038/npp.2016.211] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 09/19/2016] [Accepted: 09/19/2016] [Indexed: 12/15/2022]
Abstract
The evidence to date, coupled with advances in immunology and genetics has afforded the field an unparalleled opportunity to investigate the hypothesis that a subset of patients with schizophrenia may manifest an immunophenotype, toward new potential diagnostics and therapeutics to reduce risk, alleviate symptoms, and improve quality of life in both at-risk populations and patients with established schizophrenia. In this paper, we will first summarize the findings on immune dysfunction in schizophrenia, including (1) genetic, prenatal, and premorbid immune risk factors and (2) immune markers across the clinical course of the disorder, including cytokines; C-reactive protein; immune cells; antibodies, autoantibodies and comorbid autoimmune disorders; complement; oxidative stress; imaging of neuroinflammation; infections; and clinical trials of anti-inflammatory agents and immunotherapy. We will then discuss a potential mechanistic framework toward increased understanding of a potential schizophrenia immunophenotype. We will then critically appraise the existing literature, and discuss suggestions for the future research agenda in this area that are needed to rigorously evaluate this hypothesis.
Collapse
Affiliation(s)
- Brian J Miller
- Department of Psychiatry and Health Behavior, Augusta University, Augusta, GA, USA
| | - David R Goldsmith
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| |
Collapse
|
39
|
Chen YH, Hu XG, Zhou Y, Yu Z, Fu L, Zhang GB, Bo QL, Wang H, Zhang C, Xu DX. Obeticholic Acid Protects against Lipopolysaccharide-Induced Fetal Death and Intrauterine Growth Restriction through Its Anti-Inflammatory Activity. THE JOURNAL OF IMMUNOLOGY 2016; 197:4762-4770. [PMID: 27821667 DOI: 10.4049/jimmunol.1601331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Farnesoid X receptor (FXR) is expressed in human and rodent placentas. Nevertheless, its function remains obscure. This study investigated the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, on LPS-induced fetal death and intrauterine growth restriction. All pregnant mice except controls were i.p. injected with LPS (100 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were orally administered with OCA (5 mg/kg) daily from GD13 to GD17. As expected, placental FXR signaling was activated by OCA. OCA pretreatment protected against LPS-induced fetal death. In addition, OCA pretreatment alleviated LPS-induced reduction of fetal weight and crown-rump length. Additional experiments showed that OCA inhibited LPS-evoked TNF-α in maternal serum and amniotic fluid. Moreover, OCA significantly attenuated LPS-induced upregulation of placental proinflammatory genes including Tnf-α, Il-1β, IL-6, Il-12, Mip-2, Kc, and Mcp-1 By contrast, OCA elevated anti-inflammatory cytokine IL-10 in maternal serum, amniotic fluid, and placenta. Further analysis showed that OCA blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth zone. These results provide a mechanistic explanation for placental FXR-mediated anti-inflammatory activity. Overall, this study provides evidence for roles of FXR as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and.,Department of Histology and Embryology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Guang Hu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Yan Zhou
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Zhen Yu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Lin Fu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Qing-Li Bo
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; .,Laboratory of Environmental Toxicology, Hefei 230032, China; and
| |
Collapse
|
40
|
Taguchi A, Yamashita A, Kawana K, Nagamatsu T, Furuya H, Inoue E, Osuga Y, Fujii T. Recent Progress in Therapeutics for Inflammation-Associated Preterm Birth. Reprod Sci 2016; 24:7-18. [DOI: 10.1177/1933719115618282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- These authors contributed equally to this work
| | - Aki Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- These authors contributed equally to this work
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitomi Furuya
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eri Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Chao MW, Chen CP, Yang YH, Chuang YC, Chu TY, Tseng CY. N-acetylcysteine attenuates lipopolysaccharide-induced impairment in lamination of Ctip2-and Tbr1- expressing cortical neurons in the developing rat fetal brain. Sci Rep 2016; 6:32373. [PMID: 27577752 PMCID: PMC5006028 DOI: 10.1038/srep32373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/03/2016] [Indexed: 02/02/2023] Open
Abstract
Oxidative stress and inflammatory insults are the major instigating events of bacterial intrauterine infection that lead to fetal brain injury. The purpose of this study is to investigate the remedial effects of N-acetyl-cysteine (NAC) for inflammation-caused deficits in brain development. We found that lipopolysaccharide (LPS) induced reactive oxygen species (ROS) production by RAW264.7 cells. Macrophage-conditioned medium caused noticeable cortical cell damage, specifically in cortical neurons. LPS at 25 μg/kg caused more than 75% fetal loss in rats. An increase in fetal cortical thickness was noted in the LPS-treated group. In the enlarged fetal cortex, laminar positioning of the early born cortical cells expressing Tbr1 and Ctip2 was disrupted, with a scattered distribution. The effect was similar, but minor, in later born Satb2-expressing cortical cells. NAC protected against LPS-induced neuron toxicity in vitro and counteracted pregnancy loss and alterations in thickness and lamination of the neocortex in vivo. Fetal loss and abnormal fetal brain development were due to LPS-induced ROS production. NAC is an effective protective agent against LPS-induced damage. This finding highlights the key therapeutic impact of NAC in LPS-caused abnormal neuronal laminar distribution during brain development.
Collapse
Affiliation(s)
- Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Chie-Pein Chen
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Hsiu Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| | - Tzu-Yun Chu
- Division of High Risk Pregnancy, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
- International Master Program of Biomedical Material and Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
- Center for Nano-Technology, Chung Yuan Christian University, Zhongli district, Taoyuan City, Taiwan
| |
Collapse
|
42
|
Menon R, Papaconstantinou J. p38 Mitogen activated protein kinase (MAPK): a new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin Ther Targets 2016; 20:1397-1412. [PMID: 27459026 DOI: 10.1080/14728222.2016.1216980] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Spontaneous preterm birth (PTB) and preterm premature rupture of the membranes (pPROM) remain as a major clinical and therapeutic problem for intervention and management. Current strategies, based on our knowledge of pathways of preterm labor, have only been effective, in part, due to major gaps in our existing knowledge of risks and risk specific pathways. Areas covered: Recent literature has identified physiologic aging of fetal tissues as a potential mechanistic feature of normal parturition. This process is affected by telomere dependent and p38 mitogen activated protein kinase (MAPK) induced senescence activation. Pregnancy associated risk factors can cause pathologic activation of this pathway that can cause oxidative stress induced p38 MAPK activation leading to senescence and premature aging of fetal tissues. Premature aging is associated with sterile inflammation capable of triggering preterm labor or preterm premature rupture of membranes. Preterm activation of p38MAPK can be considered as a key contributor to adverse pregnancies. Expert opinion: This review considers p38MAPK activation as a potential target for therapeutic interventions to prevent adverse pregnancy outcomes mediated by stress factors. In this review, we propose multiple strategies to prevent p38MAPK activation.
Collapse
Affiliation(s)
- Ramkumar Menon
- a Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| | - John Papaconstantinou
- b Department of Biochemistry and Molecular Biology , The University of Texas Medical Branch at Galveston , Galveston , TX , USA
| |
Collapse
|
43
|
Bozoklu Akkar O, Sancakdar E, Karakus S, Yildiz C, Akkar I, Arslan M, Sahin IO, Imir Yenicesu AG, Cetin A. Evaluation of Maternal Serum 25-Hydroxyvitamin D, Paraoxonase 1 Levels, and Neutrophil-to-Lymphocyte Ratio in Spontaneous Preterm Birth. Med Sci Monit 2016; 22:1238-43. [PMID: 27072780 PMCID: PMC4832961 DOI: 10.12659/msm.897983] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The aim of this study was to evaluate the association of maternal serum 25-hydroxyvitamin D, paraoxonase 1, and neutrophil-to-lymphocyte ratio in women having early spontaneous preterm birth without clinical chorioamnionitis. Material/Methods This study was prospectively administered in women referred to our obstetrics service with preterm labor that resulted in preterm birth (n=35) and term labor that ended in term birth (n=44). The maternal serum levels of 25-hydroxyvitamin D and paraoxonase 1 were measured and neutrophil-to-lymphocyte ratio was calculated. Results The 25-hydroxyvitamin D and paraoxonase 1 levels of the preterm group were significantly lower than those of the term group (p<0.05). The neutrophil-to-lymphocyte ratio value of the preterm group was significantly higher than that of the term group (p<0.05). There was a significant but small positive correlation between the serum levels of 25-hydroxyvitamin D and paraoxonase 1 in the preterm group (r=0.35; p=0.021). Conclusions Decreased maternal serum 25-hydroxyvitamin D and paraoxonase 1 levels and increased neutrophil-to-lymphocyte ratio may have a role in the etiology of spontaneous preterm birth.
Collapse
Affiliation(s)
- Ozlem Bozoklu Akkar
- Department of Obstetrics and Gynecology, Cumhuriyet University, Sivas, Turkey
| | - Enver Sancakdar
- Department of Medical Biochemistry, Cumhuriyet University, Sivas, Turkey
| | - Savas Karakus
- Department of Obstetrics and Gynecology, Cumhuriyet University, Sivas, Turkey
| | - Caglar Yildiz
- Department of Obstetrics and Gynecology, Cumhuriyet University, Sivas, Turkey
| | - Ismail Akkar
- Department of Pediatrics, Sivas State Hospital, Sivas, Turkey
| | - Murat Arslan
- Department of Obstetrics and Gynecology, Sivas State Hospital, Sivas, Turkey
| | | | | | - Ali Cetin
- Department of Obstetrics and Gynecology, Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
44
|
Zavan B, do Amarante-Paffaro AM, Paffaro VA. alpha-actin down regulation and perforin loss in uterine natural killer cells from LPS-treated pregnant mice. Physiol Res 2016; 64:427-32. [PMID: 26066976 DOI: 10.33549/physiolres.932923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the most abundant immunologic cell types in early decidua is the uterine natural killer (UNK) cell that despite the presence of cytoplasmic granules rich in perforin and granzymes does not degranulate in normal pregnancy. UNK cells are important producers of angiogenic factors that permit normal dilation of uterine arteries to provide increased blood flow for the growing feto-placental unit. Gram-negative bacteria lipopolysaccharide (LPS) administration can trigger an imbalance of pro-inflammatory and anti-inflammatory cytokines impairing the normal immune cells activity as well as uterine homeostasis. The present study aimed to evaluate by immunohistochemistry the reactivity of perforin and alpha-actin on UNK cell from LPS-treated pregnant mice. For the first time, we demonstrate that LPS injection in pregnant mice causes alpha-actin down regulation, concomitantly with perforin loss in UNK cells. This suggests that LPS alters UNK cell migration and activates cytotoxic granule release.
Collapse
Affiliation(s)
- B Zavan
- Biomedical Science Institute, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil.
| | | | | |
Collapse
|
45
|
Bo QL, Chen YH, Yu Z, Fu L, Zhou Y, Zhang GB, Wang H, Zhang ZH, Xu DX. Rosiglitazone pretreatment protects against lipopolysaccharide-induced fetal demise through inhibiting placental inflammation. Mol Cell Endocrinol 2016; 423:51-9. [PMID: 26773728 DOI: 10.1016/j.mce.2016.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/25/2015] [Accepted: 01/06/2016] [Indexed: 01/19/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ is highly expressed in human and rodent placentas. Nevertheless, its function remains obscure. The present study investigated the effects of rosiglitazone, a PPAR-γ agonist, on LPS-induced fetal death. All pregnant mice except controls were intraperitoneally injected with LPS (150 μg/kg) daily from gestational day (GD)15 to GD17. As expected, maternal LPS injection caused placental inflammation and resulted in 63.6% fetal death in dams that completed the pregnancy. Interestingly, LPS-induced fetal mortality was reduced to 16.0% when pregnant mice were pretreated with RSG. Additional experiment showed that rosiglitazone pretreatment inhibited LPS-induced expressions of tumor necrosis factor (Tnf)-α, interleukin (Il)-1β, Il-6, macrophage inflammatory protein (Mip)-2 and keratinocyte-derived chemokine (Kc) in mouse placenta. Although rosiglitazone had little effect on LPS-evoked elevation of IL-10 in amniotic fluid, it alleviated LPS-evoked release of TNF-α and MIP-2 in amniotic fluid. Further analysis showed that pretreatment with rosiglitazone, which activated placental PPAR-γ signaling, simultaneously suppressed LPS-evoked nuclear factor kappa B (NF-κB) activation and blocked nuclear translocation of NF-κB p65 and p50 subunits in trophoblast giant cells of the labyrinth layer. These results provide a mechanistic explanation for PPAR-γ-mediated anti-inflammatory activity in the placentas. Overall, the present study provides additional evidence for roles of PPAR-γ as an important regulator of placental inflammation.
Collapse
Affiliation(s)
- Qing-Li Bo
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China; Department of Histology and Embryology, Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Lin Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yan Zhou
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Gui-Bin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China
| | - Zhi-Hui Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, 230032, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, 230032, China.
| |
Collapse
|
46
|
Xiao D, Wang L, Huang X, Li Y, Dasgupta C, Zhang L. Protective Effect of Antenatal Antioxidant on Nicotine-Induced Heart Ischemia-Sensitive Phenotype in Rat Offspring. PLoS One 2016; 11:e0150557. [PMID: 26918336 PMCID: PMC4769226 DOI: 10.1371/journal.pone.0150557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/15/2016] [Indexed: 01/19/2023] Open
Abstract
Fetal nicotine exposure increased risk of developing cardiovascular disease later in life. The present study tested the hypothesis that perinatal nicotine-induced programming of heart ischemia-sensitive phenotype is mediated by enhanced reactive oxygen species (ROS) in offspring. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps from day 4 of gestation to day 10 after birth, in the absence or presence of a ROS inhibitor, N-acetyl-cysteine (NAC) in drinking water. Experiments were conducted in 8 month old age male offspring. Isolated hearts were perfused in a Langendorff preparation. Perinatal nicotine treatment significantly increased ischemia and reperfusion-induced left ventricular injury, and decreased post-ischemic recovery of left ventricular function and coronary flow rate. In addition, nicotine enhanced cardiac ROS production and significantly attenuated protein kinase Cε (PKCε) protein abundance in the heart. Although nicotine had no effect on total cardiac glycogen synthase kinase-3β (GSK3β) protein expression, it significantly increased the phosphorylation of GSK3β at serine 9 residue in the heart. NAC inhibited nicotine-mediated increase in ROS production, recovered PKCε gene expression and abrogated increased phosphorylation of GSK3β. Of importance, NAC blocked perinatal nicotine-induced increase in ischemia and reperfusion injury in the heart. These findings provide novel evidence that increased oxidative stress plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the heart, and suggest potential therapeutic targets of anti-oxidative stress in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- DaLiao Xiao
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lei Wang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Traditional Chinese Medicine, Shanghai Putuo District People’s Hospital, Shanghai, PR China
| | - Xiaohui Huang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Yong Li
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Chiranjib Dasgupta
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| | - Lubo Zhang
- Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California, United States of America
| |
Collapse
|
47
|
Jenkins DD, Wiest DB, Mulvihill DM, Hlavacek AM, Majstoravich SJ, Brown TR, Taylor JJ, Buckley JR, Turner RP, Rollins LG, Bentzley JP, Hope KE, Barbour AB, Lowe DW, Martin RH, Chang EY. Fetal and Neonatal Effects of N-Acetylcysteine When Used for Neuroprotection in Maternal Chorioamnionitis. J Pediatr 2016; 168:67-76.e6. [PMID: 26545726 PMCID: PMC4698030 DOI: 10.1016/j.jpeds.2015.09.076] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/25/2015] [Accepted: 09/29/2015] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To evaluate the clinical safety of antenatal and postnatal N-acetylcysteine (NAC) as a neuroprotective agent in maternal chorioamnionitis in a randomized, controlled, double-blinded trial. STUDY DESIGN Twenty-two mothers >24 weeks gestation presenting within 4 hours of diagnosis of clinical chorioamnionitis were randomized with their 24 infants to NAC or saline treatment. Antenatal NAC (100 mg/kg/dose) or saline was given intravenously every 6 hours until delivery. Postnatally, NAC (12.5-25 mg/kg/dose, n = 12) or saline (n = 12) was given every 12 hours for 5 doses. Doppler studies of fetal umbilical and fetal and infant cerebral blood flow, cranial ultrasounds, echocardiograms, cerebral oxygenation, electroencephalograms, and serum cytokines were evaluated before and after treatment, and 12, 24, and 48 hours after birth. Magnetic resonance spectroscopy and diffusion imaging were performed at term age equivalent. Development was followed for cerebral palsy or autism to 4 years of age. RESULTS Cardiovascular measures, cerebral blood flow velocity and vascular resistance, and cerebral oxygenation did not differ between treatment groups. Cerebrovascular coupling was disrupted in infants with chorioamnionitis treated with saline but preserved in infants treated with NAC, suggesting improved vascular regulation in the presence of neuroinflammation. Infants treated with NAC had higher serum anti-inflammatory interleukin-1 receptor antagonist and lower proinflammatory vascular endothelial growth factor over time vs controls. No adverse events related to NAC administration were noted. CONCLUSIONS In this cohort of newborns exposed to chorioamnionitis, antenatal and postnatal NAC was safe, preserved cerebrovascular regulation, and increased an anti-inflammatory neuroprotective protein. TRIAL REGISTRATION ClinicalTrials.gov: NCT00724594.
Collapse
Affiliation(s)
- Dorothea D. Jenkins
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Donald B. Wiest
- Department of Clinical Pharmacy and Outcome Science, Medical University of South Carolina, Charleston, SC
| | - Denise M. Mulvihill
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Anthony M. Hlavacek
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | | | - Truman R. Brown
- Department of Neuroscience’s Center for Advanced Imaging Research, Medical University of South Carolina, Charleston, SC
| | - Joseph J. Taylor
- Department of Neuroscience’s Center for Advanced Imaging Research, Medical University of South Carolina, Charleston, SC,Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC
| | - Jason R. Buckley
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Robert P. Turner
- Department of Clinical Pediatrics and Neurology, University of South Carolina School of Medicine and Palmetto Health Richland Children’s Hospital, Columbia, SC
| | | | - Jessica P. Bentzley
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Kathryn E. Hope
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Andrew B. Barbour
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Danielle W. Lowe
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC
| | - Renee H. Martin
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
| | - Eugene Y. Chang
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
48
|
Chen YH, Yu Z, Fu L, Wang H, Chen X, Zhang C, Lv ZM, Xu DX. Vitamin D3 inhibits lipopolysaccharide-induced placental inflammation through reinforcing interaction between vitamin D receptor and nuclear factor kappa B p65 subunit. Sci Rep 2015; 5:10871. [PMID: 26065916 PMCID: PMC4464284 DOI: 10.1038/srep10871] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/01/2015] [Indexed: 01/14/2023] Open
Abstract
It is increasingly recognized that vitamin D3 (VitD3) has an anti-inflammatory activity. The present study investigated the effects of maternal VitD3 supplementation during pregnancy on LPS-induced placental inflammation and fetal intrauterine growth restriction (IUGR). All pregnant mice except controls were intraperitoneally injected with LPS (100 μg/kg) daily from gestational day (GD)15–17. In VitD3 + LPS group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, maternal LPS exposure caused placental inflammation and fetal IUGR. Interestingly, pretreatment with VitD3 repressed placental inflammation and protected against LPS-induced fetal IUGR. Further analysis showed that pretreatment with VitD3, which activated placental vitamin D receptor (VDR) signaling, specifically suppressed LPS-induced activation of nuclear factor kappa B (NF-κB) and significantly blocked nuclear translocation of NF-κB p65 subunit in trophoblast gaint cells of the labyrinth layer. Conversely, LPS, which activated placental NF-κB signaling, suppressed placental VDR activation and its target gene expression. Moreover, VitD3 reinforced physical interaction between placental VDR and NF-κB p65 subunit. The further study demonstrates that VitD3 inhibits placental NF-κB signaling in VDR-dependent manner. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity. Overall, the present study provides evidence for roles of VDR as a key regulator of placental inflammation.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China [3] School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - Zhen Yu
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| | - Lin Fu
- School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| | - Xue Chen
- School of Public Health, Anhui Medical University, Hefei, China
| | - Cheng Zhang
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| | - Zheng-Mei Lv
- School of Basic Medical Science, Anhui Medical University, Hefei, 230032, China
| | - De-Xiang Xu
- 1] School of Public Health, Anhui Medical University, Hefei, China [2] Anhui Provincial Key Laboratory of Population Health &Aristogenics, Anhui Medical University, Hefei, China
| |
Collapse
|
49
|
Protective effect of (±)α-tocopherol on brominated diphenyl ether-47-stimulated prostaglandin pathways in human extravillous trophoblasts in vitro. Toxicol In Vitro 2015; 29:1309-18. [PMID: 26026498 DOI: 10.1016/j.tiv.2015.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/09/2015] [Accepted: 05/19/2015] [Indexed: 12/21/2022]
Abstract
Brominated diphenyl ether (BDE)-47 is a prevalent flame retardant chemical found in human tissues and is linked to adverse pregnancy outcomes in humans. Because dysregulation of the prostaglandin pathway is implicated in adverse pregnancy outcomes, the present study investigates BDE-47 induction of prostaglandin synthesis in a human extravillous trophoblast cell line, HTR-8/SVneo, examining the hypothesis that BDE-47 increases generation of reactive oxygen species (ROS) to stimulate the prostaglandin response. Treatment with 20 μM BDE-47 significantly increased mRNA expression of prostaglandin-endoperoxide synthase 2 (PTGS2) at 4, 12 and 24 h, and 24-h treatment significantly increased cyclooxygenase (COX)-2 cellular protein expression and prostaglandin E2 (PGE2) concentration in culture medium. The BDE-47-stimulated PGE2 release was inhibited by the COX inhibitors indomethacin and NS398, implicating COX activity. Exposure to 20 μM BDE-47 significantly increased ROS generation as measured by carboxydichlorofluorescein fluorescence, and this response was blocked by cotreatment with the peroxyl radical scavenger (±)-α-tocopherol. (±)-α-Tocopherol cotreatment suppressed BDE-47-stimulated increases of PGE2 release without significant effects on COX-2 mRNA and protein expression, implicating a role for ROS in post-translational regulation of COX activity. Because prostaglandins regulate trophoblast functions necessary for placentation and pregnancy, further investigation is warranted of BDE-47 impacts on trophoblast responses.
Collapse
|
50
|
Chen YH, Yu Z, Fu L, Xia MZ, Zhao M, Wang H, Zhang C, Hu YF, Tao FB, Xu DX. Supplementation with vitamin D3 during pregnancy protects against lipopolysaccharide-induced neural tube defects through improving placental folate transportation. Toxicol Sci 2015; 145:90-7. [PMID: 25673501 PMCID: PMC4833037 DOI: 10.1093/toxsci/kfv036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several reports demonstrated that maternal lipopolysaccharide (LPS) exposure at middle gestational stage caused neural tube defects (NTDs). This study investigated the effects of supplementation with vitamin D3 (VitD3) during pregnancy on LPS-induced NTDs. Pregnant mice except controls were ip injected with LPS (25 μg/kg) daily from gestational day (GD)8 to GD12. In LPS+VitD3 group, pregnant mice were orally administered with VitD3 (25 μg/kg) before LPS injection. As expected, a 5-day LPS injection resulted in 62.5% (10/16) of dams and 20.3% of fetuses with NTDs. Additional experiment showed that a 5-day LPS injection downregulated placental proton-coupled folate transporter (pcft) and reduced folate carrier 1 (rfc1), 2 major folate transporters in placentas. Consistent with downregulation of placental folate transporters, folate transport from maternal circulation into embryos was disturbed in LPS-treated mice. Interestingly, VitD3 not only inhibited placental inflammation but also attenuated LPS-induced downregulation of placental folate transporters. Correspondingly, VitD3 markedly improved folate transport from maternal circulation into the embryos. Importantly, supplementation with VitD3 during pregnancy protected mice from LPS-induced NTDs. Taken together, these results suggest that supplementation with VitD3 during pregnancy prevents LPS-induced NTDs through inhibiting placental inflammation and improving folate transport from maternal circulation into the embryos.
Collapse
Affiliation(s)
- Yuan-Hua Chen
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Zhen Yu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Lin Fu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Mi-Zhen Xia
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Mei Zhao
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Yong-Fang Hu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Fang-Biao Tao
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China *Department of Toxicology, Anhui Provincial Key Laboratory of Population Health & Aristogenics, School of Basic Medical Science and School of Life Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|