1
|
VanZalen JJ, Nakashima T, Phillips A, Hill JE, Westover AJ, Lou L, Liao J, Mergos J, Fogo G, Sanderson TH, Stacey WC, Tiba MH, Humes DH, Bartlett RH, Rojas-Peña A, Neumar RW. Leukocyte filtration and leukocyte modulation therapy during extracorporeal cardiopulmonary resuscitation in a porcine model of prolonged cardiac arrest. Sci Rep 2024; 14:13081. [PMID: 38844477 PMCID: PMC11156900 DOI: 10.1038/s41598-024-63522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Extracorporeal cardiopulmonary resuscitation (ECPR) is emerging as a feasible and effective rescue strategy for prolonged cardiac arrest (CA). However, prolonged total body ischemia and reperfusion can cause microvascular occlusion that prevents organ reperfusion and recovery of function. One hypothesized mechanism of microvascular "no-reflow" is leukocyte adhesion and formation of neutrophil extracellular traps. In this study we tested the hypothesis that a leukocyte filter (LF) or leukocyte modulation device (L-MOD) could reduce NETosis and improve recovery of heart and brain function in a swine model of prolonged cardiac arrest treated with ECPR. Thirty-six swine (45.5 ± 2.5 kg, evenly distributed sex) underwent 8 min of untreated ventricular fibrillation CA followed by 30 min of mechanical CPR with subsequent 8 h of ECPR. Two females were later excluded from analysis due to CPR complications. Swine were randomized to standard care (Control group), LF, or L-MOD at the onset of CPR. NET formation was quantified by serum dsDNA and citrullinated histone as well as immunofluorescence staining of the heart and brain for citrullinated histone in the microvasculature. Primary outcomes included recovery of cardiac function based on cardiac resuscitability score (CRS) and recovery of neurologic function based on the somatosensory evoked potential (SSEP) N20 cortical response. In this model of prolonged CA treated with ECPR we observed significant increases in serum biomarkers of NETosis and immunohistochemical evidence of microvascular NET formation in the heart and brain that were not reduced by LF or L-MOD therapy. Correspondingly, there were no significant differences in CRS and SSEP recovery between Control, LF, and L-MOD groups 8 h after ECPR onset (CRS = 3.1 ± 2.7, 3.7 ± 2.6, and 2.6 ± 2.6 respectively; p = 0.606; and SSEP = 27.9 ± 13.0%, 36.7 ± 10.5%, and 31.2 ± 9.8% respectively, p = 0.194). In this model of prolonged CA treated with ECPR, the use of LF or L-MOD therapy during ECPR did not reduce microvascular NETosis or improve recovery of myocardial or brain function. The causal relationship between microvascular NETosis, no-reflow, and recovery of organ function after prolonged cardiac arrest treated with ECPR requires further investigation.
Collapse
Affiliation(s)
- Jensyn J VanZalen
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Takahiro Nakashima
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Annie Phillips
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Joseph E Hill
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Angela J Westover
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liandi Lou
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jinhui Liao
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Emergency Medicine, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI, 48109-5303, USA
| | - Joshua Mergos
- Movement Science, University of Michigan School of Kinesiology, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Garrett Fogo
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas H Sanderson
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Emergency Medicine, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI, 48109-5303, USA
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - William C Stacey
- Movement Science, University of Michigan School of Kinesiology, Ann Arbor, MI, 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Mohamad Hakam Tiba
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Emergency Medicine, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI, 48109-5303, USA
| | - David H Humes
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Robert H Bartlett
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Alvaro Rojas-Peña
- Department of Surgery and ECLS Laboratory, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Surgery Section of Transplantation, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Robert W Neumar
- The Max Harry Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Emergency Medicine, University of Michigan Medical School, 1500 E Medical Center Drive, Ann Arbor, MI, 48109-5303, USA.
| |
Collapse
|
2
|
Datzmann T, Kapapa T, Scheuerle A, McCook O, Merz T, Unmuth S, Hoffmann A, Mathieu R, Mayer S, Mauer UM, Röhrer S, Yilmazer-Hanke D, Möller P, Nussbaum BL, Calzia E, Gröger M, Hartmann C, Radermacher P, Wepler M. In-depth characterization of a long-term, resuscitated model of acute subdural hematoma-induced brain injury. J Neurosurg 2021; 134:223-234. [PMID: 31860806 DOI: 10.3171/2019.9.jns191789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/13/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Acute subdural hematoma (ASDH) is a leading entity in brain injury. Rodent models mostly lack standard intensive care, while large animal models frequently are only short term. Therefore, the authors developed a long-term, resuscitated porcine model of ASDH-induced brain injury and report their findings. METHODS Anesthetized, mechanically ventilated, and instrumented pigs with human-like coagulation underwent subdural injection of 20 mL of autologous blood and subsequent observation for 54 hours. Continuous bilateral multimodal brain monitoring (intracranial pressure [ICP], cerebral perfusion pressure [CPP], partial pressure of oxygen in brain tissue [PbtO2], and brain temperature) was combined with intermittent neurological assessment (veterinary modified Glasgow Coma Scale [MGCS]), microdialysis, and measurement of plasma protein S100β, GFAP, neuron-specific enolase [NSE], nitrite+nitrate, and isoprostanes. Fluid resuscitation and continuous intravenous norepinephrine were targeted to maintain CPP at pre-ASDH levels. Immediately postmortem, the brains were taken for macroscopic and histological evaluation, immunohistochemical analysis for nitrotyrosine formation, albumin extravasation, NADPH oxidase 2 (NOX2) and GFAP expression, and quantification of tissue mitochondrial respiration. RESULTS Nine of 11 pigs survived the complete observation period. While ICP significantly increased after ASDH induction, CPP, PbtO2, and the MGCS score remained unaffected. Blood S100β levels significantly fell over time, whereas GFAP, NSE, nitrite+nitrate, and isoprostane concentrations were unaltered. Immunohistochemistry showed nitrotyrosine formation, albumin extravasation, NOX2 expression, fibrillary astrogliosis, and microglial activation. CONCLUSIONS The authors describe a clinically relevant, long-term, resuscitated porcine model of ASDH-induced brain injury. Despite the morphological injury, maintaining CPP and PbtO2 prevented serious neurological dysfunction. This model is suitable for studying therapeutic interventions during hemorrhage-induced acute brain injury with standard brain-targeted intensive care.
Collapse
Affiliation(s)
- Thomas Datzmann
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
- 2Klinik für Anästhesiologie
| | | | | | - Oscar McCook
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - Tamara Merz
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - Sarah Unmuth
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - Andrea Hoffmann
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - René Mathieu
- 5Klinik für Neurochirurgie, Bundeswehrkrankenhaus Ulm; and
| | - Simon Mayer
- 5Klinik für Neurochirurgie, Bundeswehrkrankenhaus Ulm; and
| | - Uwe Max Mauer
- 5Klinik für Neurochirurgie, Bundeswehrkrankenhaus Ulm; and
| | - Stefan Röhrer
- 6Abteilung für Neurochirurgie, Klinikum Aalen, Germany
| | | | - Peter Möller
- 8Institut für Pathologie, Universitätsklinikum, Ulm
| | - Benedikt Lukas Nussbaum
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
- 2Klinik für Anästhesiologie
| | - Enrico Calzia
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - Michael Gröger
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - Clair Hartmann
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
- 2Klinik für Anästhesiologie
| | - Peter Radermacher
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
| | - Martin Wepler
- 1Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung
- 2Klinik für Anästhesiologie
| |
Collapse
|
3
|
Fahradyan V, Annunziata MJ, Said S, Rao M, Shah H, Ordenana C, Papay FA, Rampazzo A, Bassiri Gharb B. Leukoreduction in ex vivo perfusion circuits: comparison of leukocyte depletion efficiency with leukocyte filters. Perfusion 2020; 35:853-860. [PMID: 32404024 DOI: 10.1177/0267659120917872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Leukodepletion of whole blood-based perfusates remains a challenge in experimental models of ex vivo perfusion. This study investigated the leukoreduction efficacy of the commonly used LeukoGuard LG Arterial and BC2 Cardioplegia filters. METHODS Eleven liters of washed porcine blood was used to evaluate the filtration efficiency of LG (n = 6) and BC2 (n = 5) filters. Filter efficacy was tested by passing 1 L of washed blood through each filter. Complete blood count was performed to detect a reduction of white blood cells, red blood cells, and hemoglobin concentration. RESULTS The BC2 Cardioplegia filter showed a significant reduction in white blood cell count (13.16 ± 4.2 × 103 cells/μL pre-filtration, 0.62 ± 0.61 cells/μL post-filtration, p = 0.005), red blood cell count (9.18 ± 0.16 × 106 cells/μL pre-filtration, 9.02 ± 0.16 × 106 cells/μL post-filtration, p = 0.012) and hemoglobin concentration (15.89 ± 0.66 g/dL pre-filtration, 15.67 ± 0.83 g/dL post-filtration, p = 0.017). Platelet reduction in the LG filter group was statistically significant (13.23 ± 13.98 × 103 cells/μL pre-filtration, 7.15 ± 3.31 × 103 cells/μL post-filtration, p = 0.029), but no difference was seen in the BC2 group. There was no significant difference in white blood cell count in the LG filter group (10.12 ± 3.0 × 103 cells/μL pre-filtration, 10.32 ± 2.44 × 103 cells/μL post-filtration, p = 0.861). CONCLUSION Our results suggest that the LG filter should not be used in ex vivo perfusion circuits for the purpose of leukodepletion. The BC2 filter can be used in EVP circuits with flow rates of less than 350 mL/min. Alternatively, perfusate may be leukodepleted before perfusion.
Collapse
Affiliation(s)
- Vahe Fahradyan
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | | - Sayf Said
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Maya Rao
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Hirsh Shah
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Carlos Ordenana
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Frank A Papay
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Antonio Rampazzo
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|
4
|
Vermeijden WJ, de Vries H, Kieboom J, Waterbolk T. Leucocyte depletion in a drowning victim during rewarming with extracorporeal circulation may limit pulmonary oedema. Perfusion 2016; 21:305-8. [PMID: 17201086 DOI: 10.1177/0267659106074772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction: We report two drowning victims with hypothermic circulatory arrest who were resuscitated with the use of extracorporeal circulation (ECC). The first patient developed severe post–bypass pulmonary oedema and inspired us to use a leucocyte–depletion filter in the second patient to attenuate leucocyte–mediated pulmonary reperfusion injury. Methods: In the first patient, a standard extracorporeal circuit was used. In the second patient, systemic leucocyte depletion was applied using leucocyte–depletion filters (Pall RS 1, Pall, Portsmouth, UK), in the venous side of the extracorporeal circuit. Circulating leucocyte counts were measured and arterial blood gas analysis and chest X–rays were performed. Results: Both patients showed a decrease of the circulating leucocyte counts during rewarming and had nearly similar leucocyte counts on arrival at the intensive care unit (ICU). The first patient developed severe pulmonary oedema, with poor arterial blood gases, whereas the second patient, who had leucocyte–depletion by filtration, did not develop severe pulmonary oedema, and had good arterial blood gases. Conclusion: Profound leucocyte–depletion by means of filtration may have contributed to limit leucocyte–mediated pulmonary reperfusion injury.
Collapse
Affiliation(s)
- Wytze J Vermeijden
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, The Netherlands.
| | | | | | | |
Collapse
|
5
|
Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JCH, Cunningham M, Weingarten D, Ciacci JD, Juhas S, Juhasova J, Motlik J, Hefferan MP, Hazel T, Johe K, Carromeu C, Muotri A, Bui J, Strnadel J, Marsala M. Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 2014; 522:2784-801. [DOI: 10.1002/cne.23575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Dasa Dolezalova
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
| | | | - Carsten R. Bjarkam
- Department of Neurosurgery; Aalborg University Hospital; Aalborg Denmark
- Department of Biomedicine; Institute of Anatomy, University of Aarhus; Aarhus Denmark
| | | | - Miles Cunningham
- MRC 312, McLean Hospital, Harvard Medical School; Belmont MA 02478 USA
| | - David Weingarten
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Joseph D. Ciacci
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | | | | | | | - Cassiano Carromeu
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Alysson Muotri
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Jack Bui
- Department of Pathology; University of California; San Diego CA USA
| | - Jan Strnadel
- Department of Pathology; University of California; San Diego CA USA
| | - Martin Marsala
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
- Institute of Neurobiology, Slovak Academy of Sciences; Kosice Slovakia
| |
Collapse
|
6
|
Apostolakis E, Shuhaiber JH. Antegrade or retrograde cerebral perfusion as an adjunct during hypothermic circulatory arrest for aortic arch surgery. Expert Rev Cardiovasc Ther 2014; 5:1147-61. [DOI: 10.1586/14779072.5.6.1147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Yannopoulos FS, Arvola O, Haapanen H, Herajärvi J, Miinalainen I, Jensen H, Kiviluoma K, Juvonen T. Leg ischaemia before circulatory arrest alters brain leucocyte count and respiratory chain redox state. Interact Cardiovasc Thorac Surg 2013; 18:272-7. [PMID: 24343749 DOI: 10.1093/icvts/ivt415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Remote ischaemic preconditioning and its neuroprotective abilities are currently under investigation and the method has shown significant effects in several small and large animal studies. In our previous studies, leucocyte filtration during cardiopulmonary bypass reduced cerebrocortical adherent leucocyte count and mitigated cerebral damage after hypothermic circulatory arrest (HCA) in piglets. This study aimed to obtain and assess direct visual data of leucocyte behaviour in cerebral vessels after hypothermic circulatory arrest following remote ischaemic preconditioning. METHODS Twelve native stock piglets were randomized into a remote ischaemic preconditioning group (n = 6) and a control group (n = 6). The intervention group underwent hind-leg ischaemia, whereas the control group received a sham-treatment before a 60-min period of hypothermic circulatory arrest. An intravital microscope was used to obtain measurements from the cerebrocortical vessel in vivo. It included three sets of filters: a violet filter to visualize microvascular perfusion and vessel diameter, a green filter for visualization of rhodamine-labelled leucocytes and an ultraviolet filter for reduced nicotinamide adenine dinucleotide (NADH) analysis. The final magnification on the microscope was 400. After the experiment, cerebral and cerebellar biopsies were collected and analysed with transmission electron microscope by a blinded analyst. RESULTS In the transmission electron microscope analysis, the entire intervention group had normal, unaffected rough endoplasmic reticulum's in their cerebellar tissue, whereas the control group had a mean score of 1.06 (standard deviation 0.41) (P = 0.026). The measured amount of adherent leucocytes was lower in the remote ischaemic preconditioning group. The difference was statistically significant at 5, 15 and 45 min after circulatory arrest. Statistically significant differences were seen also in the recovery phase at 90 and 120 min after reperfusion. Nicotinamide adenine dinucleotide autofluorescence had statistically significant differences at 10 min after cooling and at 120 and 180 min after hypothermic circulatory arrest. CONCLUSIONS Remote ischaemic preconditioning seems to provide better mitochondrial respiratory chain function as indicated by the higher NADH content. It simultaneously provides a reduction of adherent leucocytes in cerebral vessels after hypothermic circulatory arrest. Additionally, it might provide some degree of cellular organ preservation as implied by the electron microscopy results.
Collapse
|
8
|
Jensen H, Eija R, Tuomas M, Jussi M, Fredrik Y, Kirsi A, Matti P, Kai K, Hannu T, Vesa A, Tatu J. Levosimendan decreases intracranial pressure after hypothermic circulatory arrest in a porcine model. SCAND CARDIOVASC J 2011; 45:307-15. [PMID: 21623682 DOI: 10.3109/14017431.2011.583356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Hypothermic circulatory arrest (HCA) provides an optimal operating field in aortic arch surgery, but it is associated with neurological complications. Levosimendan is an inotropic agent with clinical indications for open-heart surgery. Through peripheral vasodilatation, cardiac contractility enhancement and anti-inflammatory function it has a potential to improve cerebral protection after HCA. DESIGN Eighteen piglets were randomly assigned to a levosimendan group (n = 9) and a placebo group (n = 9) and underwent a 60-minute period of hypothermic circulatory arrest at 18°C. A levosimendan or placebo infusion (0.2 μg/kg/min) was commenced at the onset of anesthesia and continued for 24 hours. Animals were followed for one week and their neurological recovery was assessed daily. Finally the animals were electively sacrificed and their brain was harvested for histopathological examination. RESULTS Levosimendan decreased intracranial pressure during the experiment. There were no differences between the groups in terms of hemodynamic or metabolic data, brain metabolism, neurological recovery or histopathology of the cerebral tissue. In the levosimendan group, cardiac enzymes were slightly more elevated. CONCLUSIONS Levosimendan decreased intracranial pressure during the experiment, but in terms of cerebral metabolism, neurological recovery and histopathology of the brain tissue levosimendan did not improve brain protection in this experimental setting.
Collapse
Affiliation(s)
- Hanna Jensen
- Clinical Research Center, Oulu University Hospital, University of Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Soo AW, Maher BM, Daly L, Wood AE, Watson WR. Preoperative neutrophil response as a predictive marker of clinical outcome following open heart surgery and the impact of leukocyte filtration☆,☆☆,☆☆☆. Interact Cardiovasc Thorac Surg 2010; 11:604-11. [DOI: 10.1510/icvts.2009.228056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Svyatets M, Tolani K, Zhang M, Tulman G, Charchaflieh J. Perioperative Management of Deep Hypothermic Circulatory Arrest. J Cardiothorac Vasc Anesth 2010; 24:644-55. [DOI: 10.1053/j.jvca.2010.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Indexed: 11/11/2022]
|
11
|
Strauss KI. Antiinflammatory and neuroprotective actions of COX2 inhibitors in the injured brain. Brain Behav Immun 2008; 22:285-98. [PMID: 17996418 PMCID: PMC2855502 DOI: 10.1016/j.bbi.2007.09.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 09/14/2007] [Accepted: 09/20/2007] [Indexed: 12/22/2022] Open
Abstract
Overexpression of COX2 appears to be both a marker and an effector of neural damage after a variety of acquired brain injuries, and in natural or pathological aging of the brain. COX2 inhibitors may be neuroprotective in the brain by reducing prostanoid and free radical synthesis, or by directing arachidonic acid down alternate metabolic pathways. The arachidonic acid shunting hypothesis proposes that COX2 inhibitors' neuroprotective effects may be mediated by increased formation of potentially beneficial eicosanoids. Under conditions where COX2 activity is inhibited, arachidonic acid accumulates or is converted to eicosanoids via lipoxygenases and cytochrome P450 (CYP) epoxygenases. Several P450 eicosanoids have been demonstrated to have beneficial effects in the brain and/or periphery. We suspect that arachidonic acid shunting may be as important to functional recovery after brain injuries as altered prostanoid formation per se. Thus, COX2 inhibition and arachidonic acid shunting have therapeutic implications beyond the suppression of prostaglandin synthesis and free radical formation.
Collapse
Affiliation(s)
- Kenneth I Strauss
- Mayfield Neurotrauma Research Lab, Department of Neurosurgery, University of Cincinnati College of Medicine, 231 Albert Sabin Way, ML515, Cincinnati, OH 45267, USA.
| |
Collapse
|
12
|
Demir O, Kiymaz N, Ekin S, Yilmaz N, Ozbek H. Investigation of neuroprotective effect of dexamethasone by using nitric oxide and leukocyte levels in experimental head trauma. Int J Neurosci 2007; 117:1719-30. [PMID: 17987473 DOI: 10.1080/00207450500514284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The objective of the present study was to determine the levels of nitric oxide (NO) and white blood cells (WBCs), which are assumed to play a role in secondary cerebral damage by increasing to pathological levels during cranial trauma, and to investigate the neuroprotective effect of dexamethasone on NO and WBC levels in experimental cranial trauma. For this purpose, adult Sprague-Dawley male rats were used. Blood NO and WBC levels were investigated in one group of non-trauma rats (control group, n = 10) after 6 h; in a group of rats with experimental post-cranial trauma (trauma group, n = 10) after 6 and 24 h; and in a third group of rats with experimental cranial trauma, intraperitoneally injected with 10 mg/kg dexamethasone after 1 and 12 h (trauma + dexamethasone group, n = 10), WBC and NO levels were measured after 6 and 24 h. Determination of NO levels was carried out by assaying serum nitrite and nitrate levels. The increases in post-trauma serum NO (nitrite and nitrate) and WBC levels were statistically significant for the trauma and trauma + dexamethasone groups compared to controls. There was no significant difference between serum NO and WBC levels in rats in the trauma + dexamethasone and those in the trauma group. The study demonstrated no significant inhibition of NO and WBC levels by dexamethasone, a drug used for its anti-edema and anti-inflammatory effects and its influence on membrane stabilization and in avoiding oscillation stress. In the present study, dexamethasone was found to be ineffective in decreasing NO and WBC levels to avoid secondary cerebral damage after cranial trauma.
Collapse
Affiliation(s)
- Ozgür Demir
- Department of Neurosurgery, School of Medicine, Yuzuncu Yil University Hospital, Van, Turkey
| | | | | | | | | |
Collapse
|
13
|
Ferraris VA, Ferraris SP, Saha SP, Hessel EA, Haan CK, Royston BD, Bridges CR, Higgins RSD, Despotis G, Brown JR, Spiess BD, Shore-Lesserson L, Stafford-Smith M, Mazer CD, Bennett-Guerrero E, Hill SE, Body S. Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. Ann Thorac Surg 2007; 83:S27-86. [PMID: 17462454 DOI: 10.1016/j.athoracsur.2007.02.099] [Citation(s) in RCA: 620] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 01/21/2007] [Accepted: 02/08/2007] [Indexed: 01/24/2023]
Abstract
BACKGROUND A minority of patients having cardiac procedures (15% to 20%) consume more than 80% of the blood products transfused at operation. Blood must be viewed as a scarce resource that carries risks and benefits. A careful review of available evidence can provide guidelines to allocate this valuable resource and improve patient outcomes. METHODS We reviewed all available published evidence related to blood conservation during cardiac operations, including randomized controlled trials, published observational information, and case reports. Conventional methods identified the level of evidence available for each of the blood conservation interventions. After considering the level of evidence, recommendations were made regarding each intervention using the American Heart Association/American College of Cardiology classification scheme. RESULTS Review of published reports identified a high-risk profile associated with increased postoperative blood transfusion. Six variables stand out as important indicators of risk: (1) advanced age, (2) low preoperative red blood cell volume (preoperative anemia or small body size), (3) preoperative antiplatelet or antithrombotic drugs, (4) reoperative or complex procedures, (5) emergency operations, and (6) noncardiac patient comorbidities. Careful review revealed preoperative and perioperative interventions that are likely to reduce bleeding and postoperative blood transfusion. Preoperative interventions that are likely to reduce blood transfusion include identification of high-risk patients who should receive all available preoperative and perioperative blood conservation interventions and limitation of antithrombotic drugs. Perioperative blood conservation interventions include use of antifibrinolytic drugs, selective use of off-pump coronary artery bypass graft surgery, routine use of a cell-saving device, and implementation of appropriate transfusion indications. An important intervention is application of a multimodality blood conservation program that is institution based, accepted by all health care providers, and that involves well thought out transfusion algorithms to guide transfusion decisions. CONCLUSIONS Based on available evidence, institution-specific protocols should screen for high-risk patients, as blood conservation interventions are likely to be most productive for this high-risk subset. Available evidence-based blood conservation techniques include (1) drugs that increase preoperative blood volume (eg, erythropoietin) or decrease postoperative bleeding (eg, antifibrinolytics), (2) devices that conserve blood (eg, intraoperative blood salvage and blood sparing interventions), (3) interventions that protect the patient's own blood from the stress of operation (eg, autologous predonation and normovolemic hemodilution), (4) consensus, institution-specific blood transfusion algorithms supplemented with point-of-care testing, and most importantly, (5) a multimodality approach to blood conservation combining all of the above.
Collapse
|
14
|
Hickey E, Karamlou T, You X, Komanapalli C, Person T, Wehrley K, Ungerleider R. The Use of a Miniaturized Circuit and Bloodless Prime To Avoid Cerebral No-Reflow After Neonatal Cardiopulmonary Bypass. Ann Thorac Surg 2007; 83:895-901. [PMID: 17307429 DOI: 10.1016/j.athoracsur.2006.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 10/14/2006] [Accepted: 10/16/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Our miniaturized bloodless prime circuit for neonatal cardiopulmonary bypass (CPB) has previously been shown to elicit significantly reduced systemic inflammation. We studied the effects of this circuit on cerebral reperfusion because the pathophysiology of "no-reflow" is believed to have an inflammatory component. METHODS Twenty neonatal piglets were randomized to CPB with miniaturized circuitry using either blood (group 1) or bloodless (group 2) prime. At 18 degrees C, piglets underwent 60 minutes of either (A) deep hypothermic circulatory arrest (DHCA) or (B) continuous low-flow bypass (DHCLF). Analysis of cerebral blood flow (CBF) was undertaken before and after CPB in addition to quantification of circulating tumor necrosis factor-alpha (TNFalpha) and intracerebral TNFalpha messenger RNA (mRNA). RESULTS The final hematocrit in group 2 was 22% versus 28% (p < 0.05). The CBF fell in every animal in group 1A, but increased in every animal in group 2A (p < 0.001), despite no overall change in total cardiac output. The use of DHCLF was not associated with pronounced trends in either prime group. Final serum TNFalpha concentrations were significantly higher in group 1B (3166 +/- 843 pg/mL) than group 2B (439 +/- 192 pg/mL; p < 0.05). Irrespective of the CPB strategy used, the use of a blood prime generated significantly higher levels of intracerebral TNFalpha mRNA. CONCLUSIONS We attribute the hyperemic cerebrovascular response to reduced inflammation through avoiding allogeneic whole blood. The analysis of circulating and intracerebral TNFalpha in this study suggests that DHCLF in conjunction with a bloodless prime might offer advantages through avoiding ischemia, no-reflow, and in addition, resulting in a significantly reduced cerebral inflammatory response.
Collapse
Affiliation(s)
- Edward Hickey
- Oregon Health and Sciences University, Portland, Oregon, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Alaoja H, Niemelä E, Anttila V, Dahlbacka S, Mäkelä J, Kiviluoma K, Laurila P, Kaakinen T, Juvonen T. Leukocyte filtration to decrease the number of adherent leukocytes in the cerebral microcirculation after a period of deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2007; 132:1339-47. [PMID: 17140952 DOI: 10.1016/j.jtcvs.2006.08.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/31/2006] [Accepted: 08/10/2006] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass and hypothermic circulatory arrest induce a systemic inflammatory response, including a cascade of leukocyte and endothelial cell activity, during the postischemic reperfusion phase. Accumulation of leukocytes in the brain can lead to neurologic problems after cardiac surgery. The beneficial effects of a leukocyte-depleting filter have been documented, but because of contradictory results the underlying function of the filter remains unclear. METHODS Twenty-two juvenile piglets (6 to 8 weeks) were randomly assigned to undergo cardiopulmonary bypass with or without a leukocyte-depleting filter 60 minutes before and 60 minutes after a 75-minute hypothermic circulatory arrest at 18 degrees C. The cerebral vessels were visualized with intravital microscopy through a cranial window placed over the parietal cortex. Rhodamine staining was used to observe adherent and rolling leukocytes in the cerebral postcapillary venules. The animals were electively killed 1 hour after weaning from cardiopulmonary bypass. RESULTS There were no significant differences between the study groups regarding hemodynamic data. Numbers of adherent activated leukocytes were lower in the leukocyte filtration group, reaching borderline statistical significance when assessed throughout the experiment (between-groups P = .069) and actual statistical significance when assessed during the rewarming period (between-groups P = .029). CONCLUSION The leukocyte-depleting filter succeeded in reducing the number of adherent leukocytes during the reperfusion period in an experimental operation with deep hypothermic circulatory arrest. Such a filter thus could mitigate cerebral reperfusion injury after cardiac surgery.
Collapse
Affiliation(s)
- Hanna Alaoja
- Clinical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pan J, Konstas AA, Bateman B, Ortolano GA, Pile-Spellman J. Reperfusion injury following cerebral ischemia: pathophysiology, MR imaging, and potential therapies. Neuroradiology 2006; 49:93-102. [PMID: 17177065 PMCID: PMC1786189 DOI: 10.1007/s00234-006-0183-z] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 10/24/2006] [Indexed: 12/23/2022]
Abstract
Introduction Restoration of blood flow following ischemic stroke can be achieved by means of thrombolysis or mechanical recanalization. However, for some patients, reperfusion may exacerbate the injury initially caused by ischemia, producing a so-called “cerebral reperfusion injury”. Multiple pathological processes are involved in this injury, including leukocyte infiltration, platelet and complement activation, postischemic hyperperfusion, and breakdown of the blood–brain barrier. Methods/results and conclusions Magnetic resonance imaging (MRI) can provide extensive information on this process of injury, and may have a role in the future in stratifying patients’ risk for reperfusion injury following recanalization. Moreover, different MRI modalities can be used to investigate the various mechanisms of reperfusion injury. Antileukocyte antibodies, brain cooling and conditioned blood reperfusion are potential therapeutic strategies for lessening or eliminating reperfusion injury, and interventionalists may play a role in the future in using some of these therapies in combination with thrombolysis or embolectomy. The present review summarizes the mechanisms of reperfusion injury and focuses on the way each of those mechanisms can be evaluated by different MRI modalities. The potential therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- Jie Pan
- Department of Radiology, Columbia University, 177 Fort Washington Ave, MHB 8SK, New York, NY 10032 USA
| | | | - Brian Bateman
- Department of Radiology, Columbia University, 177 Fort Washington Ave, MHB 8SK, New York, NY 10032 USA
| | | | - John Pile-Spellman
- Department of Radiology, Columbia University, 177 Fort Washington Ave, MHB 8SK, New York, NY 10032 USA
| |
Collapse
|
17
|
Koskenkari JK, Rimpiläinen J, Ohman H, Surcel HM, Vainionpää V, Biancari F, Ala-Kokko T, Juvonen T. Leukocyte Filter Enhances Neutrophil Activation during Combined Aortic Valve and Coronary Artery Bypass Surgery. Heart Surg Forum 2006; 9:E693-9. [PMID: 16844623 DOI: 10.1532/hsf98.20061008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Cardiopulmonary bypass-induced systemic inflammatory reaction involving the expression of neutrophil surface adhesion molecules is the main mechanism leading to myocardial ischemia-reperfusion injury as well as multiorgan dysfunction. Patients undergoing prolonged cardiopulmonary bypass are especially at risk in this regard. The aim of this prospective, randomized study was to evaluate the impact of continuous leukocyte filtration on the perioperative expression of neutrophil adhesion molecules along with the markers of systemic inflammation during combined coronary artery revascularization and aortic valve surgery due to aortic stenosis. PATIENT AND METHODS Twenty patients scheduled for combined coronary artery revascularization and aortic valve surgery due to aortic stenosis were randomized to undergo cardiopulmonary bypass with or without a leukocyte filter (LeukoGuard LG6). The expression of neutrophil adhesion molecules and proinflammatory cytokine response were measured. RESULTS The use of the leukocyte filter significantly increased neutrophil CD11b expression (Pg = .003) compared to the control group, which was followed by a faster rise in interleukin-6 levels 5 minutes (median, 125 versus 34 pg/mL) and 2 hours after cardiopulmonary bypass (median, 158 versus 92 pg/mL, Pt x g < .001), respectively. No marked differences in terms of levels of CD11a, CD62L, cardiac troponin-I, or oxyhemodynamics were observed. CONCLUSIONS The observed increased neutrophil activation and enhanced inflammatory response do not support the use of continuous leukofiltration in patients undergoing prolonged cardiopulmonary bypass.
Collapse
Affiliation(s)
- Juha K Koskenkari
- Division of Intensive Care, Department of Anesthesiology, Oulu University Hospital, Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Koskenkari J, Rimpiläinen J, Biancari F, Surcel HM, Kaukoranta P, Kiviluoma K, Ala-Kokko T, Juvonen T. Leukocyte depleting filter attenuates myocardial injury during elective coronary artery bypass surgery. SCAND CARDIOVASC J 2006; 39:358-68. [PMID: 16352489 DOI: 10.1080/14017430510035943] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury secondary to leukocyte activation has been widely recognized as one of the most relevant mechanism leading to postoperative organ dysfunction occurring after a period of ischemia. The aim of the present study was to evaluate in a prospective, randomized study, the value of leukocyte depleting filter in patients undergoing elective coronary artery bypass surgery. METHODS Twenty patients scheduled for elective on-pump coronary artery bypass surgery were randomized to undergo cardiopulmonary bypass either with a leukocyte depleting filter incorporated in the extracorporeal circulation arterial line or without a filter. RESULTS The main finding of this study was the significantly lower postoperative concentrations of cardiac troponin I in the leukocyte filter group (Tests of between-subjects effects: p = 0.024). There were also slightly better cardiac indices in the leukocyte filter group. A larger amount of blood units was infused intra- and postoperatively in patients undergoing cardiopulmonary bypass with leukocyte filtration (median, 600 [IQR, 0-1200] vs. 0 [IQR, 0-600], p = 0.08). Two patients in the leukocyte filter group underwent reoperation for bleeding but none in the control group (p = 0.48). Intra-and postoperative platelet count was lower in the leukocyte filter group (Tests of between-subjects effects: p = 0.08). Despite a significant increased concentration of C-reactive protein on the first postoperative day in the control group (p = 0.029), repeated-measures analysis failed to show any significant increase during the study period (p = 0.33). CONCLUSIONS The results of this study suggest a myocardial protective effect of leukocyte filter in the setting of elective coronary artery bypass surgery.
Collapse
Affiliation(s)
- Juha Koskenkari
- Division of Intensive Care, Department of Anesthesiology, Oulu University Hospital, Oulu, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Amir G, Ramamoorthy C, Riemer RK, Reddy VM, Hanley FL. Neonatal Brain Protection and Deep Hypothermic Circulatory Arrest: Pathophysiology of Ischemic Neuronal Injury and Protective Strategies. Ann Thorac Surg 2005; 80:1955-64. [PMID: 16242503 DOI: 10.1016/j.athoracsur.2004.12.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2004] [Revised: 12/20/2004] [Accepted: 12/28/2004] [Indexed: 11/15/2022]
Abstract
Deep hypothermic circulatory arrest (DHCA) has been used for the past 50 years in the surgical repair of complex congenital cardiac malformations and operations involving the aortic arch; it enables the surgeon to achieve precise anatomical reconstructions by creating a bloodless operative field. Nevertheless, DHCA has been associated with immediate and late neurodevelopmental morbidities. This review provides an overview of the pathophysiology of neonatal hypoxic brain injury after DHCA, focusing on cellular mechanisms of necrosis, apoptosis, and glutamate excitotoxicity. Techniques and strategies in neonatal brain protection include hypothermia, acid base blood gas management during cooling, and pharmacologic interventions such as the use of volatile anesthetics. Surgical techniques consist of intermittent cerebral perfusion during periods of circulatory arrest and continuous regional brain perfusion.
Collapse
Affiliation(s)
- Gabriel Amir
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
20
|
Allen BS, Castellá M, Buckberg GD, Tan Z. Conditioned blood reperfusion markedly enhances neurologic recovery after prolonged cerebral ischemia. J Thorac Cardiovasc Surg 2004; 126:1851-8. [PMID: 14688696 DOI: 10.1016/s0022-5223(03)01295-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To determine whether controlled reperfusion using conditioned leukodepleted blood can substantially limit cerebral reperfusion injury following prolonged ischemia. METHODS Eighteen pigs (25-35 kg) underwent 90 minutes of hypothermic circulatory arrest (19 degrees C) to produce brain ischemia. At the start of rewarming, 10 pigs received uncontrolled reperfusion with unmodified (normal) blood. The other 8 pigs underwent 10 minutes of controlled reperfusion by selectively perfusing both common carotid arteries with blood passed through a CoBRA filter. This filter conditions the blood by removing white blood cells, platelets, and attenuating complement. Two other pigs underwent cooling and rewarming only (controls) without ischemia. Neurologic assessment was done using neurologic deficit scoring (0 = normal, 500 = brain death), and jugular venous samples were obtained for biochemical analysis postreperfusion. RESULTS There were no statistical differences in hemodynamics between groups. At 6 hours postanesthesia, all animals receiving normal blood were substantially neurologically impaired. At 24 hours, they all had abnormal positioning and all but 1 were unable to sit or stand (neurologic score 124 +/- 19). In contrast, nonischemic controls and pigs receiving conditioned blood reperfusion showed only minor neurologic deficits at 6 hours, and at 24 hours all were considered normal (neurologic scores 0 and 6 +/- 5; P <.005 vs uncontrolled reperfusion). Compared with pigs receiving normal blood reperfusion, oxygen free radical formation (conjugated dienes 1.70 +/- 0.03 vs 1.60 +/- 0.02 Abs 240 nm; P <.05 vs uncontrolled reperfusion), and endothelin-1 release (2.12 +/- 0.09 vs 1.84 +/- 0.06 pg/mL; P <.05 vs uncontrolled reperfusion) were also significantly lower in animals receiving conditioned blood. CONCLUSIONS Following prolonged cerebral ischemia, reperfusion injury is avoided by delivering conditioned blood, which is devoid of white cells, platelets, and membrane attack complex. These results suggest that this modality is clinically useful in situations where the brain is subjected to prolonged ischemia.
Collapse
Affiliation(s)
- Bradley S Allen
- University of Texas/Memorial Hermann Children's Hospital, Houston 77030, USA.
| | | | | | | |
Collapse
|
21
|
Pokela M, Jäntti V, Lepola P, Romsi P, Rimpiläinen J, Kiviluoma K, Salomäki T, Vainionpää V, Biancari F, Hirvonen J, Kaakinen T, Juvonen T. EEG burst recovery is predictive of brain injury after experimental hypothermic circulatory arrest. SCAND CARDIOVASC J 2003; 37:154-7. [PMID: 12881157 DOI: 10.1080/14017430310006956] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To evaluate whether electroencephalography (EEG) recovery could be considered a reliable marker of brain injury after experimental hypothermic circulatory arrest (HCA). DESIGN Cortical electrical activity was registered before and after a 75-min period of HCA in 27 pigs that survived 7 days after the experiment. The sum of EEG bursts was counted as a percentage of the sum of artifact-free bursts and suppressions, and this percentage was used as a measure of EEG activity in the analysis. RESULTS Brain infarction developed in 13 animals (48.1%), in 12 cases (44.4%) having involved the cortex, in 1 case the thalamus (3.7%) and in another the hippocampus (3.7%). The mean EEG burst percentage significantly correlated with the total brain histopathological score (rho = -0.588, P = 0.001). EEG burst percentage from the 2 h 20 min to the 7 h 20 min interval correlated with the total brain histopathological score and with the cortex, brainstem and cerebellum scores. The mean EEG burst percentage rate was higher, but not significantly, among the animals without brain infarction (38.5% vs 32.4%), but such a difference was significant at the 3 h 20 min postoperative interval (P = 0.02). The mean EEG burst percentage significantly correlated with brain glucose concentration at the 1 h interval (rho = 0.387; P = 0.046), brain lactate concentration at the 2 h interval (rho = -0.431; P = 0.025), and the brain lactate/glucose ratio at the 1 h 30 min interval from the start of rewarming (rho = -0.433; P = 0.024). CONCLUSION A decreased EEG burst percentage seems to be associated with an increased risk of developing histologically evident brain ischemic injury in the cortex, brainstem and cerebellum after experimental HCA.
Collapse
Affiliation(s)
- Matti Pokela
- Department of Surgery, Oulu University Hospital, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Allen BS, Veluz JS, Buckberg GD, Aeberhard E, Ignarro LJ. Deep hypothermic circulatory arrest and global reperfusion injury: avoidance by making a pump prime reperfusate--a new concept. J Thorac Cardiovasc Surg 2003; 125:625-32. [PMID: 12658205 DOI: 10.1067/mtc.2003.96] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We sought to determine whether damage after deep hypothermic circulatory arrest can be diminished by changing pump prime components when reinstituting cardiopulmonary bypass. METHODS Fifteen piglets (2-3 months old) were cooled to 19 degrees C by using the alpha-stat pH strategy. Five were cooled and rewarmed without ischemia (control animals), and the other 10 piglets underwent 90 minutes of deep hypothermic circulatory arrest. Of these, 5 were rewarmed and reperfused without altering the cardiopulmonary bypass circuit blood prime. In the other 5 animals, the bypass blood prime was modified (leukocyte depleted, hypocalcemic, hypermagnesemic, pH-stat, normoxic, mannitol, and an Na(+)/H(+) exchange inhibitor) during circulatory arrest before starting warm reperfusion. Oxidant injury was assessed on the basis of conjugated dienes, vascular changes on the basis of endothelin levels, myocardial function on the basis of cardiac output and dopamine need, lung injury on the basis of pulmonary vascular resistance and oxygenation, and cellular damage on the basis of release of creatine kinase and aspartate aminotransferase. Neurologic assessment (score 0, normal; score 500, brain death) was done 6 hours after discontinuing cardiopulmonary bypass. RESULTS Compared with animals undergoing cardiopulmonary bypass without ischemia (control animals), deep hypothermic circulatory arrest without modification of the reperfusate produced an oxidant injury (conjugated dienes increased 0.78 vs 1.71 absorbance (Abs) 240 nmol/L per 0.5 mL, P <.001 vs control animals), depressed cardiac output (6.0 vs 4.0 L/min, P <.05 vs control subjects), prolonged dopamine need (P <.001 vs control subjects), elevated pulmonary vascular resistance (74% vs 197%, P <.05 vs control subjects), reduced oxygenation (P <.01 vs control subjects), increased neurologic injury (56 vs 244, P <.001 vs control subjects), and increased release of creatine kinase (2695 vs 6974 U/L, P <.05 vs control subjects), aspartate aminotransferase (144 vs 229 U/L), and endothelin (1.02 vs 2.56 pg/mL, P <.001 vs control subjects). Conversely, the oxidant injury was markedly limited (conjugated dienes of 0.85 +/- 0.09 Abs 240 nmol/L per 0.5 mL, P <.001 vs unmodified pump prime) with modification of cardiopulmonary bypass prime, resulting in increased cardiac output (5.1 +/- 0.8 L/min), minimal dopamine need (P <.001 vs unmodified pump prime), no increase in pulmonary vascular resistance (44% +/- 31%, P <.01 vs unmodified pump prime) or endothelin levels (0.64 +/- 0.15 pg/mL, P <.001 vs unmodified pump prime), complete recovery of oxygenation (P <.01 vs unmodified pump prime), reduced neurologic damage (144 +/- 33, P <.05 vs unmodified pump prime), and lower release of aspartate aminotransferase (124 +/- 23 U/L, P <.05 vs unmodified pump prime) and creatine kinase (3366 +/- 918, P <.05 vs unmodified pump prime). CONCLUSIONS A global reperfusion injury after deep hypothermic circulatory arrest was identified and changed. The injury is mediated by oxygen-derived free radicals, resulting in organ and endothelial dysfunction. Modification of global organ and endothelial damage is achieved by modifying the blood prime in the cardiopulmonary bypass circuit to deliver a controlled global reperfusate when reinstituting bypass.
Collapse
Affiliation(s)
- Bradley S Allen
- Division of Cardiovascular Surgery, University of California at Los Angeles Medical Center, USA.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Romsi P, Kaakinen T, Kiviluoma K, Vainionpää V, Hirvonen J, Pokela M, Ohtonen P, Biancari F, Nuutinen M, Juvonen T. Fructose-1,6-bisphosphate for improved outcome after hypothermic circulatory arrest in pigs. J Thorac Cardiovasc Surg 2003; 125:686-98. [PMID: 12658213 DOI: 10.1067/mtc.2003.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Fructose-1,6-bisphosphate is a high-energy intermediate in the anaerobic metabolism. It enhances glycolysis, preserves cellular adenosine triphosphate, and prevents the increase of intracellular calcium during ischemia. The potential neuroprotective effect of fructose-1,6-bisphosphate during hypothermic circulatory arrest was evaluated in a surviving porcine model. METHODS Twenty-four pigs were randomly assigned to receive two intravenous infusions of either fructose-1,6-bisphosphate (500 mg/kg) or saline solution. The first infusion was given immediately before a 75-minute period of hypothermic circulatory arrest and the second was given immediately after hypothermic circulatory arrest. RESULTS The 7-day survivals were 83.3% in the fructose-1,6-bisphosphate group and 41.7% in the control group (P =.09). The treated animals had significantly better postoperative behavioral scores. The administration of fructose-1,6-bisphosphate was associated with higher venous phosphate and sodium levels, lower venous ionized calcium levels, higher blood osmolarity, and a better fluid balance. Intracranial pressure and venous creatine kinase isoenzyme MB were significantly lower in the fructose-1,6-bisphosphate group during rewarming (P =.01 and P =.001, respectively). Among the treated animals, brain glucose, pyruvate and lactate levels tended to be higher, brain glycerol levels tended to be lower, and the histopathologic score of the brain was significantly lower (P =.04). CONCLUSIONS Intravenous administration of fructose-1,6-bisphosphate at 500 mg/kg before and after hypothermic circulatory arrest in a surviving porcine model was associated with better survival, behavioral outcome, and histopathologic score. The observed lower blood creatine kinase isoenzyme MB and brain glycerol levels and the higher brain glucose, pyruvate, and lactate levels in the fructose-1,6-bisphosphate group suggest that this drug has supportive effects on myocardial and brain metabolisms.
Collapse
Affiliation(s)
- Pekka Romsi
- Department of Surgery, Oulu University Hospital, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mangano DT. S100beta and NSE: stroke surrogate signals or natal neural noise? J Cardiothorac Vasc Anesth 2003; 17:1-3. [PMID: 12635052 DOI: 10.1053/jcan.2003.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Mennander A, Pääkkö P, Hirvonen J, Anttila V, Rimpiläinen J, Pokela M, Vainionpää V, Kiviluoma K, Romsi P, Biancari F, Juvonen T. Apoptotic activity is increased in brain cortex infarct after hypothermic circulatory arrest in a porcine model. SCAND CARDIOVASC J 2002; 36:247-9. [PMID: 12201974 DOI: 10.1080/14017430260180427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE It has been shown that apoptosis contributes to neuronal cell death after ischemia, and we evaluated the degree of apoptotic activity occurring in brain cortex of pigs after hypothermic circulatory arrest (HCA). DESIGN Thirty-one pigs underwent 75 min of HCA at 20 degrees C. Histological examination of the brain was performed, and slides of brain cortex were evaluated for apoptotic activity by the TUNEL method. RESULTS Ten animals died during the first postoperative day and 21 survived until the seventh postoperative day. Brain cortex infarcts were found in animals that survived 7 days and these were included in this study. The median histopathological score among animals that died on the first postoperative day was 3.0 (range, 2-4), whereas it was 4.0 (range, 2-4) among survivors (p = 0.019). The apoptotic index was particularly high in the area of the infarct, whereas only a few TUNEL-stained cells were observed in noninfarcted areas. The apoptotic index was nil in all pigs that died in the first postoperative period, whereas it was 2.0 (range, 0-6) among the animals that survived until the seventh postoperative day (p < 0.0001). CONCLUSION The apoptotic index was significantly increased in brain cortex infarcts of animals that survived 7 days after HCA, whereas only a few apoptotic cells were observed in noninfarcted areas of these animals as well as in animals that died on the first postoperative day. Further studies are required to elucidate the timing of development of brain infarction after HCA and whether neuroprotective strategies targeting the apoptotic process may mitigate brain damage.
Collapse
Affiliation(s)
- A Mennander
- Department of Surgery, University of Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rimpiläinen J, Romsi P, Pokela M, Hirvonen J, Vainionpää V, Kiviluoma KT, Biancari F, Ohtonen P, Jäntti V, Anttila V, Juvonen T. Lamotrigine plus leukocyte filtration as a neuroprotective strategy in experimental hypothermic circulatory arrest. Ann Thorac Surg 2002; 73:163-72. [PMID: 11834006 DOI: 10.1016/s0003-4975(01)03246-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Lamotrigine and leukocyte filtration seem to improve cerebral protection during experimental hypothermic circulatory arrest (HCA). This study was performed to evaluate whether their combined use may further improve cerebral protection. METHODS Twenty-four pigs undergoing 75-minute period of HCA at 20 degrees C were randomly assigned to receive saline; lamotrigine (20 mg/kg) before HCA (L); or lamotrigine (20 mg/kg) before HCA plus leukocyte filtration before and after HCA (L + LF). RESULTS Seven animals (87%) in the L + LF group, 4 (50%) in the L group, and 3 (37%) in the control group were alive on the seventh postoperative day. The median electroencephalogram burst recovery was 94% in the L + LF group (p = 0.024 versus control group), 81% in the L group, and 64% in the control group. Among the surviving animals, the median behavioral scores were 9, 9, and 6 at the seventh day, respectively (p = 0.005 between the L + LF group and the control group). The median histopathologic score was 14 in the L + LF group (p = 0.046 versus control group), 14.5 in the L group (p = 0.062 versus control group), and 21 in the control group. CONCLUSIONS Lamotrigine has neuroprotective effect during HCA. The combined use of lamotrigine and LF may further improve the survival outcome.
Collapse
|
28
|
|
29
|
Rimpiläinen J, Pokela M, Kiviluoma K, Vainionpää V, Hirvonen J, Ohtonen P, Jäntti V, Anttila V, Heinonen H, Juvonen T. The N-methyl-D-aspartate antagonist memantine has no neuroprotective effect during hypothermic circulatory arrest: a study in the chronic porcine model. J Thorac Cardiovasc Surg 2001; 121:957-68; discussion 968-70. [PMID: 11326240 DOI: 10.1067/mtc.2001.112934] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glutamate excitotoxicity has an important role in the development of brain injury after prolonged hypothermic circulatory arrest. The goal of the present study was to determine the potential efficacy of memantine, an N -methyl-D -aspartate receptor antagonist, to mitigate cerebral injury after hypothermic circulatory arrest. METHODS Twenty pigs (23-33 kg) were randomly assigned to receive memantine (5 mg/kg) or placebo in a blinded fashion before a 75-minute period of hypothermic circulatory arrest at 20 degrees C. Hemodynamic, electroencephalographic, and metabolic monitoring were carried out. The intracerebral concentrations of glucose, lactate, glutamate, and glycerol were measured by means of enzymatic methods on a microdialysis analyzer. Daily behavioral assessment was performed until the animals died or were put to death on day 7. Histologic analysis of the brain was carried out in all animals. RESULTS In the memantine group, 5 of 10 animals survived 7 days compared with 9 of 10 in the placebo group. The median behavioral score at day 7 was 3.5 in the memantine group and 7.5 in the placebo group (P >.2). Among the surviving animals, medians were 9.0 and 8.0 on day 7 (P >.2), respectively. The medians of recovered electroencephalographic bursts were equal in both groups. The median of total histopathologic score was 16 in the memantine group and 14 in the placebo group (P >.2). There was a negative correlation between glutamate levels and electroencephalographic burst recovery (tau = -0.377, P =.043). A positive correlation was found between the highest individual glutamate value and histopathologic score (tau = 0.336, P =.045). CONCLUSIONS The present study demonstrates that memantine has no neuroprotective effect after hypothermic circulatory arrest in the pig. In addition, we have shown the accuracy of cerebral glutamate measurements to predict histopathologic injury after hypothermic ischemia.
Collapse
Affiliation(s)
- J Rimpiläinen
- Department of Surgery, University of Oulu and Oulu University Hospital, FIN 90220 Oulu, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pokela M, Anttila V, Rimpiläinen J, Hirvonen J, Vainionpää V, Kiviluoma K, Romsi P, Mennander A, Juvonen T. Serum S-100beta protein predicts brain injury after hypothermic circulatory arrest in pigs. SCAND CARDIOVASC J 2000; 34:570-4. [PMID: 11214009 DOI: 10.1080/140174300750064495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
OBJECTIVE Serum S-100beta protein is suggested to be a neurobiochemical marker of brain injury after cardiac and aortic arch surgery. The aim of the present study was to investigate the predictive value of S-100beta protein with respect to histopathological analysis of the brain after a prolonged period of hypothermic circulatory arrest (HCA). METHODS Eighteen pigs (21 to 31 kg) underwent a 75 min period of HCA at 20 degrees C. Serum concentrations of S-100beta were assayed in mixed venous blood before and 2, 4, 7 and 20 h after HCA. A semiquantitative post-mortem histopathological analysis scoring all main regions of the brain was carried out in every animal. RESULTS All animals were stable during and after cardiopulmonary bypass (CPB) and survived at least to the first postoperative day. Ten of the 18 animals survived 7 days after surgery and were electively sacrificed. Animals with severe histopathological injury showed higher serum S-100beta protein levels at every time point after HCA. The strongest correlation between the total histopathologic score and serum S-100beta levels was found at 7 h after HCA (tau = 0.422 and p = 0.023). CONCLUSION Serum S-100beta protein levels correlate with histopathological injury after a prolonged period of HCA in pigs. This finding supports the results of previous studies suggesting the potential accuracy of S-100beta in the prediction of brain injury after cardiac surgery.
Collapse
Affiliation(s)
- M Pokela
- Department of Surgery, Oulu University Hospital, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|