1
|
McManus M, Harris LR, Fiehler K. Haptic size perception is influenced by body and object orientation. Sci Rep 2025; 15:14062. [PMID: 40268984 PMCID: PMC12019378 DOI: 10.1038/s41598-025-95800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Changes in body orientation from standing have been shown to impact our perception of visual size. This has been attributed to the vestibular system's involvement in constructing a representation of the space around our body. In the current study we investigated how body posture influences haptic size perception. Blindfolded participants were tasked with estimating the felt length of a rod and then adjusting it back to its previously felt size (after it had been set to a random length). Participants could feel and adjust the rod in the same posture, standing or supine, or after a change in posture. If the body orientation relative to gravity impacts size perception, we might expect changes in haptic size perception following body tilt. In support of this hypothesis, after changing between standing and supine postures there was a change in the rod's haptically perceived length but only when the orientation of the rod itself also changed with respect to gravity but not when its orientation was constant. This suggests that body posture influences not only visual but also haptic size perception, potentially due to the vestibular system contributing to the encoding of space with respect to gravity.
Collapse
Affiliation(s)
- M McManus
- Justus Liebig University Giessen, Giessen, Germany.
| | - L R Harris
- Centre for Vision Research, York University, Toronto, ON, Canada
| | - K Fiehler
- Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Chen Y, He ZJ, Ooi TL. Factors Affecting Stimulus Duration Threshold for Depth Discrimination of Asynchronous Targets in the Intermediate Distance Range. Invest Ophthalmol Vis Sci 2024; 65:36. [PMID: 39446355 PMCID: PMC11512565 DOI: 10.1167/iovs.65.12.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Purpose Binocular depth discrimination in the near distance range (< 2 m) improves with stimulus duration. However, whether the same response-pattern holds in the intermediate distance range (approximately 2-25 m) remains unknown because the spatial coding mechanisms are thought to be different. Methods We used the two-interval forced choice procedure to measure absolute depth discrimination of paired asynchronous targets (3, 6, or 16 arc min). The paired targets (0.2 degrees) were located over a distance and height range, respectively, of 4.5 to 7.0 m and 0.15 to 0.7 m. Experiment 1 estimated duration thresholds for binocular depth discrimination at varying target durations (40-1610 ms), in the presence of a 2 × 6 array of parallel texture-elements spanning 1.5 × 5.83 m on the floor. The texture-elements provided a visible background in the light-tight room (9 × 3 m). Experiment 2 used a similar setup to control for viewing conditions: binocular versus monocular and with versus without texture background. Experiment 3 compared binocular depth discrimination between brief (40, 80, and 125 ms) and continuous texture background presentation. Results Stimulus duration threshold for depth discrimination decreased with increasing disparity in experiment 1. Experiment 2 revealed depth discrimination performance with texture background was near chance level with monocular viewing. Performance with binocular viewing degraded without texture background. Experiment 3 showed continuous texture background presentation enhances binocular depth discrimination. Conclusions Absolute depth discrimination improves with target duration, binocular viewing, and texture background. Performance further improved with longer background duration underscoring the role of ground surface representation in spatial coding.
Collapse
Affiliation(s)
- Yiya Chen
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| | - Zijiang J. He
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, United States
| | - Teng Leng Ooi
- College of Optometry, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
3
|
Dong B, Chen A, Gu Z, Sun Y, Zhang X, Tian X. Methods for measuring egocentric distance perception in visual modality. Front Psychol 2023; 13:1061917. [PMID: 36710778 PMCID: PMC9874321 DOI: 10.3389/fpsyg.2022.1061917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Egocentric distance perception has been widely concerned by researchers in the field of spatial perception due to its significance in daily life. The frame of perception involves the perceived distance from an observer to an object. Over the years, researchers have been searching for an optimal way to measure the perceived distance and their contribution constitutes a critical aspect of the field. This paper summarizes the methodological findings and divides the measurement methods for egocentric distance perception into three categories according to the behavior types. The first is Perceptional Method, including successive equal-appearing intervals of distance judgment measurement, verbal report, and perceptual distance matching task. The second is Directed Action Method, including blind walking, blind-walking gesturing, blindfolded throwing, and blind rope pulling. The last one is Indirect Action Method, including triangulation-by-pointing and triangulation-by-walking. In the meantime, we summarize each method's procedure, core logic, scope of application, advantages, and disadvantages. In the end, we discuss the future concerns of egocentric distance perception.
Collapse
Affiliation(s)
- Bo Dong
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| | - Airui Chen
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China
| | - Zhengyin Gu
- Department of Psychology, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Sun
- School of Education, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| | - Xiuling Zhang
- School of Psychology, Northeast Normal University, Changchun, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| | - Xiaoming Tian
- Department of Psychology, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Xiaoming Tian, ; Bo Dong, ; Yuan Sun, ; Xiuling Zhang,
| |
Collapse
|
4
|
Baxter BA, Warren WH. A day at the beach: Does visually perceived distance depend on the energetic cost of walking? J Vis 2021; 21:13. [PMID: 34812836 PMCID: PMC8626849 DOI: 10.1167/jov.21.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It takes less effort to walk from here to the Tiki Hut on the brick walkway than on the sandy beach. Does that influence how far away the Tiki Hut looks? The energetic cost of walking on dry sand is twice that of walking on firm ground (Lejeune et al., 1998). If perceived distance depends on the energetic cost or anticipated effort of walking (Proffitt, 2006), then the distance of a target viewed over sand should appear much greater than one viewed over brick. If perceived distance is specified by optical information (e.g., declination angle from the horizon; Ooi et al., 2001), then the distances should appear similar. Participants (N = 13) viewed a target at a distance of 5, 7, 9, or 11 m over sand or brick and then blind-walked an equivalent distance on the same or different terrain. First, we observed no main effect of walked terrain; walked distances on sand and brick were the same (p = 0.46), indicating that locomotion was calibrated to each substrate. Second, responses were actually greater after viewing over brick than over sand (p < 0.001), opposite to the prediction of the energetic hypothesis. This unexpected overshooting can be explained by the slight incline of the brick walkway, which partially raises the visually perceived eye level (VPEL) and increases the target distance specified by the declination angle. The result is thus consistent with the information hypothesis. We conclude that visually perceived egocentric distance depends on optical information and not on the anticipated energetic cost of walking.
Collapse
Affiliation(s)
- Brittany A Baxter
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.,
| | - William H Warren
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.,
| |
Collapse
|
5
|
The foggy effect of egocentric distance in a nonverbal paradigm. Sci Rep 2021; 11:14398. [PMID: 34257323 PMCID: PMC8277830 DOI: 10.1038/s41598-021-93380-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Inaccurate egocentric distance and speed perception are two main explanations for the high accident rate associated with driving in foggy weather. The effect of foggy weather on speed has been well studied. However, its effect on egocentric distance perception is poorly understood. The paradigm for measuring perceived egocentric distance in previous studies was verbal estimation instead of a nonverbal paradigm. In the current research, a nonverbal paradigm, the visual matching task, was used. Our results from the nonverbal task revealed a robust foggy effect on egocentric distance. Observers overestimated the egocentric distance in foggy weather compared to in clear weather. The higher the concentration of fog, the more serious the overestimation. This effect of fog on egocentric distance was not limited to a certain distance range but was maintained in action space and vista space. Our findings confirm the foggy effect with a nonverbal paradigm and reveal that people may perceive egocentric distance more "accurately" in foggy weather than when it is measured with a verbal estimation task.
Collapse
|
6
|
Egocentric Distance Perception Disorder in Amblyopia. Psychol Belg 2021; 61:173-185. [PMID: 34221439 PMCID: PMC8231473 DOI: 10.5334/pb.1038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egocentric distance perception is a psychological process in which observers use various depth cues to estimate the distance between a target and themselves. The impairment of basic visual function and treatment of amblyopia have been well documented. However, the disorder of egocentric distance perception of amblyopes is poorly understood. In this review, we describe the cognitive mechanism of egocentric distance perception, and then, we focus on empirical evidence for disorders in egocentric distance perception for amblyopes in the whole visual space. In the personal space (within 2 m), it is difficult for amblyopes to show normal hand-eye coordination; in the action space (within 2 m~30 m), amblyopes cannot accurately judge the distance of a target suspended in the air. Few studies have focused on the performance of amblyopes in the vista space (more than 30 m). Finally, five critical topics for future research are discussed: 1) it is necessary to systematically explore the mechanism of egocentric distance perception in all three spaces; 2) the laws of egocentric distance perception in moving objects for amblyopes should be explored; and 3) the comparison of three subtypes of amblyopia is still insufficient; 4) study the perception of distance under another theoretical framework; 5) explore the mechanisms of amblyopia by Virtual Reality.
Collapse
|
7
|
Doyon JK, Clark JD, Hajnal A, Legradi G. Effects of Surface Luminance and Texture Discontinuities on Reachableness in Virtual Reality. ECOLOGICAL PSYCHOLOGY 2020. [DOI: 10.1080/10407413.2020.1820336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jonathan K. Doyon
- Autism and Neurodevelopmental Disorders Institute, George Washington University
- Department of Psychological and Brain Sciences, George Washington University
| | | | - Alen Hajnal
- School of Psychology, University of Southern Mississippi
| | - Gabor Legradi
- College of Osteopathic Medicine, William Carey University
| |
Collapse
|
8
|
Dong B, Chen A, Zhang Y, Li C, Zhang T, Zhang M. Inaccurate Space Perception Seeing Through Fences. Perception 2020; 49:926-939. [PMID: 33002393 DOI: 10.1177/0301006620946525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
According to the sequential surface integration process hypothesis, the fine near-ground-surface representation and the homogeneous ground surface play a vital role in the representation of the ground surface. When an occluding box or opaque wall is placed between observers and targets, observers underestimate egocentric distance. However, in our daily life, many obstacles are perforated and cover the ground surface and targets simultaneously (e.g., fences). Humans see and observe through fences. The images of these fences and targets, projected onto observers' retinas, overlap each other. This study aims to explore the effects of perforated obstacles (i.e., fences) on space perception. The results showed that observers underestimated the egocentric distances when there was a fence on the ground surface relative to the no-fence condition, and the effect of widely spaced thick wood fences was larger than that of narrowly spaced thin iron fences. We further demonstrated that this effect was quite robust when the target size had a visual angle of 1°, 2°, or 4° in three virtual reality experiments. This study may add support for the notion that the sequential surface integration process hypothesis is applicable even if the obstacle is perforated and covers the target.
Collapse
Affiliation(s)
- Bo Dong
- Suzhou University of Science and Technology, China
| | - Airui Chen
- Suzhou University of Science and Technology, China
| | - Yuting Zhang
- Suzhou University of Science and Technology, China
| | - Changchun Li
- Suzhou University of Science and Technology, China
| | | | - Ming Zhang
- Suzhou University of Science and Technology, China; Soochow University, China
| |
Collapse
|
9
|
Kelly SA. Blind-Walking Behavior in the Dark Affected by Previewing the Testing Space. Perception 2019; 48:1058-1078. [PMID: 31554477 DOI: 10.1177/0301006619876446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Visual environments affect egocentric distance perceptions in full cue conditions. In this study, the effect of three spatial layouts was tested on the perceived location of a self-illuminated single target viewed in the dark. Blind-walking (BW) estimates of target distance were underestimated in all testing spaces, as expected, but foreshortened significantly more in the shortest of the three testing rooms. Additional experiments revealed that neither changes in the perceived angle of declination nor perceived eye height were responsible for this effect. The possibility that subjects made cognitive adjustments to BW behavior to reduce physical risk was assessed by remeasuring target locations in the three different locations with magnitude estimation and by comparing the BW results obtained from subjects who had no preview of the testing space with those who had. The results support the conclusion that the effect of spatial layout is likely due to cognitive adjustments to BW behavior. The results also indicate that the perceived angle of declination is always overestimated by at least a factor of 1.5. These results can be interpreted within the context of a theory of space perception called the angular expansion theory (AET).
Collapse
Affiliation(s)
- Susan A Kelly
- Department of Vision Sciences, Illinois College of Optometry, Chicago, IL, USA
| |
Collapse
|
10
|
McCann BC, Hayhoe MM, Geisler WS. Contributions of monocular and binocular cues to distance discrimination in natural scenes. J Vis 2018; 18:12. [PMID: 29710302 PMCID: PMC5901372 DOI: 10.1167/18.4.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/19/2018] [Indexed: 01/28/2023] Open
Abstract
Little is known about distance discrimination in real scenes, especially at long distances. This is not surprising given the logistical difficulties of making such measurements. To circumvent these difficulties, we collected 81 stereo images of outdoor scenes, together with precisely registered range images that provided the ground-truth distance at each pixel location. We then presented the stereo images in the correct viewing geometry and measured the ability of human subjects to discriminate the distance between locations in the scene, as a function of absolute distance (3 m to 30 m) and the angular spacing between the locations being compared (2°, 5°, and 10°). Measurements were made for binocular and monocular viewing. Thresholds for binocular viewing were quite small at all distances (Weber fractions less than 1% at 2° spacing and less than 4% at 10° spacing). Thresholds for monocular viewing were higher than those for binocular viewing out to distances of 15-20 m, beyond which they were the same. Using standard cue-combination analysis, we also estimated what the thresholds would be based on binocular-stereo cues alone. With two exceptions, we show that the entire pattern of results is consistent with what one would expect from classical studies of binocular disparity thresholds and separation/size discrimination thresholds measured with simple laboratory stimuli. The first exception is some deviation from the expected pattern at close distances (especially for monocular viewing). The second exception is that thresholds in natural scenes are lower, presumably because of the rich figural cues contained in natural images.
Collapse
Affiliation(s)
- Brian C McCann
- Texas Advanced Computing Center, Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Mary M Hayhoe
- Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Wilson S Geisler
- Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Non-visually-guided distance perception depends on matching torso fluctuations between training and test. Atten Percept Psychophys 2017; 78:2320-2328. [PMID: 27739017 DOI: 10.3758/s13414-016-1213-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Blindwalking to replicate an instructed distance requires various sensory signals. Recent evidence in movement science across many organisms suggests that multifractal organization of connective tissue supports the use of these signals. Multifractal structure is a multiplicity of power laws defining distribution of proportion across many time scales that helps predict judgments of the objects' length. Present work tests whether the multifractal structure in postural accelerometry during blindwalking predicts blindwalking distance replications. Ten undergraduate student participants each completed 20 trials of distance-perception each comprising two laps. On each Lap 1, experimenters led participants to walk on any of five prescribed distances, randomly assigning half to walk Lap 1 with eyes open and another half to walked Lap 1 with eyes closed. On Lap 2, all participants walked with eyes closed to replicate instructed distances from Lap 1. We collected postural accelerometry from the torso during each lap. Regression modeling showed that multifractality of postural accelerometry on both Lap 1 and Lap 2 contributed significantly to Lap-2 blindwalking responses. According to this model, more accurate Lap-2 replications of Lap-1 distance came from eyes-closed participants whose posture had comparable multifractality on both laps. Multifractality provides insights into the sequence of exploratory behaviors for blindwalking responses to distance perception.
Collapse
|
12
|
Pulling out all the stops to make the distance: Effects of effort and optical information in distance perception responses made by rope pulling. Atten Percept Psychophys 2015; 78:685-99. [DOI: 10.3758/s13414-015-1035-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
13
|
Abstract
Distance is commonly underperceived by up to 50 % in virtual environments (VEs), in contrast to relatively accurate real world judgments. Experiments reported by Geuss, Stefanucci, Creem-Regehr, and Thompson (Journal of Experimental Psychology: Human Perception and Performance, 38, 1242-1253, 2012) indicate that the exocentric distance separating two objects in a VE is underperceived when the objects are oriented in the sagittal plane (depth extents), but veridically perceived when oriented in a frontoparallel plane (frontal extents). The authors conclude that "distance underestimation in the [VE] generalizes to intervals in the depth plane, but not to intervals in the frontal plane." The current experiment evaluated an alternative hypothesis that the accurate judgments of frontal extents reported by Geuss et al. were due to a fortunate balance of underperception caused by the VE and overperception of frontal relative to depth extents. Participants judged frontal and depth extents in the classroom VE used by Geuss et al. and in a sparser VE containing only a grass-covered ground plane. Judgments in the classroom VE replicated findings by Geuss et al., but judgments in the grass VE show underperception of both depth and frontal extents, indicating that frontal extents are not immune to underperception in VEs.
Collapse
|
14
|
Wu J, Zhou L, Shi P, He ZJ, Ooi TL. The visible ground surface as a reference frame for scaling binocular depth of a target in midair. J Exp Psychol Hum Percept Perform 2014; 41:111-26. [PMID: 25384237 DOI: 10.1037/a0038287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The natural ground surface carries texture information that extends continuously from one's feet to the horizon, providing a rich depth resource for accurately locating an object resting on it. Here, we showed that the ground surface's role as a reference frame also aids in locating a target suspended in midair based on relative binocular disparity. Using real world setup in our experiments, we first found that a suspended target is more accurately localized when the ground surface is visible and the observer views the scene binocularly. In addition, the increased accuracy occurs only when the scene is viewed for 5 s rather than 0.15 s, suggesting that the binocular depth process takes time. Second, we found that manipulation of the configurations of the texture-gradient and/or linear-perspective cues on the visible ground surface affects the perceived distance of the suspended target in midair. Third, we found that a suspended target is more accurately localized against a ground texture surface than a ceiling texture surface. This suggests that our visual system uses the ground surface as the preferred reference frame to scale the distance of a suspended target according to its relative binocular disparity.
Collapse
Affiliation(s)
- Jun Wu
- Department of Psychological and Brain Sciences
| | - Liu Zhou
- Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University
| | - Pan Shi
- Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University
| | | | | |
Collapse
|
15
|
Going for distance and going for speed: Effort and optical variables shape information for distance perception from observation to response. Atten Percept Psychophys 2014; 76:1015-35. [DOI: 10.3758/s13414-014-0629-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Wu J, He ZJ, Ooi TL. The visual system's intrinsic bias influences space perception in the impoverished environment. J Exp Psychol Hum Percept Perform 2013; 40:626-38. [PMID: 23750965 DOI: 10.1037/a0033034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A dimly lit target in the intermediate distance in the dark is judged at the intersection between the target's projection line from the eye to its physical location and an implicit slanted surface, which is the visual system's intrinsic bias. We hypothesize that the intrinsic bias also contributes to perceptual space in the impoverished environment. We first showed that a target viewed against sparse texture elements delineating the horizontal ground surface in the dark is localized along an implicit slanted surface that is less slanted than that of the intrinsic bias, reflecting the weighted integration of the weak texture information and intrinsic bias. We also showed that while the judged egocentric locations are similar between 0.15- to 5-s exposure durations, the judged precision improves with duration. Furthermore, the precision for the judged target angular declination does not vary with the physical angular declination and is better than the precision of the eye-to-target distance. Second, we used both action and perceptual tasks to directly reveal the perceived surface slant. Confirming our hypothesis, we found that an L-shaped target on the horizontal ground with sparse texture information is perceived with a slant that is less than that of the intrinsic bias.
Collapse
Affiliation(s)
- Jun Wu
- Department of Psychological and Brain Sciences, University of Louisville
| | - Zijiang J He
- Department of Psychological and Brain Sciences, University of Louisville
| | - Teng Leng Ooi
- Department of Basic Sciences, Pennsylvania College of Optometry, Salus University
| |
Collapse
|
17
|
Zhou L, He ZJ, Ooi TL. The visual system's intrinsic bias and knowledge of size mediate perceived size and location in the dark. J Exp Psychol Learn Mem Cogn 2013; 39:1930-42. [PMID: 23751007 DOI: 10.1037/a0033088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dimly lit targets in the dark are perceived as located about an implicit slanted surface that delineates the visual system's intrinsic bias (Ooi, Wu, & He, 2001). If the intrinsic bias reflects the internal model of visual space-as proposed here-its influence should extend beyond target localization. Our first 2 experiments demonstrated that the intrinsic bias also influences perceived target size. We employed a size-matching task and an action task to measure the perceived size of a dimly lit target at various locations in the dark. Then using the size distance invariance hypothesis along with the accurately perceived target angular declination, we converted the perceived sizes to locations. We found that the derived locations from the size judgment tasks can be fitted by slanted curves that resemble the intrinsic bias profile from judged target locations. Our third experiment revealed that armed with the explicit knowledge of target size, an observer perceives target locations in the dark following an intrinsic bias-like profile that is shifted slightly farther from the observer than the profile obtained without knowledge of target size (i.e., slightly more veridical). Altogether, we showed that the intrinsic bias serves as an internal model, or memory, of ground surface layouts when the visual system cannot rely on external depth information. This memory/model can also be weakly influenced by top-down knowledge.
Collapse
Affiliation(s)
- Liu Zhou
- Institute of Cognitive Neuroscience, The School of Psychology and Cognitive Science, East China Normal University
| | | | | |
Collapse
|
18
|
Abstract
The present study examined whether the compression of perceived visual space varies according to the type of environmental surface being viewed. To examine this issue, observers made exocentric distance judgments when viewing simulated 3D scenes. In 4 experiments, observers viewed ground and ceiling surfaces and performed either an L-shaped matching task (Experiments 1, 3, and 4) or a bisection task (Experiment 2). Overall, we found considerable compression of perceived exocentric distance on both ground and ceiling surfaces. However, the perceived exocentric distance was less compressed on a ground surface than on a ceiling surface. In addition, this ground surface advantage did not vary systematically as a function of the distance in the scene. These results suggest that the perceived visual space when viewing a ground surface is less compressed than the perceived visual space when viewing a ceiling surface and that the perceived layout of a surface varies as a function of the type of the surface.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
19
|
Bian Z, Andersen GJ. The advantage of a ground surface in the representation of visual scenes. J Vis 2010; 10:16. [PMID: 20884591 DOI: 10.1167/10.8.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The present study used change detection tasks to examine whether there is an advantage of a ground surface in representing visual scenes. In 6 experiments, a flicker paradigm (Experiments 1 through 4) or a one-shot paradigm (Experiments 5 and 6) was used to examine whether changes on a ground surface were easier to detect than changes on a ceiling surface. Overall, we found that: (1) there was an advantage in detecting changes on a ground surface or changes to objects on a ground surface; (2) this advantage was dependent on the presence of a coherent ground surface; (3) this advantage could propagate to objects connected to the ground surface through "nested" contact relations; (4) this advantage was mainly due to improved encoding rather than improved retrieval and comparison of the ground surface; and (5) this advantage was dependent on the presentation duration of the scene but not the number of objects presented in the scene. Together, these results suggest a unique role of the ground surface in organizing visual scenes.
Collapse
Affiliation(s)
- Zheng Bian
- Department of Psychology, University of California, Riverside, Riverside, CA 92521, USA.
| | | |
Collapse
|
20
|
Li Z, Durgin FH. Perceived slant of binocularly viewed large-scale surfaces: a common model from explicit and implicit measures. J Vis 2010; 10:13. [PMID: 21188784 PMCID: PMC3156410 DOI: 10.1167/10.14.13] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It is known that the perceived slants of large distal surfaces, such as hills, are exaggerated and that the exaggeration increases with distance. In a series of two experiments, we parametrically investigated the effect of viewing distance and slant on perceived slant using a high-fidelity virtual environment. An explicit numerical estimation method and an implicit aspect-ratio approach were separately used to assess the perceived optical slant of simulated large-scale surfaces with different slants and viewing distances while gaze direction was fixed. The results showed that perceived optical slant increased logarithmically with viewing distance and the increase was proportionally greater for shallow slants. At each viewing distance, perceived optical slant could be approximately fit by linear functions of actual slant that were parallel across distances. These linear functions demonstrated a fairly constant gain of about 1.5 and an intercept that increased logarithmically with distance. A comprehensive three-parameter model based on the present data provides a good fit to a number of previous empirical observations measured in real environments.
Collapse
Affiliation(s)
- Zhi Li
- Department of Psychology, Swarthmore College, USA.
| | | |
Collapse
|
21
|
The linear perspective information in ground surface representation and distance judgment. ACTA ACUST UNITED AC 2007; 69:654-72. [PMID: 17929690 DOI: 10.3758/bf03193769] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|