1
|
Sengupta A, Goyal P, Prava Mantry S, Sundararajan M, Kumar Verma P, Kumar Mohapatra P. Remarkably High Separation of Neodymium from Praseodymium by Selective Dissolution from their Oxide Mixture using an Ionic Liquid Containing aβ-Diketone. Chemistry 2024; 30:e202303923. [PMID: 38314903 DOI: 10.1002/chem.202303923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
A simple, efficient, direct and economical method for the mutual separation of Nd and Pr was developed by the selective dissolution of Nd2O3 from their oxide mixtures in an ionic liquid containing 2-thenoyltrifluoroacetone (HTTA) resulting in an unprecedented separation factor (βNd/Pr)>500, which is 277 times more than the thus far reported βNd/Pr values. The proposed mechanism was supported by DFT computations.
Collapse
Affiliation(s)
- Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400085, India
| | - Priya Goyal
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Swarna Prava Mantry
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Mahesh Sundararajan
- Homi Bhabha National Institute, Mumbai, 400085, India
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Parveen Kumar Verma
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Prasanta Kumar Mohapatra
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400085, India
| |
Collapse
|
2
|
Geysens P, Tie D, Vlad A, Fransaer J, Binnemans K. Fluorine-free organic electrolytes for the stable electrodeposition of neodymium metal. Phys Chem Chem Phys 2023; 25:21397-21407. [PMID: 37530427 DOI: 10.1039/d3cp01262j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Electrowinning is regarded as a clean process to recover neodymium metal from secondary sources such as spent Nd-Fe-B permanent magnets, but the current methods are severely limited by a high energy consumption (molten salts), or by the high costs and environmental impact of the electrolyte components (ionic liquids). Therefore, there is a demand for more sustainable electrowinning methods for the recovery of neodymium metal. Inspired by our own previous work and the work of others, we developed new fluorine-free organic electrolytes that enable the electrodeposition of neodymium metal at room temperature. The electrolytes consist of solvated neodymium borohydride, Nd(BH4)3, dissolved in the ether solvents tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), 1,2-dimethoxyethane (DME) and diethylene glycol dimethyl ether (diglyme, G2), and these complexes can be prepared entirely from non-fluorinated precursors such as neodymium(III) chloride (NdCl3) and sodium borohydride (NaBH4). In contrast to our previous bis(trifluoromethylsulfonyl)imide-containing electrolytes, electrodeposition of neodymium proceeds over time without significant loss of current density, indicating a higher stability against unwanted side-reactions that lead to passivation of the deposit on the electrode. Characterization of the deposits by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence (EDX), and X-ray photoelectron spectroscopy (XPS) unambiguously indicated the presence of neodymium metal.
Collapse
Affiliation(s)
- Pieter Geysens
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. box 2404, B-3001 Leuven, Belgium.
| | - Da Tie
- UC Louvain, Institute of Condensed Matter and Nanosciences, Place L. Pasteur 1, Lavoisier Building, B-1348 Louvain-la-Neuve, Belgium
| | - Alexandru Vlad
- UC Louvain, Institute of Condensed Matter and Nanosciences, Place L. Pasteur 1, Lavoisier Building, B-1348 Louvain-la-Neuve, Belgium
| | - Jan Fransaer
- KU Leuven, Department of Materials Engineering, Kasteelpark 44, P.O. box 2450, B-3001 Leuven, Belgium
| | - Koen Binnemans
- KU Leuven, Department of Chemistry, Celestijnenlaan 200F, P.O. box 2404, B-3001 Leuven, Belgium.
| |
Collapse
|
3
|
Renier O, Bousrez G, Smetana V, Mudring AV, Rogers RD. Investigation of the role of hydrogen bonding in ionic liquid-like salts with both N- and S-soft donors. CrystEngComm 2023. [DOI: 10.1039/d2ce00961g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ionic liquid or not: hydrogen bonds such as the relatively rare N–H⋯S hydrogen bond lead in ionic liquid forming ion combinations to higher melting temperatures and lower decomposition points.
Collapse
Affiliation(s)
- Olivier Renier
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Guillaume Bousrez
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Volodymyr Smetana
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
| | - Anja-Verena Mudring
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Department of Chemistry and iNANO, 253 Aarhus University, 8000 Aarhus C, Denmark
| | - Robin D. Rogers
- Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA
| |
Collapse
|
4
|
Molodkina EB, Ehrenburg MR, Rudnev AV. Electrochemical Codeposition of Sm and Co in a Dicyanamide Ionic Liquid. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Molodkina EB, Ehrenburg MR, Rudnev AV. Accelerating effect of water on electroreduction of lanthanide ions in a dicyanamide ionic liquid: A generic phenomenon. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Studies toward the Use of Ionic Liquids and Supercritical CO2 for the Recovery and Separation of Praseodymium from Waste Streams. Catalysts 2022. [DOI: 10.3390/catal12030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Waste streams from the incineration of metal-containing materials like such as computer processor boards and batteries may contain critical rare earth elements like praseodymium. Data on the solubility of Pr compounds and on their distribution coefficients in supercritical CO2/ionic liquid two-phase systems are important to determine if an ionic liquid/supercritical CO2 two-phase approach is feasible toward the recovery of a particular metal. This work provides data on the solubility of various praseodymium compounds in butyl-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPyTf2N) ionic liquid and on the distribution coefficients of these praseodymium compounds in the supercritical CO2 phase of the two-phase BMPyTf2N ionic liquid/supercritical CO2 system, with and without a tributyl phosphate additive.
Collapse
|
7
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
8
|
Molodkina EB, Ehrenburg MR, Arkhipushkin IA, Rudnev AV. Interfacial effects in the electro(co)deposition of Nd, Fe, and Nd-Fe from an ionic liquid with controlled amount of water. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Lebedeva O, Kultin D, Kustov L. Electrochemical Synthesis of Unique Nanomaterials in Ionic Liquids. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3270. [PMID: 34947620 PMCID: PMC8705126 DOI: 10.3390/nano11123270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022]
Abstract
The review considers the features of the processes of the electrochemical synthesis of nanostructures in ionic liquids (ILs), including the production of carbon nanomaterials, silicon and germanium nanoparticles, metallic nanoparticles, nanomaterials and surface nanostructures based on oxides. In addition, the analysis of works on the synthesis of nanoscale polymer films of conductive polymers prepared using ionic liquids by electrochemical methods is given. The purpose of the review is to dwell upon an aspect of the applicability of ILs that is usually not fully reflected in modern literature, the synthesis of nanostructures (including unique ones that cannot be obtained in other electrolytes). The current underestimation of ILs as an electrochemical medium for the synthesis of nanomaterials may limit our understanding and the scope of their potential application. Another purpose of our review is to expand their possible application and to show the relative simplicity of the experimental part of the work.
Collapse
Affiliation(s)
- Olga Lebedeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.L.); (D.K.)
| | - Dmitry Kultin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.L.); (D.K.)
| | - Leonid Kustov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (O.L.); (D.K.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Institute of Ecology and Engineering, National Science and Technology University “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| |
Collapse
|
10
|
Kshirsagar A, Verma PK, Murali MS. New hydrophobic DES based on tri–n-octylphosphine oxide and dicarboxylic acids: synthesis, spectroscopy and liquid–liquid extraction of actinides. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
|
12
|
Zhang T, Doert T, Wang H, Zhang S, Ruck M. Inorganic Synthesis Based on Reactions of Ionic Liquids and Deep Eutectic Solvents. Angew Chem Int Ed Engl 2021; 60:22148-22165. [PMID: 34032351 PMCID: PMC8518931 DOI: 10.1002/anie.202104035] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 02/03/2023]
Abstract
Ionic liquids and deep eutectic solvents are of growing interest as solvents for the resource‐efficient synthesis of inorganic materials. This Review covers chemical reactions of various deep eutectic solvents and types of ionic liquids, including metal‐containing ionic liquids, [BF4]−‐ or [PF6]−‐based ionic liquids, basic ionic liquids, and chalcogen‐containing ionic liquids. Cases in which cations, anions, or both are incorporated into the final products are also included. The purpose of this Review is to raise caution about the chemical reactivity of ionic liquids and deep eutectic solvents and to establish a guide for their proper use.
Collapse
Affiliation(s)
- Tao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Thomas Doert
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, 100190, Beijing, China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, 100190, China
| | - Michael Ruck
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.,Max Planck Institute for Chemical Physics of Solids, 01187, Dresden, Germany
| |
Collapse
|
13
|
Zhang T, Doert T, Wang H, Zhang S, Ruck M. Ionische Flüssigkeiten und stark eutektische Lösungsmittel in der anorganischen Synthese. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences Beijing 100190 China
| | - Thomas Doert
- Fakultät für Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Deutschland
| | - Hui Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences Beijing 100190 China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process CAS Key Laboratory of Green Process and Engineering Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing China
- Innovation Academy for Green Manufacture Chinese Academy of Sciences Beijing 100190 China
| | - Michael Ruck
- Fakultät für Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Deutschland
- Max-Planck-Institut für Chemische Physik fester Stoffe 01187 Dresden Deutschland
| |
Collapse
|
14
|
Electrochemical properties of Ln(III) (Ln = Ce, Gd) in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Ehrenburg MR, Molodkina EB, Mishchenko A, Rudnev AV. The promoting effect of water on the electrodeposition of Eu in a dicyanamide ionic liquid. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Park SJ, Joo MH, Hong SM, Kang JG, Rhee CK, Lee SW, Sohn Y. Electrochemical Eu(iii) behaviours and Eu oxysulfate recovery over terpyridine-functionalized indium tin oxide electrodes. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01342k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Eu element was recovered as EuSO4 over new terpyridine-functionalized ITO by an electrochemical method and luminescent Eu2O2SO4 was obtained by post-thermal annealing.
Collapse
Affiliation(s)
- So Jeong Park
- Department of Chemistry
- Chungnam National University
- Daejeon 34134
- Republic of Korea
| | - Min Hee Joo
- Department of Chemistry
- Chungnam National University
- Daejeon 34134
- Republic of Korea
- Department of Chemical Engineering and Applied Chemistry
| | - Sung-Min Hong
- Department of Chemistry
- Chungnam National University
- Daejeon 34134
- Republic of Korea
- Department of Chemical Engineering and Applied Chemistry
| | - Jun-Gill Kang
- Department of Chemistry
- Chungnam National University
- Daejeon 34134
- Republic of Korea
- IDK
| | - Choong Kyun Rhee
- Department of Chemistry
- Chungnam National University
- Daejeon 34134
- Republic of Korea
| | - Sung Woo Lee
- Central Laboratory Center
- Hankyung National University
- Anseong
- Republic of Korea
| | - Youngku Sohn
- Department of Chemistry
- Chungnam National University
- Daejeon 34134
- Republic of Korea
- Department of Chemical Engineering and Applied Chemistry
| |
Collapse
|