1
|
Li S, Wang Z, Pan Y, Sun C, Li E, Gilbert RG. Effects of amylose and amylopectin molecular structures on the emulsification performance of starch nanoparticles. Int J Biol Macromol 2025; 308:142717. [PMID: 40174839 DOI: 10.1016/j.ijbiomac.2025.142717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/30/2025] [Indexed: 04/04/2025]
Abstract
Starch nanoparticles have increasing applications as emulsion stabilizers in functional foods and drug delivery. The effects of amylose and amylopectin molecular structures on the emulsification performance of starch nanoparticles obtained from anti-solvent precipitation are explored here. From size-exclusion chromatography results, ten different starch nanoparticles with distinct molecular structures possessed a molecular size ranging from 63 nm to 111 nm. Rice-starch nanoparticles showed near-neutral wettability (contact angle 90.25°) with 100 % emulsifying stability index (ESI). Correlation analysis indicated that the maximum size of the amylopectin component was positively associated with ESI, while the amount of amylopectin long chains and the lengths of amylose short chains negatively correlated with ESI. Mechanistic reasons for these observations are put forward. These findings can help design new emulsifiers using starch nanoparticles, and development of "clean-label" (i.e. having relatively few ingredients, "natural" ingredients, and few synthetic additives) food emulsions.
Collapse
Affiliation(s)
- Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zihan Wang
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Yujun Pan
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Chaohui Sun
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China
| | - Enpeng Li
- Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Robert G Gilbert
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu 225009, China; Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agri-cultural College of Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China; The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Yan H, Cheng L, Si Z, Zhang M, Zhao X, Wang X, Zhang D, Cui L. Influence of γ irradiation on the physicochemical properties of tapioca granular starch-ascorbyl palmitate complexes. Int J Biol Macromol 2025; 307:142111. [PMID: 40089225 DOI: 10.1016/j.ijbiomac.2025.142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
The original starch was irradiated with γ-rays at doses ranging from 0 to 10 kGy to investigate how irradiation influences the formation of tapioca granular starch-ascorbyl palmitate (TGS-AP) complexes. The results indicated that the pretreatment of tapioca starch with appropriate irradiation doses effectively increased the content of AP encapsulated in the complex, and the loading efficiency increased from 22.74 % (0 kGy) to a maximum of 32.95 % (2.5 kGy). Compared with the control complexes, the rapid visco analyzer (RVA) pasting profiles of the TGS-AP complexes changed significantly, with new viscosity peaks appearing during the cooling and holding stages. The swelling power, relative crystallinity, and thermal stability of the complexes were remarkably elevated to maximum increases of 116.50 %, 21.45 %, and 82.61 %, respectively, and the melting enthalpies of the complexes increased slightly after the native tapioca starch was subjected to irradiation. This study could serve as a basis for the development of a green and efficient process for the production of starch-lipid complexes.
Collapse
Affiliation(s)
- Huili Yan
- Isotope Institute Co., Ltd., Henan Academy of Sciences, 169 Songshan South Road, Zhengzhou 450015, China; Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China.
| | - Liping Cheng
- Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China; Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Zehui Si
- Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China; Henan University, 379 North Section of Mingli Road, Zhengzhou 450046, China
| | - Mengyuan Zhang
- Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China; Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xilong Zhao
- Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China; Henan University of Technology, 100 Lianhua Road, Zhengzhou 450001, China
| | - Xian Wang
- Isotope Institute Co., Ltd., Henan Academy of Sciences, 169 Songshan South Road, Zhengzhou 450015, China
| | - Dong Zhang
- Isotope Institute Co., Ltd., Henan Academy of Sciences, 169 Songshan South Road, Zhengzhou 450015, China; Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China
| | - Long Cui
- Isotope Institute Co., Ltd., Henan Academy of Sciences, 169 Songshan South Road, Zhengzhou 450015, China; Henan Academy of Sciences, 228 Chongshili Road, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Moreno-Zaragoza J, Alvarez-Ramirez J, Dhital S, Bello-Pérez LA. Chromatographic analysis of branched and debranched starch structure: Variability of their results. Int J Biol Macromol 2024; 281:136639. [PMID: 39419136 DOI: 10.1016/j.ijbiomac.2024.136639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Starch structure determination is crucial for understanding its properties and applications. However, method-dependent variations in size determination can lead to ambiguous interpretations. This study investigates the ambiguities in starch structure determination by evaluating the variation in size of four commercial branched starches as determined by average molar mass, gyration radius, hydrodynamic radius, and chain-length distribution. The starches were analyzed using high-performance size-exclusion chromatography (HPSEC) coupled with multi-angle laser light scattering (MALLS) and refractive index detector (RI), and after debranching by HPSEC-RI and high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detector (PAD). MALLS-derived MW values for amylose and amylopectin were higher than those obtained using the hydrodynamic volume method. The molecular weight of amylopectin chains, determined by the degree of polymerization (DP), ranged between 2.1 and 2.9 × 103 g/mol for short chains, and between 4.1 × 103 and 1.1 × 104 g/mol for long chains. Differences in amylopectin chain content were observed between HPSEC-RI and HPAEC-PAD, highlighting the complementary nature of these techniques. The study underscores the need for standardizing chromatography-based methodologies in starch research, particularly with the advent of new technologies.
Collapse
Affiliation(s)
- Josue Moreno-Zaragoza
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos 62731, Mexico
| | - Jose Alvarez-Ramirez
- Departamento de ingeniería de Procesos e hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa 09340, Mexico
| | - Sushil Dhital
- Bioprocess Processing Research Institute of Australia (BioPRIA), Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Luis A Bello-Pérez
- Instituto Politécnico Nacional (IPN), Centro de Desarrollo de Productos Bióticos (CEPROBI), Yautepec, Morelos 62731, Mexico.
| |
Collapse
|
4
|
Sudheesh C, Varsha L, Siddiqui SA, Sunooj KV, Pillai S. Exploring urea as a prospective auxiliary for starch functionalization: A concise review on modified starch properties and the sustainable packaging films. Food Chem 2024; 455:139914. [PMID: 38823124 DOI: 10.1016/j.foodchem.2024.139914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Urea is also known as carbamide, an inexpensive and eco-friendly additive for starch functionalization. This article reviews the potential role of urea in starch modification, with the prominence of the mechanism of urea action, alterations in the starch structure and functional properties. In addition, current literature conveys the prospective effect of urea in fabricating starch films for food packaging, and the relevant areas that need to be covered in the forthcoming research are specified at the end of the article section. Urea can modify the diverse physico-chemical and functional properties of starch. Starch-based films exhibit pronounced effects on their mechanical and barrier properties upon the incorporation of urea, although this effect strongly depends on the urea content and degree of substitution (DS). Overall, urea holds great potential for use in the starch and bioplastic film industries, as it produces biocompatible derivatives with desirable performance.
Collapse
Affiliation(s)
- Cherakkathodi Sudheesh
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India.
| | - Latha Varsha
- Department of Food Science and Technology, Pondicherry University, Puducherry 605014, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610 D-Quakenbrück, Germany
| | | | - Saju Pillai
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Vayachuta L, Leang M, Ruamcharoen J, Thiramanas R, Prateepchinda S, Prompinit P, Du-a-man S, Wisutthathum S, Waranuch N. Printable-Microencapsulated Ascorbic Acid for Personalized Topical Delivery. ACS APPLIED BIO MATERIALS 2023; 6:5385-5398. [PMID: 37981740 PMCID: PMC10731657 DOI: 10.1021/acsabm.3c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
This study presents the successful development of printable-microencapsulated ascorbic acid (AA) for personalized topical delivery using laser printing technology. Rice flour with a 10% AA content was selected as an encapsulation material. Hydrophobic nanosilica was used to create negative electrostatic charges on the microencapsulated surfaces via a high-speed mixture. This process facilitated the microencapsulated AA fabrication using a commercial laser printer and produced a well-patterned design with some minor print defects, such as banding and scattering. The amount of encapsulated AA per area was 0.28 mg/cm2, and the RGB color code was 0,0,0. An emulsion carrier system comprising pentylene glycol (P5G) or diethylene glycol monoethyl ether (DEGEE), Tween 20, oleic acid, and deionized (DI) water at a ratio of 20:30:30:20 was developed to enhance AA transmission into the skin. The Franz diffusion cell technique was used to investigate topical absorption on Strat-M membranes using P5G and DEGEE as enhancers. The steady-state fluxes were 8.40 (±0.64) and 10.04 (±0.58) μg/h/cm2 for P5G and DEGEE, respectively. Cytotoxicity tests conducted on fibroblast cells revealed low cytotoxicity for the encapsulation products and carriers.
Collapse
Affiliation(s)
- Lapporn Vayachuta
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Meyphong Leang
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Jareerat Ruamcharoen
- Faculty
of Science and Technology, Prince of Songkla
University, Muang, Pattani 94000, Thailand
| | - Raweewan Thiramanas
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Sagaw Prateepchinda
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Panida Prompinit
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Sakkarin Du-a-man
- National
Nanotechnology Center (NANOTEC), National
Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani 12120, Thailand
| | - Sutthinee Wisutthathum
- Cosmetics
and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Neti Waranuch
- Cosmetics
and Natural Products Research Center, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
6
|
Xing B, Yang X, Zou L, Liu J, Liang Y, Li M, Zhang Z, Wang N, Ren G, Zhang L, Qin P. Starch chain-length distributions determine cooked foxtail millet texture and starch physicochemical properties. Carbohydr Polym 2023; 320:121240. [PMID: 37659823 DOI: 10.1016/j.carbpol.2023.121240] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 09/04/2023]
Abstract
Starch chain-length distributions play an important role in controlling cereal product texture and starch physicochemical properties. Cooked foxtail millet texture and starch physicochemical properties were investigated and correlated with starch chain-length distributions in eight foxtail millet varieties. The average chain lengths of amylopectin and amylose were in the range of DP 24-25 and DP 878-1128, respectively. The percentage of short amylopectin chains (Ap1) was negatively correlated with hardness but positively correlated with adhesiveness and cohesion. Conversely, the amount of amylose intermediate chains was positively correlated with hardness but negatively correlated with adhesiveness and cohesion. Additionally, the amount of amylose long chains was negatively correlated with adhesiveness and chewiness. The relative crystallinity (RC) of starch decreased with reductions in the length of amylopectin short chains in foxtail millet. Pasting properties were mainly influenced by the relative length of amylopectin side chains and the percentage of long amylopectin branches (Ap2). Longer amylopectin long chains resulted in lower gelatinization temperature and enthalpy (ΔH). The amount of starch branched chains had important effects on the gelatinization temperature range (ΔT). These results can provide guidance for breeders and food scientists in the selection of foxtail millet with improved quality properties.
Collapse
Affiliation(s)
- Bao Xing
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jingke Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yongqiang Liang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengzhuo Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhuo Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Nuo Wang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guixing Ren
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Lizhen Zhang
- School of Life Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| | - Peiyou Qin
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| |
Collapse
|
7
|
Kanth S, Malgar Puttaiahgowda Y, Kulal A. Synthesis, characterization, and antimicrobial activities of a starch-based polymer. Carbohydr Res 2023; 532:108900. [PMID: 37459722 DOI: 10.1016/j.carres.2023.108900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/28/2023]
Abstract
Due to the rise of nosocomial infections and the increasing threat of antibiotic resistance, new techniques are required to combat bacteria and fungi. Functional antimicrobial biodegradable materials developed from low-cost renewable resources like polysaccharides would enable greater applications in this regard. Our group has developed and characterized a new antimicrobial polymer using commercially available N-ethyl piperazine and starch via simple one-pot method. The prepared antimicrobial polymer was characterized by FTIR and NMR. In addition, the thermal properties of the synthesized antimicrobial polymer were examined through TGA and DSC. The antimicrobial potential of the prepared material was investigated using the bacteria, Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis and a fungi Candida albicans. The result indicates that, as the amount of polymer increases, the antimicrobial activity also increases. SA-E-NPz exhibited a zone of inhibition in the range of 8-13 mm, and the MIC was found to be < 0.625 mg against all four microbes. The antimicrobial activity of polymer coated on fabric was also studied. Furthermore, the cytotoxicity studied against human fibroblast cell lines showed that the prepared polymer is non-toxic to the cells. The study concluded that the synthesized polymer shows good antimicrobial activity, is non-toxic to human fibroblast cells, and thus can be used for wound dressing or textile applications.
Collapse
Affiliation(s)
- Shreya Kanth
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Ananda Kulal
- Biological Sciences Division, Poornaprajna Institute of Scientific Research, Devanahalli, Bangalore, 562 110, Karnataka, India
| |
Collapse
|
8
|
Yamaguchi A, Arai S, Arai N. Molecular insight into toughening induced by core-shell structure formation in starch-blended bioplastic composites. Carbohydr Polym 2023; 315:120974. [PMID: 37230615 DOI: 10.1016/j.carbpol.2023.120974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Binary and ternary blends with poly(lactic acid) (PLA), poly(butylene succinate) (PBS), and thermoplastic starch (TPS) were prepared by a melt process to produce biodegradable biomass plastics with both economical and good mechanical properties. The mechanical and structural properties of each blend were evaluated. Molecular dynamics (MD) simulations were also conducted to examine the mechanisms underlying the mechanical and structural properties. PLA/PBS/TPS blends showed improved mechanical properties compared with PLA/TPS blends. The PLA/PBS/TPS blends with a TPS ratio of 25-40 wt% showed higher impact strength than PLA/PBS blends. Morphology observations showed that in the PLA/PBS/TPS blends, a structure similar to that of core-shell particles with TPS as the embedding phase and PBS as the coating phase was formed, and that the trends in morphology and impact strength changes were consistent. The MD simulations suggested that PBS and TPS tightly adhered to each other in a stable structure at a specific intermolecular distance. From these results, it is clear that PLA/PBS/TPS blends are toughened by the formation of a core-shell structure in which the TPS core and the PBS shell adhered well together and stress concentration and energy absorption occurred in the vicinity of the core-shell structure.
Collapse
Affiliation(s)
- Akihiro Yamaguchi
- Circular Industries Research Department, Production Engineering and MONOZUKURI Innovation Center, Research and Development Group, Hitachi, Ltd., 2-9-2, Yoshida, Totsuka, Yokohama, Kanagawa 244-0817, Japan; Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| | - Satoshi Arai
- Material and Solution Department, Supply Chain Resilience Division, Hitachi High-Tech Corp., 1-17-1, Toranomon, Minato, Tokyo 105-6409, Japan.
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
9
|
Yan H, Cui L, Wang X, Zhang D, Feng W, Chen Y. Encapsulation of ascorbyl palmitate in maize granular starch through an irradiation–hydrothermal method. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
10
|
Mao Y, Shi J, Cai L, Hwang W, Shi YC. Microstructures of Starch Granules with Different Amylose Contents and Allomorphs as Revealed by Scattering Techniques. Biomacromolecules 2023; 24:1980-1993. [PMID: 36716424 DOI: 10.1021/acs.biomac.2c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, as-is (ca. 12% moisture by mass) and hydrated (50% water by mass) granules of waxy potato (WP), waxy wheat (WW), waxy maize, normal maize, and high-amylose maize (HAM) starches were investigated by using small-angle neutron and X-ray scattering (SANS and SAXS), wide-angle X-ray scattering, and ultra-small-angle neutron scattering. The SANS and SAXS data were fitted using the two-phase stacking model of alternating crystalline and amorphous layers. The partial crystalline lamellar structures inside the growth rings of granules were analyzed based on the inter-lamellar distances, thicknesses of the crystalline lamellae and amorphous layers, thickness polydispersities, and water content in each type of layer. Despite having a longer average chain length of amylopectin, the WP and HAM starches, which had B-type allomorph, had a shorter inter-lamellar distance than the other three starches with A-type allomorph. The WP starch had the most uniform crystalline lamellar thickness. After hydration, the amorphous layers were expanded, resulting in an increase of inter-layer distance. The low-angle intensity upturn in SANS and SAXS was attributed to scattering from interfaces/surfaces of larger structures, such as growth rings and macroscopic granule surfaces. Data analysis methods based on model fitting and 1D correlation function were compared. The study emphasized─owing to inherent packing disorder inside granules─that a comprehensive analysis of different parameters was essential in correlating the microstructures with starch properties.
Collapse
Affiliation(s)
- Yimin Mao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Jialiang Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Liming Cai
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| | - Wonseok Hwang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas66506, United States
| |
Collapse
|
11
|
Effects of amylose and amylopectin molecular structures on rheological, thermal and textural properties of soft cake batters. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Pfister B, Shields JM, Kockmann T, Grossmann J, Abt MR, Stadler M, Zeeman SC. Tuning heterologous glucan biosynthesis in yeast to understand and exploit plant starch diversity. BMC Biol 2022; 20:207. [PMID: 36153520 PMCID: PMC9509603 DOI: 10.1186/s12915-022-01408-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Background Starch, a vital plant-derived polysaccharide comprised of branched glucans, is essential in nutrition and many industrial applications. Starch is often modified post-extraction to alter its structure and enhance its functionality. Targeted metabolic engineering of crops to produce valuable and versatile starches requires knowledge of the relationships between starch biosynthesis, structure, and properties, but systematic studies to obtain this knowledge are difficult to conduct in plants. Here we used Saccharomyces cerevisiae as a testbed to dissect the functions of plant starch biosynthetic enzymes and create diverse starch-like polymers. Results We explored yeast promoters and terminators to tune the expression levels of the starch-biosynthesis machinery from Arabidopsis thaliana. We systematically modulated the expression of each starch synthase (SS) together with a branching enzyme (BE) in yeast. Protein quantification by parallel reaction monitoring (targeted proteomics) revealed unexpected effects of glucan biosynthesis on protein abundances but showed that the anticipated broad range of SS/BE enzyme ratios was maintained during the biosynthetic process. The different SS/BE ratios clearly influenced glucan structure and solubility: The higher the SS/BE ratio, the longer the glucan chains and the more glucans were partitioned into the insoluble fraction. This effect was irrespective of the SS isoform, demonstrating that the elongation/branching ratio controls glucan properties separate from enzyme specificity. Conclusions Our results provide a quantitative framework for the in silico design of improved starch biosynthetic processes in plants. Our study also exemplifies a workflow for the rational tuning of a complex pathway in yeast, starting from the selection and evaluation of expression modules to multi-gene assembly and targeted protein monitoring during the biosynthetic process. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01408-x.
Collapse
|
13
|
Kanth S, Puttaiahgowda YM. CURRENT STATE AND FUTURE PERSPECTIVES OF STARCH DERIVATIVES AND THEIR BLENDS AS ANTIMICROBIAL MATERIALS. STARCH-STARKE 2022. [DOI: 10.1002/star.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shreya Kanth
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| | - Yashoda Malgar Puttaiahgowda
- Department of Chemistry Manipal Institute of Technology Manipal Academy of Higher Education Manipal 576104 India
| |
Collapse
|
14
|
Xiong Q, Qiao D, Niu M, Xu Y, Jia C, Zhao S, Li N, Zhang B. Microwave Cooking Enriches the Nanoscale and Short/Long-Range Orders of the Resulting indica Rice Starch Undergoing Storage. Foods 2022; 11:foods11040501. [PMID: 35205978 PMCID: PMC8870924 DOI: 10.3390/foods11040501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 11/16/2022] Open
Abstract
The chain reorganization of cooked starch during storage plays an important role in the performance of starchy products such as rice foods. Here, different analytical techniques (such as small-angle X-ray scattering) were used to reveal how microwave cooking influences the chain assembly of cooked indica rice starch undergoing storage for 0, 24, or 48 h. While stored, more short-range double helices, long-range crystallites, and nanoscale orders emerged for the microwave-cooked starch than for its conventionally cooked counterpart. For instance, after storage for 24 h, the microwave-cooked starch contained 46.8% of double helices, while its conventionally cooked counterpart possessed 34.3% of double helices. This could be related to the fact that the microwave field caused high-frequency movements of polar groups such as hydroxyls, which strengthened the interactions between starch chains and water molecules and eventually their assembly into double helices, crystallites, and nanoscale orders. This work provides further insights into the chain reassembly of microwave-cooked starch undergoing storage, which is closely related to the quality attributes of starch-based products.
Collapse
Affiliation(s)
- Qing Xiong
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Meng Niu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Yan Xu
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Caihua Jia
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Siming Zhao
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
| | - Nannan Li
- Nanjing Institute for Comprehnsive Utilization of Wild Plants, Nanjing, 211111, China
- Correspondence: (N.L.); (B.Z.)
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Key Laboratory of Environment Correlative Dietology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China; (Q.X.); (M.N.); (Y.X.); (C.J.); (S.Z.)
- Correspondence: (N.L.); (B.Z.)
| |
Collapse
|
15
|
Hong T, Yin JY, Nie SP, Xie MY. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chem X 2021; 12:100168. [PMID: 34877528 PMCID: PMC8633561 DOI: 10.1016/j.fochx.2021.100168] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Functional properties of polysaccharides depend on their structural features. IR spectroscopy is widely used in polysaccharide structural analysis. Classical applications of IR spectroscopy in polysaccharide are reviewed. IR integrating techniques can considerably expand its application scope.
Polysaccharides are important biomacromolecules with numerous beneficial functions and a wide range of industrial applications. Functions and properties of polysaccharides are closely related to their structural features. Infrared (IR) spectroscopy is a well-established technique which has been widely applied in polysaccharide structural analysis. In this paper, the principle of IR and interpretation of polysaccharide IR spectrum are briefly introduced. Classical applications of IR spectroscopy in polysaccharide structural elucidation are reviewed from qualitative and quantitative aspects. Some advanced IR techniques including integrating with mass spectrometry (MS), microscopy and computational chemistry are introduced and their applications are emphasized. These emerging techniques can considerably expand application scope of IR, thus exert a more important effect on carbohydrate characterization. Overall, this review seeks to provide a comprehensive insight to applications of IR spectroscopy in polysaccharide structural analysis and highlights the importance of advanced IR-integrating techniques.
Collapse
Affiliation(s)
- Tao Hong
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
16
|
Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
17
|
Xu H, Zhou J, Liu X, Yu J, Copeland L, Wang S. Methods for characterizing the structure of starch in relation to its applications: a comprehensive review. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34847797 DOI: 10.1080/10408398.2021.2007843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Starch is a major part of the human diet and an important material for industrial utilization. The structure of starch granules is the subject of intensive research because it determines functionality, and hence suitability for specific applications. Starch granules are made up of a hierarchy of complex structural elements, from lamellae and amorphous regions to blocklets, growth rings and granules, which increase in scale from nanometers to microns. The complexity of these native structures changes with the processing of starch-rich ingredients into foods and other products. This review aims to provide a comprehensive review of analytical methods developed to characterize structure of starch granules, and their applications in analyzing the changes in starch structure as a result of processing, with particular consideration of the poorly understood short-range ordered structures in amorphous regions of granules.
Collapse
Affiliation(s)
- Hanbin Xu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jiaping Zhou
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Xia Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Jinglin Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Les Copeland
- School of Life and Environmental Sciences, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Shujun Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China.,College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
18
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Li H, Gilbert RG, Gidley MJ. Molecular-structure evolution during in vitro fermentation of granular high-amylose wheat starch is different to in vitro digestion. Food Chem 2021; 362:130188. [PMID: 34090046 DOI: 10.1016/j.foodchem.2021.130188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/14/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
This study investigates the evolution of the distributions of whole molecular size and of chain length of granular wheat starches (37 ~ 93% amylose content), subjected to in vitro fermentation with a porcine faecal inoculum or digestion with pancreatic enzymes. The results showed that the molecular structures of high-amylose starch (HAS) unfermented residues largely remained unchanged during the fermentation process, while wild-type starch (37% amylose content) showed a preferential degradation of the amylopectin fraction. In contrast, under simulated digestion conditions, the undigested residues of HAS showed structural changes, including a decrease in amylose content, a shift of amylose peak position towards lower degrees of polymerisation, and an enzyme-resistant fraction. These changes of starch structure are likely to be dependent on the different starch-degrading enzyme activities present in pancreatic vs. microbial systems. Molecular changes in response to fermentation metabolism revealed by size-exclusion chromatography can help understand the microbial utilization of resistant starch.
Collapse
Affiliation(s)
- Haiteng Li
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Robert G Gilbert
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Michael J Gidley
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia.
| |
Collapse
|
20
|
Bonto AP, Tiozon RN, Sreenivasulu N, Camacho DH. Impact of ultrasonic treatment on rice starch and grain functional properties: A review. ULTRASONICS SONOCHEMISTRY 2021; 71:105383. [PMID: 33227580 PMCID: PMC7786581 DOI: 10.1016/j.ultsonch.2020.105383] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 05/06/2023]
Abstract
As a green, nonthermal, and innovative technology, ultrasonication generates acoustic cavitation in an aqueous medium, developing physical forces that affect the starch chemistry and rice grain characteristics. This review describes the current information on the effect of ultrasonication on the morphological, textural, and physicochemical properties of rice starch and grain. In a biphasic system, ultrasonication introduced fissures and cracks, which facilitated higher uptake of water and altered the rice starch characteristics impacting textural properties. In wholegrain rice, ultrasonic treatment stimulated the production of health-related metabolites, facilitated the higher uptake of micronutrient fortificants, and enhanced the palatability by softening the rice texture. This review provides insights into the future direction on the utilization of ultrasonication for the applications towards the improvement of rice functional properties.
Collapse
Affiliation(s)
- Aldrin P Bonto
- Chemistry Department, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines; Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Laguna, Philippines; Chemistry Department, University of Santo Tomas, Espana, Sampaloc, Manila 1008, Philippines
| | - Rhowell N Tiozon
- Chemistry Department, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines; Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Nese Sreenivasulu
- Grain Quality and Nutrition Center, Strategic Innovation Platform, International Rice Research Institute, Los Baños, Laguna, Philippines.
| | - Drexel H Camacho
- Chemistry Department, De La Salle University, 2401 Taft, Avenue, Manila 0922, Philippines; Organic Materials and Interfaces Unit, CENSER, De La Salle University, 2401, Taft Avenue, Manila 0922, Philippines.
| |
Collapse
|
21
|
Sandhu KS, Kaur M, Punia S, Ahmed J. Rheological, thermal, and structural properties of high-pressure treated Litchi (Litchi chinensis) kernel starch. Int J Biol Macromol 2021; 175:229-234. [PMID: 33571583 DOI: 10.1016/j.ijbiomac.2021.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/14/2021] [Accepted: 02/04/2021] [Indexed: 11/29/2022]
Abstract
Starch isolated from litchi kernel was subjected to high-pressure (HP) treatment at selected pressures (300, 450 and 600 MPa) for 10 min, and evaluated for its rheological, morphological, thermal and structural properties. The amylose content of native litchi kernel starch (LKS) was 17.4%, which increased significantly upon pressurization. The temperature sweep test of the untreated starch sample resulted in the peak G' and G″ values of 3417 and 283 Pa, respectively, and those values decreased after pressurization. Oscillatory rheological measurements showed the frequency dependency of tested starch pastes. Furthermore, the mechanical rigidity of the starch pastes improved with pressure treatment. Morphological studies revealed that starch granule structure remained intact after pressurization; however, pressure >450 MPa resulted in surface roughness and small cavities. HP treatment significantly influenced thermal properties of LKS, in particular at 450 and 600 MPa, where a significant drop in the transition temperatures and enthalpy values were recorded. The HP-treated starch samples exhibited distinct X-ray diffraction pattern of native LKS i.e. the blend of A- and B-type allomorphs with a predominating A-type crystalline structure. Upon pressure treatment, the disappearance of 2θ peak at 5.6° and significant changes in peak intensities confirmed the structural change in the starch matrix.
Collapse
Affiliation(s)
- Kawaljit Singh Sandhu
- Department of Food Science and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, India
| | - Maninder Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, India.
| | - Sneh Punia
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, India
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| |
Collapse
|
22
|
Yu WW, Zhai HL, Xia GB, Tao KY, Li C, Yang XQ, Li LH. Starch fine molecular structures as a significant controller of the malting, mashing, and fermentation performance during beer production. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Modification of starch: A review on the application of “green” solvents and controlled functionalization. Carbohydr Polym 2020; 241:116350. [DOI: 10.1016/j.carbpol.2020.116350] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 01/25/2023]
|
24
|
Li C, Wu A, Yu W, Hu Y, Li E, Zhang C, Liu Q. Parameterizing starch chain-length distributions for structure-property relations. Carbohydr Polym 2020; 241:116390. [PMID: 32507172 DOI: 10.1016/j.carbpol.2020.116390] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/26/2020] [Indexed: 12/15/2022]
Abstract
Understanding starch structure-property relationship is important for the development of new generation of starch-based foods with desirable functions. Recent developments of methodologies on the characterisation of starch molecular structures, especially how to parameterize the starch chain-length distribution (CLD) by few biologically meaningful parameters have brought new insights to explain starch physicochemical properties from molecular levels. Especially, it has shown that gelatinization temperatures are largely controlled by amylopectin short chains, while the retrogradation rate of starch molecules is controlled by amylose content, amylose short to medium chains, amylopectin external and internal chain length. Starch pasting and digestion properties are also controlled to a significant extent by its CLD. With extensive discussion of correlative and casual relations between starch CLD with its physicochemical properties, this review aims to establish a holistic starch structure-property relationship. It enables food producers to develop functional foods based on a precise understanding of starch structure-property relations.
Collapse
Affiliation(s)
- Cheng Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Alex Wu
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Guangzhou, 510632, China
| | - Yiming Hu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200031, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Changquan Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China; Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China; Center for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
25
|
Han H, Yang C, Zhu J, Zhang L, Bai Y, Li E, Gilbert RG. Competition between Granule Bound Starch Synthase and Starch Branching Enzyme in Starch Biosynthesis. RICE (NEW YORK, N.Y.) 2019; 12:96. [PMID: 31872316 PMCID: PMC6928174 DOI: 10.1186/s12284-019-0353-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/29/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Starch branching enzymes (SBE) and granule-bound starch synthase (GBSS) are two important enzymes for starch biosynthesis. SBE mainly contributes to the formation of side branches, and GBSS mainly contributes for the synthesis of amylose molecules. However, there are still gaps in the understanding of possible interactions between SBE and GBSS. RESULTS Nineteen natural rice varieties with amylose contents up to 28% were used. The molecular structure, in the form of the chain-length distribution (CLDs, the distribution of the number of monomer units in each branch) was measured after enzymatic debranching, using fluorophore-assisted carbohydrate electrophoresis for amylopectin and size- exclusion chromatography for amylose. The resulting distributions were fitted to two mathematical models based on the underlying biosynthetic processes, which express the CLDs in terms of parameters reflecting relevant enzyme activities. CONCLUSIONS Finding statistically valid correlations between the values of these parameters showed that GBSSI and SBEI compete for substrates during rice starch biosynthesis, and synthesis of amylose short chains involves several enzymes including GBSSI, SBE and SSS (soluble starch synthase). Since the amylose CLD is important for a number of functional properties such as digestion rate, this knowledge is potentially useful for developing varieties with improved functional properties.
Collapse
Affiliation(s)
- Huaxin Han
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chuantian Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Jihui Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lixia Zhang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yeming Bai
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations, The University of Queensland, QLD, Brisbane, 4072, Australia
| | - Enpeng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Robert G Gilbert
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Centre for Nutrition & Food Sciences, Queensland Alliance for Agriculture & Food Innovations, The University of Queensland, QLD, Brisbane, 4072, Australia.
| |
Collapse
|
26
|
Altering starch branching enzymes in wheat generates high-amylose starch with novel molecular structure and functional properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Liu Y, Chen J, Wu J, Luo S, Chen R, Liu C, Gilbert RG. Modification of retrogradation property of rice starch by improved extrusion cooking technology. Carbohydr Polym 2019; 213:192-198. [DOI: 10.1016/j.carbpol.2019.02.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/15/2022]
|
28
|
Using starch molecular fine structure to understand biosynthesis-structure-property relations. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Quek WP, Yu W, Fox GP, Gilbert RG. Molecular structure-property relations controlling mashing performance of amylases as a function of barley grain size. ACTA ACUST UNITED AC 2019. [DOI: 10.1515/amylase-2019-0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
In brewing, amylases are key enzymes in hydrolyzing barley starch to sugars, which are utilized in fermentation to produce ethanol. Starch fermentation depends on sugars produced by amylases and starch molecular structure, both of which vary with barley grain size. Grain size is a major industrial specification for selecting barley for brewing. An in-depth study is given of how enzyme activity and starch structure vary with grain size, the impact of these factors on fermentable sugar production, and the underlying mechanisms. Micro-malting and mashing experiments were based on commercial methodologies. Starch molecular structural parameters were obtained using size-exclusion chromatography, and fitted using biosynthesis-based models. Correlation analysis using the resulting parameters showed larger grain sizes contained fewer long amylopectin chains, higher amylase activities and soluble protein level. Medium grain sizes released most sugars during mashing, because of higher starch utilization from the action of amylases, and shorter amylose chains. As starch is the substrate for amylase-driven fermentable sugars production, measuring its structure should be a prime indication for mashing performance, and should be used as an industry specification when selecting barley grains for brewing.
Collapse
|
30
|
Venkataraman S, Lee ALZ, Tan JPK, Ng YC, Lin ALY, Yong JYK, Yi G, Zhang Y, Lim IJ, Phan TT, Yang YY. Functional cationic derivatives of starch as antimicrobial agents. Polym Chem 2019. [DOI: 10.1039/c8py00740c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antimicrobial polymers with a broad spectrum of action and high selectivity towards pathogens (versus mammalian cells) provide the opportunity to combat infections with only a limited chance of resistance development.
Collapse
Affiliation(s)
| | - Ashlynn L. Z. Lee
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Jeremy P. K. Tan
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Yi Chien Ng
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Amelia Lee Yi Lin
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Jaron Y. K. Yong
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Guangshun Yi
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| | - Ivor J. Lim
- Department of Surgery
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore 119228
- Singapore
| | - Thang T. Phan
- Department of Surgery
- Yong Loo Lin School of Medicine
- National University of Singapore
- Singapore 119228
- Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology
- Singapore 138669
- Singapore
| |
Collapse
|
31
|
Abstract
A better understanding of the nutritional properties of rice starch is important because of the rapid rise of diet-related health complications, particularly obesity, type 2 diabetes, and colorectal cancers. Rice starch that is slowly digested to glucose, and where significant quantities of starch which reach the lower gut ("resistant starch"), can mitigate, and also delay the onset of, these diseases. These digestibility properties depend to some extent on starch molecular structure. The characterization of this structure is therefore significant for understanding and developing healthier slower digestible rice. In this chapter, a series of techniques used for characterizing starch structure are reviewed and the procedure for preparing rice starch samples with minimum degradation for characterizing starch chain length distribution (CLD) and overall molecular structure is given. Some methods for choosing or developing plants showing desirable structural characteristics are briefly summarized.
Collapse
|
32
|
Li H, Wen Y, Wang J, Sun B. Relations between chain-length distribution, molecular size, and amylose content of rice starches. Int J Biol Macromol 2018; 120:2017-2025. [DOI: 10.1016/j.ijbiomac.2018.09.204] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
33
|
Molecular structures and properties of starches of Australian wild rice. Carbohydr Polym 2017; 172:213-222. [DOI: 10.1016/j.carbpol.2017.05.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 11/20/2022]
|
34
|
Bai Y, Wu P, Wang K, Li C, Li E, Gilbert RG. Effects of pectin on molecular structural changes in starch during digestion. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.01.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Wu C, Zhou X, Tian Y, Xu X, Jin Z. Hydrolytic mechanism of α -maltotriohydrolase on waxy maize starch and retrogradation properties of the hydrolysates. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
|
37
|
Tang W, Lin L, Xie J, Wang Z, Wang H, Dong Y, Shen M, Xie M. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydr Polym 2016; 151:305-312. [DOI: 10.1016/j.carbpol.2016.05.078] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
38
|
Understanding the structure and digestibility of heat-moisture treated starch. Int J Biol Macromol 2016; 88:1-8. [DOI: 10.1016/j.ijbiomac.2016.03.046] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/21/2022]
|
39
|
Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG. Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydr Polym 2016; 146:253-63. [PMID: 27112873 DOI: 10.1016/j.carbpol.2016.03.045] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 11/26/2022]
Abstract
Increasing demands for better instrumental methods to evaluate cooked rice texture is driving innovations in rice texture research. This study characterized cooked rice texture by descriptive sensory analysis and two instrumental methods (texture profile analysis (TPA) and dynamic rheological testing) using a set of 18 varieties of rice with a wide range in amylose content (0-30%). The panellists' results indicated that hardness and stickiness were the two most discriminating attributes among 13 tested textural attributes. The consistency coefficient (K(*)) and loss tangent (tan δ) from a dynamic frequency sweep were used to compare with hardness and stickiness tested by TPA and sensory panellists, showing that using K(*) to express hardness, and tan δ to express stickiness, are both statistically and mechanistically meaningful. The instrumental method is rationalized in terms of starch structural differences between rices: a higher proportion of both amylose and long amylopectin branches with DP 70-100 causes a more elastic and less viscous texture, which is readily understood in terms of polymer dynamics in solution.
Collapse
Affiliation(s)
- Hongyan Li
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane 4072, QLD, Australia
| | - Sangeeta Prakash
- The University of Queensland, School of Agriculture and Food Science, Brisbane 4072, QLD, Australia
| | - Timothy M Nicholson
- The University of Queensland, School of Chemical Engineering, Brisbane 4072, QLD, Australia
| | - Melissa A Fitzgerald
- The University of Queensland, School of Agriculture and Food Science, Brisbane 4072, QLD, Australia
| | - Robert G Gilbert
- The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane 4072, QLD, Australia.
| |
Collapse
|
40
|
Li Z, Kong X, Zhou X, Zhong K, Zhou S, Liu X. Characterization of multi-scale structure and thermal properties of Indica rice starch with different amylose contents. RSC Adv 2016. [DOI: 10.1039/c6ra17922c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fully understanding the relationship between multi-scale structure and thermal properties of rice starch is important for starch-based food processing.
Collapse
Affiliation(s)
- Zhihang Li
- Institute of Food Science and Technology (IFST)
- Chinese Academy of Agricultural Science (CAAS)
- Beijing
- China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences
- Zhejiang University
- China
| | - Xianrong Zhou
- Institute of Food Science and Technology (IFST)
- Chinese Academy of Agricultural Science (CAAS)
- Beijing
- China
| | - Kui Zhong
- Institute of Food Science and Technology (IFST)
- Chinese Academy of Agricultural Science (CAAS)
- Beijing
- China
| | - Sumei Zhou
- Institute of Food Science and Technology (IFST)
- Chinese Academy of Agricultural Science (CAAS)
- Beijing
- China
| | - Xingxun Liu
- Institute of Food Science and Technology (IFST)
- Chinese Academy of Agricultural Science (CAAS)
- Beijing
- China
| |
Collapse
|
41
|
Li C, Gilbert RG. Progress in controlling starch structure by modifying starch-branching enzymes. PLANTA 2016; 243:13-22. [PMID: 26486516 DOI: 10.1007/s00425-015-2421-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
This paper reviews the progress of development of plants with desirable starch structure by modifying starch branching enzymes. Starch-branching enzyme (SBE) is responsible for the creation of branches during starch biosynthesis in plastids, and is a major determinant of the final fine structure and physical properties of the starch. Multiple isoforms of SBE have been found in plants, with each playing a different role in amylopectin synthesis. Different methods have been used to develop desirable starch structures by modifying the SBE activity. These can involve changing its expression level (either up-regulation or down-regulation), genetically modifying the activity of the SBE itself, and varying the length of its transferred chains. Changing the activity and the transferred chain length of SBE has been less studied than changing the expression level of SBE in vivo. This article reviews and summarizes new tools for developing plants producing the next generation of starches.
Collapse
|
42
|
Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG. The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem 2015; 196:702-11. [PMID: 26593544 DOI: 10.1016/j.foodchem.2015.09.112] [Citation(s) in RCA: 327] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/23/2015] [Accepted: 09/29/2015] [Indexed: 10/23/2022]
Abstract
Statistically and causally meaningful relationships are established between starch molecular structure (the molecular distribution of branched starch and the chain length distribution of debranched starch) and texture (hardness and stickiness) of cooked rice grains. The amounts of amylose chains with degree of polymerization (DP) 100-20,000, and of long amylopectin chains, positively correlated with hardness, while amylopectin chains with DP<70 and amylose molecular size both showed negative correlations with hardness (p<0.05). There was also a significant negative correlation between stickiness and the amounts of long amylopectin chains (p<0.01). For rices with similar amylose content, the amount of amylose chains with DP 1000-2000 positively correlated with hardness while size negatively correlated with hardness (p<0.05). This indicates for the first time that, regardless of amylose content, rice varieties with smaller amylose molecular sizes and with higher proportions of long amylose chains have a harder texture after cooking.
Collapse
Affiliation(s)
- Hongyan Li
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane 4072, QLD, Australia
| | - Sangeeta Prakash
- The University of Queensland, School of Agriculture and Food Science, Brisbane 4072, QLD, Australia
| | - Timothy M Nicholson
- The University of Queensland, School of Chemical Engineering, Brisbane 4072, QLD, Australia
| | - Melissa A Fitzgerald
- The University of Queensland, School of Agriculture and Food Science, Brisbane 4072, QLD, Australia
| | - Robert G Gilbert
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane 4072, QLD, Australia.
| |
Collapse
|
43
|
Roles of GBSSI and SSIIa in determining amylose fine structure. Carbohydr Polym 2015; 127:264-74. [PMID: 25965483 DOI: 10.1016/j.carbpol.2015.03.081] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 11/23/2022]
Abstract
This study examines the relationships between genetics (single nucleotide polymorphisms (SNPs) in GBSSI and SSIIa genes), starch structure (amylose and amylopectin fine structures), and starch properties (relating to gelatinization). GBSSI and SSIIa SNPs did not alter the starch content of rice grains. GBSSI SNPs can affect the amylose content, but they are incapable of altering the chain-lengths of amylopectin and amylose. The amounts of both long and short amylose branches changed with the same trend as amylose content, and they appeared to affect starch gelatinization properties. SSIIa synthesizes intermediate single-lamella amylopectin chains (DP 16-21), and consequently impacts the gelatinization temperature. Mathematical modelling suggests that the reduction in SSIIa activity significantly increases the activity of SBEII, resulting in a decreased activity ratio of SS to SBE in the enzyme set governing an appropriate chain-length distribution range. This application of the genetics-structure-property paradigm provides selection strategies to produce rice varieties with improved qualities.
Collapse
|
44
|
Interphase vs confinement in starch-clay bionanocomposites. Carbohydr Polym 2015; 117:746-752. [DOI: 10.1016/j.carbpol.2014.10.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 09/05/2014] [Accepted: 10/17/2014] [Indexed: 11/20/2022]
|
45
|
Exploring extraction/dissolution procedures for analysis of starch chain-length distributions. Carbohydr Polym 2014; 114:36-42. [DOI: 10.1016/j.carbpol.2014.08.001] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/01/2014] [Indexed: 11/21/2022]
|
46
|
New perspectives on the role of α- and β-amylases in transient starch synthesis. PLoS One 2014; 9:e100498. [PMID: 24971464 PMCID: PMC4074105 DOI: 10.1371/journal.pone.0100498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/28/2014] [Indexed: 11/23/2022] Open
Abstract
Transient starch in leaves is synthesized by various biosynthetic enzymes in the chloroplasts during the light period. This paper presents the first mathematical model for the (bio)synthesis of the chain-length distribution (CLD) of transient starch to aid the understanding of this synthesis. The model expresses the rate of change of the CLD in terms of the actions of the enzymes involved. Using this to simulate the experimental CLD with different enzyme combinations is a new means to test for enzymes that are significant to the rate of change of the CLD during synthesis. Comparison between the simulated CLD from different enzyme combinations and the experimental CLD in the leaves of the model plant Arabidopsis thaliana indicate α-amylase, in addition to the core starch biosynthetic enzymes, is also involved in the modification of glucans for the synthesis of insoluble starch granules. The simulations suggest involvement of β-amylase, in the absence of α-amylase in mutants, slows the rate of attaining a crystalline-competent CLD for crystallization of glucans to form insoluble starch. This suggests a minor role of β-amylase in shaping normal starch synthesis. The model simulation predicts that debranching of glucans is an efficient mechanism for the attainment of crystalline-competent CLD; however, attaining this is still possible, albeit slower, through combinations of α- and β-amylase in the absence of isoamylase-type debranching enzyme. In Arabidopsis defective in one of the isoamylase-type debranching enzymes, the impact of α-amylase in starch synthesis is reduced, while β-amylase becomes significantly involved, slowing the rate of synthesis in this mutant. Modeling of transient starch CLD brings to light previously unrecognized but significant effects of α- and β-amylase on the rate of transient starch synthesis.
Collapse
|