1
|
Kunkel AA, McHugh KJ. Injectable controlled-release systems for the prevention and treatment of infectious diseases. J Biomed Mater Res A 2024; 112:1224-1240. [PMID: 37740704 DOI: 10.1002/jbm.a.37615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
Pharmaceutical drugs, including vaccines, pre- and post-exposure prophylactics, and chronic drug therapies, are crucial tools in the prevention and treatment of infectious diseases. These drugs have the ability to increase survival and improve patient quality of life; however, infectious diseases still accounted for more than 10.2 million deaths in 2019 before the COVID-19 pandemic. High mortality can be, in part, attributed to challenges in the availability of adequate drugs and vaccines, limited accessibility, poor drug bioavailability, the high cost of some treatments, and low patient adherence. A majority of these factors are logistical rather than technical challenges, providing an opportunity for existing drugs and vaccines to be improved through formulation. Injectable controlled-release drug delivery systems are one class of formulations that have the potential to overcome many of these limitations by releasing their contents in a sustained manner to reduce the need for frequent re-administration and improve clinical outcomes. This review provides an overview of injectable controlled drug delivery platforms, including microparticles, nanoparticles, and injectable gels, detailing recent developments using these systems for single-injection vaccination, long-acting prophylaxis, and sustained-release treatments for infectious disease.
Collapse
Affiliation(s)
- Alyssa A Kunkel
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
| |
Collapse
|
2
|
The recent advancement in the PLGA-based thermo-sensitive hydrogel for smart drug delivery. Int J Pharm 2023; 631:122484. [PMID: 36509221 DOI: 10.1016/j.ijpharm.2022.122484] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
To date, hydrogels have opened new prospects for potential applications for drug delivery. The thermo-sensitive hydrogels have the great potential to provide more effective and controllable release of therapeutic/bioactive agents in response to changes in temperature. PLGA is a safe FDA-approved copolymer with good biocompatibility and biodegradability. Recently, PLGA-based formulation have attracted a lot of interest for thermo-sensitive hydrogels. Thermo-sensitive PLGA-based hydrogels provide the delivery system with good spatial and temporal control, and have been widely applied in drug delivery. This review is focused on the recent progression of the thermo-sensitive and biodegradable PLGA-based hydrogels that have been reported for smart drug delivery to the different organs. Eventually, future perspectives and challenges of thermo-sensitive PLGA-based hydrogels are discussed briefly.
Collapse
|
3
|
Intracranial In Situ Thermosensitive Hydrogel Delivery of Temozolomide Accomplished by PLGA–PEG–PLGA Triblock Copolymer Blending for GBM Treatment. Polymers (Basel) 2022; 14:polym14163368. [PMID: 36015626 PMCID: PMC9413267 DOI: 10.3390/polym14163368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) recurrence after surgical excision has grown to be a formidable obstacle to conquer. In this research, biodegradable thermosensitive triblock copolymer, poly(D, L–lactic acid–co–glycolic acid)–b–poly(ethylene glycol)–b–poly(D, L–lactic acid–co–glycolic acid (PLGA–PEG–PLGA) was utilized as the drug delivery system, loading with micronized temozolomide(micro-TMZ) to form an in situ drug–gel depot inside the resection cavity. The rheology studies revealed the viscoelastic profile of hydrogel under various conditions. To examine the molecular characteristics that affect gelation temperature, 1H–NMR, inverse gated decoupling 13C–NMR, and GPC were utilized. Cryo-SEM and XRD were intended to disclose the appearance of the hydrogel and the micro-TMZ existence state. We worked out how to blend polymers to modify the gelation point (Tgel) and fit the correlation between Tgel and other dependent variables using linear regression. To simulate hydrogel dissolution in cerebrospinal fluid, a membraneless dissolution approach was used. In vitro, micro-TMZ@PLGA–PEG–PLGA hydrogel exhibited Korsmeyer–Peppas and zero–order release kinetics in response to varying drug loading, and in vivo, it suppressed GBM recurrence at an astoundingly high rate. Micro-TMZ@PLGA–PEG–PLGA demonstrates a safer and more effective form of chemotherapy than intraperitoneal TMZ injection, resulting in a spectacular survival rate (40%, n = 10) that is much more than intraperitoneal TMZ injection (22%, n = 9). By proving the viability and efficacy of micro-TMZ@PLGA–PEG–PLGA hydrogel, our research established a novel chemotherapeutic strategy for treating GBM recurrence.
Collapse
|
4
|
Zhang L, Zhang C, Zhang W, Zhang H, Hou Z. Synthesis and properties of biodegradable poly(ester-urethane)s based on poly(ε-caprolactone) and aliphatic diurethane diisocyanate for long-term implant application: effect of uniform-size hard segment content. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1212-1226. [DOI: 10.1080/09205063.2019.1625525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Li Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, China
| | | | | | - Honghong Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| |
Collapse
|
5
|
Xiao M, Zhang N, Zhuang J, Sun Y, Ren F, Zhang W, Hou Z. Degradable Poly(ether-ester-urethane)s Based on Well-Defined Aliphatic Diurethane Diisocyanate with Excellent Shape Recovery Properties at Body Temperature for Biomedical Application. Polymers (Basel) 2019; 11:E1002. [PMID: 31195671 PMCID: PMC6631253 DOI: 10.3390/polym11061002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of this study is to offer a new class of degradable shape-memory poly(ether-ester-urethane)s (SMPEEUs) based on poly(ether-ester) (PECL) and well-defined aliphatic diurethane diisocyanate (HBH) for further biomedical application. The prepolymers of PECLs were synthesized through bulk ring-opening polymerization using ε-caprolactone as the monomer and poly(ethylene glycol) as the initiator. By chain extension of PECL with HBH, SMPEEUs with varying PEG content were prepared. The chemical structures of the prepolymers and products were characterized by GPC, 1H NMR, and FT-IR, and the effect of PEG content on the physicochemical properties (especially the shape recovery properties) of SMPEEUs was studied. The microsphase-separated structures of the SMPEEUs were demonstrated by DSC and XRD. The SMPEEU films exhibited good tensile properties with the strain at a break of 483%-956% and an ultimate stress of 23.1-9.0 MPa. Hydrolytic degradation in vitro studies indicated that the time of the SMPEEU films becoming fragments was 4-12 weeks and the introduction of PEG facilitates the degradation rate of the films. The shape memory properties studies found that SMPEEU films with a PEG content of 23.4 wt % displayed excellent recovery properties with a recovery ratio of 99.8% and a recovery time of 3.9 s at body temperature. In addition, the relative growth rates of the SMPEEU films were greater than 75% after incubation for 72 h, indicating good cytocompatibility in vitro. The SMPEEUs, which possess not only satisfactory tensile properties, degradability, nontoxic degradation products, and cytocompatibility, but also excellent shape recovery properties at body temperature, promised to be an excellent candidate for medical device applications.
Collapse
Affiliation(s)
- Minghui Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Na Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jie Zhuang
- Shandong Academy of Pharmaceutical Sciences, Shandong Provincial Key Laboratory of Biomedical Polymer, Jinan 250101, China.
| | - Yuchen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Fang Ren
- Success Bio-tech Co., Ltd., Jinan 250101, China.
| | - Wenwen Zhang
- Success Bio-tech Co., Ltd., Jinan 250101, China.
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
6
|
Hou P, Zhang N, Wu R, Xu W, Hou Z. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release. J Biomater Appl 2017; 32:511-523. [PMID: 28899224 DOI: 10.1177/0885328217730465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this paper, a novel kind of photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol) ( n = 2, 3, and 4) and poly(ɛ-caprolactone) was prepared by ultraviolet-initiated free radical polymerization. The resulting n-arm-poly(ethylene glycol)-poly(ɛ-caprolactone) and n-arm-poly(ethylene glycol)-poly(ɛ-caprolactone) acrylate (n-arm-PEG-PCL-AC, macromer) were characterized by proton nuclear magnetic resonance and fourier transform infrared spectra. The influences of arm numbers and concentration of macromer on the properties of hydrogel were researched systematically, and the results showed that the gelation time, equilibrium swelling ratio, in vitro degradation, and drug release rate decreased with the increase of arm numbers and concentration of macromer. The degradation and drug release rate could be controlled by varying the cross-linking density of hydrogel, indicating a potential application as controlled drug delivery system. Cytotoxicity test of hydrogel extracts was conducted using L929 mouse fibroblasts, and the relative growth rate exceeded 75% (cytotoxicity type: class 1) after incubation for 24 h, showing excellent cytocompatibility. In addition, the paper presented a pH-sensitive hydrogel (G4pH) based on 4-arm-PEG-PCL-AC and acrylic acid, and the influences of pH value on swelling behaviors and in vitro drug release of the pH-sensitive hydrogel were examined. The hydrogels shrank under acidic condition and would swell in neutral or basic medium. The pH-dependent drug release behaviors indicated a promising application of the materials as oral drug delivery vehicles.
Collapse
Affiliation(s)
- Ping Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Na Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Ruxia Wu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Weiwei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Nakka R, Mungray AA. Biodegradable and biocompatible temperature sensitive triblock copolymer hydrogels as draw agents for forward osmosis. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Hou Z, Zhang H, Qu W, Xu Z, Han Z. Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1180612] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|