1
|
Abstract
Liposomes, which are artificial phospholipid vesicles with a bilayer membrane structure, have been developed and evaluated as a promising delivery system for vaccines. Here, we describe a procedure for the encapsulation of lipopeptide vaccines into liposomes. A liposomal formulation of lipid-core peptide was prepared via thin-film hydration followed by extrusion. The physicochemical properties of the liposomes, including their size, polydispersity, surface charge, and morphology, were analyzed using dynamic light scattering and transmission electron microscopy.
Collapse
Affiliation(s)
- Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
2
|
Azuar A, Shibu MA, Adilbish N, Marasini N, Hung H, Yang J, Luo Y, Khalil ZG, Capon RJ, Hussein WM, Toth I, Skwarczynski M. Poly(hydrophobic amino acid) Conjugates for the Delivery of Multiepitope Vaccine against Group A Streptococcus. Bioconjug Chem 2021; 32:2307-2317. [PMID: 34379392 DOI: 10.1021/acs.bioconjchem.1c00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptide-based vaccines are composed of small, defined, antigenic peptide epitopes. They are designed to induce well-controlled immune responses. Multiple epitopes are often employed in these vaccines to cover strain variability of a pathogen. However, peptide epitopes cannot stimulate adequate immune responses on their own and require an adjuvant (immune stimulant) and/or delivery system. Here, we designed and synthesized a multiepitope vaccine candidate against Group A Streptococcus (GAS) composed of several B-cell epitopes (J8, PL1, and 88/30) derived from GAS M-protein, universal PADRE T-helper cell epitope, and a polyleucine self-adjuvanting unit. The vaccine components were conjugated together (using mercapto-maleimide and azide-alkyne Huisgen cycloaddition reactions) or delivered as a mixture. The conjugated multiepitope vaccine candidate self-assembled into small nanoparticles and chain-like aggregated nanoparticles (CLANs) that were able to induce the production of J8-, PL1-, and 88/30-specific antibodies in mice. The multiepitope conjugate and the physical mixture of conjugates bearing the individual epitopes produced similar nanoparticles and induced comparable immune responses. Hence, simple physical mixing can replace complex chemical conjugation to produce multiepitope nanoparticles with equivalent morphology and immunological efficacy. This greatly simplifies vaccine production.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Mohini A Shibu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nomin Adilbish
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nirmal Marasini
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hong Hung
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yacheng Luo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zeinab G Khalil
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|