1
|
Parrilla-Doblas JT, Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. Active DNA Demethylation in Plants. Int J Mol Sci 2019; 20:E4683. [PMID: 31546611 PMCID: PMC6801703 DOI: 10.3390/ijms20194683] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methylation of cytosine (5-meC) is a critical epigenetic modification in many eukaryotes, and genomic DNA methylation landscapes are dynamically regulated by opposed methylation and demethylation processes. Plants are unique in possessing a mechanism for active DNA demethylation involving DNA glycosylases that excise 5-meC and initiate its replacement with unmodified C through a base excision repair (BER) pathway. Plant BER-mediated DNA demethylation is a complex process involving numerous proteins, as well as additional regulatory factors that avoid accumulation of potentially harmful intermediates and coordinate demethylation and methylation to maintain balanced yet flexible DNA methylation patterns. Active DNA demethylation counteracts excessive methylation at transposable elements (TEs), mainly in euchromatic regions, and one of its major functions is to avoid methylation spreading to nearby genes. It is also involved in transcriptional activation of TEs and TE-derived sequences in companion cells of male and female gametophytes, which reinforces transposon silencing in gametes and also contributes to gene imprinting in the endosperm. Plant 5-meC DNA glycosylases are additionally involved in many other physiological processes, including seed development and germination, fruit ripening, and plant responses to a variety of biotic and abiotic environmental stimuli.
Collapse
Affiliation(s)
- Jara Teresa Parrilla-Doblas
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Rafael R Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), 14071 Córdoba, Spain.
- Department of Genetics, University of Córdoba, 14071 Córdoba, Spain.
- Reina Sofía University Hospital, 14071 Córdoba, Spain.
| |
Collapse
|
2
|
Roldán-Arjona T, Ariza RR, Córdoba-Cañero D. DNA Base Excision Repair in Plants: An Unfolding Story With Familiar and Novel Characters. FRONTIERS IN PLANT SCIENCE 2019; 10:1055. [PMID: 31543887 PMCID: PMC6728418 DOI: 10.3389/fpls.2019.01055] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 05/05/2023]
Abstract
Base excision repair (BER) is a critical genome defense pathway that deals with a broad range of non-voluminous DNA lesions induced by endogenous or exogenous genotoxic agents. BER is a complex process initiated by the excision of the damaged base, proceeds through a sequence of reactions that generate various DNA intermediates, and culminates with restoration of the original DNA structure. BER has been extensively studied in microbial and animal systems, but knowledge in plants has lagged behind until recently. Results obtained so far indicate that plants share many BER factors with other organisms, but also possess some unique features and combinations. Plant BER plays an important role in preserving genome integrity through removal of damaged bases. However, it performs additional important functions, such as the replacement of the naturally modified base 5-methylcytosine with cytosine in a plant-specific pathway for active DNA demethylation.
Collapse
Affiliation(s)
- Teresa Roldán-Arjona
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rafael R. Ariza
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Dolores Córdoba-Cañero
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Genetics, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
3
|
Munari FM, Revers LF, Cardone JM, Immich BF, Moura DJ, Guecheva TN, Bonatto D, Laurino JP, Saffi J, Brendel M, Henriques JAP. Sak1 kinase interacts with Pso2 nuclease in response to DNA damage induced by interstrand crosslink-inducing agents in Saccharomyces cerevisiae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 130:241-53. [PMID: 24362320 DOI: 10.1016/j.jphotobiol.2013.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/20/2013] [Accepted: 11/27/2013] [Indexed: 11/29/2022]
Abstract
By isolating putative binding partners through the two-hybrid system (THS) we further extended the characterization of the specific interstrand cross-link (ICL) repair gene PSO2 of Saccharomyces cerevisiae. Nine fusion protein products were isolated for Pso2p using THS, among them the Sak1 kinase, which interacted with the C-terminal β-CASP domain of Pso2p. Comparison of mutagen-sensitivity phenotypes of pso2Δ, sak1Δ and pso2Δsak1Δ disruptants revealed that SAK1 is necessary for complete WT-like repair. The epistatic interaction of both mutant alleles suggests that Sak1p and Pso2p act in the same pathway of controlling sensitivity to DNA-damaging agents. We also observed that Pso2p is phosphorylated by Sak1 kinase in vitro and co-immunoprecipitates with Sak1p after 8-MOP+UVA treatment. Survival data after treatment of pso2Δ, yku70Δ and yku70Δpso2Δ with nitrogen mustard, PSO2 and SAK1 with YKU70 or DNL4 single-, double- and triple mutants with 8-MOP+UVA indicated that ICL repair is independent of YKu70p and DNL4p in S. cerevisiae. Furthermore, a non-epistatic interaction was observed between MRE11, PSO2 and SAK1 genes after ICL induction, indicating that their encoded proteins act on the same substrate, but in distinct repair pathways. In contrast, an epistatic interaction was observed for PSO2 and RAD52, PSO2 and RAD50, PSO2 and XRS2 genes in 8-MOP+UVA treated exponentially growing cells.
Collapse
Affiliation(s)
- Fernanda M Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Luis F Revers
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Jacqueline M Cardone
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Bruna F Immich
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Dinara J Moura
- Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Temenouga N Guecheva
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Department of Biophysics, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | - Jomar P Laurino
- Biotechnology Institute, University of Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil
| | - Jenifer Saffi
- Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
| | - Martin Brendel
- Department of Biological Sciences, State University of Santa Cruz (UESC), 45662-900 Ilhéus, BA, Brazil
| | - João A P Henriques
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Department of Biophysics, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil; Biotechnology Institute, University of Caxias do Sul (UCS), 95070-560 Caxias do Sul, RS, Brazil.
| |
Collapse
|
4
|
Munari FM, Guecheva TN, Bonatto D, Henriques JAP. New features on Pso2 protein family in DNA interstrand cross-link repair and in the maintenance of genomic integrity in Saccharomyces cerevisiae. Fungal Genet Biol 2013; 60:122-32. [PMID: 24076078 DOI: 10.1016/j.fgb.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/27/2022]
Abstract
Pso2 protein, a member of the highly conserved metallo-β-lactamase (MBL) super family of nucleases, plays a central role in interstrand crosslink repair (ICL) in yeast. Pso2 protein is the founder member of a distinct group within the MBL superfamily, called β-CASP family. Three mammalian orthologs of this protein that act on DNA were identified: SNM1A, SNM1B/Apollo and SNM1C/Artemis. Yeast Pso2 and all three mammalian orthologs proteins have been shown to possess nuclease activity. Besides Pso2, ICL repair involves proteins of several DNA repair pathways. Over the last years, new homologs for human proteins have been identified in yeast. In this review, we will focus on studies clarifying the function of Pso2 protein during ICL repair in yeast, emphasizing the contribution of Brazilian research groups in this topic. New sub-pathways in the mechanisms of ICL repair, such as recently identified conserved Fanconi Anemia pathway in yeast as well as a contribution of non-homologous end joining are discussed.
Collapse
Affiliation(s)
- Fernanda Mosena Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
5
|
Córdoba-Cañero D, Roldán-Arjona T, Ariza RR. Arabidopsis ARP endonuclease functions in a branched base excision DNA repair pathway completed by LIG1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:693-702. [PMID: 21781197 DOI: 10.1111/j.1365-313x.2011.04720.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Base excision repair (BER) is an essential cellular defence mechanism against DNA damage, but it is poorly understood in plants. We used an assay that monitors repair of damaged bases and abasic (apurinic/apyrimidinic, AP) sites in Arabidopsis to characterize post-excision events during plant BER. We found that Apurinic endonuclease-redox protein (ARP) is the major AP endonuclease activity in Arabidopsis cell extracts, and is required for AP incision during uracil BER in vitro. Mutant plants that are deficient in ARP grow normally but are hypersensitive to 5-fluorouracil, a compound that favours mis-incorporation of uracil into DNA. We also found that, after AP incision, the choice between single-nucleotide or long-patch DNA synthesis (SN- or LP-BER) is influenced by the 5' end of the repair gap. When the 5' end is blocked and not amenable to β-elimination, the SN sub-pathway is abrogated, and repair is accomplished through LP-BER only. Finally, we provide evidence that Arabidopsis DNA ligase I (LIG1) is required for both SN- and LP-BER. lig1 RNAi-silenced lines show very reduced uracil BER, and anti-LIG1 antibody abolishes repair in wild-type cell extracts. In contrast, knockout lig4(-/-) mutants exhibit normal BER and nick ligation levels. Our results suggest that a branched BER pathway completed by a member of the DNA ligase I family may be an ancient feature in eukaryotic species.
Collapse
|
6
|
Shultz RW, Tatineni VM, Hanley-Bowdoin L, Thompson WF. Genome-wide analysis of the core DNA replication machinery in the higher plants Arabidopsis and rice. PLANT PHYSIOLOGY 2007; 144:1697-714. [PMID: 17556508 PMCID: PMC1949880 DOI: 10.1104/pp.107.101105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/29/2007] [Indexed: 05/15/2023]
Abstract
Core DNA replication proteins mediate the initiation, elongation, and Okazaki fragment maturation functions of DNA replication. Although this process is generally conserved in eukaryotes, important differences in the molecular architecture of the DNA replication machine and the function of individual subunits have been reported in various model systems. We have combined genome-wide bioinformatic analyses of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) with published experimental data to provide a comprehensive view of the core DNA replication machinery in plants. Many components identified in this analysis have not been studied previously in plant systems, including the GINS (go ichi ni san) complex (PSF1, PSF2, PSF3, and SLD5), MCM8, MCM9, MCM10, NOC3, POLA2, POLA3, POLA4, POLD3, POLD4, and RNASEH2. Our results indicate that the core DNA replication machinery from plants is more similar to vertebrates than single-celled yeasts (Saccharomyces cerevisiae), suggesting that animal models may be more relevant to plant systems. However, we also uncovered some important differences between plants and vertebrate machinery. For example, we did not identify geminin or RNASEH1 genes in plants. Our analyses also indicate that plants may be unique among eukaryotes in that they have multiple copies of numerous core DNA replication genes. This finding raises the question of whether specialized functions have evolved in some cases. This analysis establishes that the core DNA replication machinery is highly conserved across plant species and displays many features in common with other eukaryotes and some characteristics that are unique to plants.
Collapse
Affiliation(s)
- Randall W Shultz
- Department of Plant Biology , North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | |
Collapse
|
7
|
Bonatto D, Brendel M, Henriques JAP. The eukaryotic Pso2p/Snm1p family revisited: in silico analyses of Pso2p A, B and Plasmodium groups. Comput Biol Chem 2005; 29:420-33. [PMID: 16290064 DOI: 10.1016/j.compbiolchem.2005.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/24/2005] [Indexed: 11/28/2022]
Abstract
The eukaryotic family of Pso2/Snm1 exo/endonuclease proteins has important functions in repair of DNA damages induced by chemical interstrand cross-linking agents and ionizing radiation. These exo/endonucleases are also necessary for V(D)J recombination and genomic caretaking. However, despite the growing biochemical data about this family, little is known about the number of orthologous/paralogous Pso2p/Snm1p sequences in eukaryotes and how they are phylogenetically organized. In this work we have characterized new Pso2p/Snm1p sequences from the finished and unfinished eukaryotic genomes and performed an in-depth phylogenetic analysis. The results indicate that four phylogenetically related groups compose the Pso2p/Snm1p family: (i) the Artemis/Artemis-like group, (ii) the Pso2p A group, (iii) the Pso2p B group and (iv) the Pso2p Plasmodium group. Using the available biochemical and genomic information about Pso2p/Snm1p family, we concentrate our research in the study of Pso2p A, B and Plasmodium groups. The phylogenetic results showed that A and B groups can be organized in specific subgroups with different functions in DNA metabolism. Moreover, we subjected selected Pso2p A, B and Plasmodium proteins to hydrophobic cluster analysis (HCA) in order to map and to compare conserved regions within these sequences. Four conserved regions could be detected by HCA, which are distributed along the metallo-beta-lactamase and beta-CASP motifs. Interestingly, both Pso2p A and B proteins are structurally similar, while Pso2p Plasmodium proteins have a unique domain organization. The possible functions of A, B and Plasmodium groups are discussed.
Collapse
Affiliation(s)
- Diego Bonatto
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, 91507-970 Porto Alegre, RS, Brazil
| | | | | |
Collapse
|