1
|
Ribeiro C, Stitt M, Hotta CT. How Stress Affects Your Budget-Stress Impacts on Starch Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:774060. [PMID: 35222460 PMCID: PMC8874198 DOI: 10.3389/fpls.2022.774060] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/12/2022] [Indexed: 05/16/2023]
Abstract
Starch is a polysaccharide that is stored to be used in different timescales. Transitory starch is used during nighttime when photosynthesis is unavailable. Long-term starch is stored to support vegetative or reproductive growth, reproduction, or stress responses. Starch is not just a reserve of energy for most plants but also has many other roles, such as promoting rapid stomatal opening, making osmoprotectants, cryoprotectants, scavengers of free radicals and signals, and reverting embolised vessels. Biotic and abiotic stress vary according to their nature, strength, duration, developmental stage of the plant, time of the day, and how gradually they develop. The impact of stress on starch metabolism depends on many factors: how the stress impacts the rate of photosynthesis, the affected organs, how the stress impacts carbon allocation, and the energy requirements involved in response to stress. Under abiotic stresses, starch degradation is usually activated, but starch accumulation may also be observed when growth is inhibited more than photosynthesis. Under biotic stresses, starch is usually accumulated, but the molecular mechanisms involved are largely unknown. In this mini-review, we explore what has been learned about starch metabolism and plant stress responses and discuss the current obstacles to fully understanding their interactions.
Collapse
Affiliation(s)
| | - Mark Stitt
- Max Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- *Correspondence: Carlos Takeshi Hotta,
| |
Collapse
|
2
|
Chen L, Liu X, Huang X, Luo W, Long Y, Greiner S, Rausch T, Zhao H. Functional Characterization of a Drought-Responsive Invertase Inhibitor from Maize ( Zea mays L.). Int J Mol Sci 2019; 20:E4081. [PMID: 31438536 PMCID: PMC6747265 DOI: 10.3390/ijms20174081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 01/01/2023] Open
Abstract
Invertases (INVs) play essential roles in plant growth in response to environmental cues. Previous work showed that plant invertases can be post-translationally regulated by small protein inhibitors (INVINHs). Here, this study characterizes a proteinaceous inhibitor of INVs in maize (Zm-INVINH4). A functional analysis of the recombinant Zm-INVINH4 protein revealed that it inhibited both cell wall and vacuolar invertase activities from maize leaves. A Zm-INVINH4::green fluorescent protein fusion experiment indicated that this protein localized in the apoplast. Transcript analysis showed that Zm-INVINH4 is specifically expressed in maize sink tissues, such as the base part of the leaves and young kernels. Moreover, drought stress perturbation significantly induced Zm-INVINH4 expression, which was accompanied with a decrease of cell wall invertase (CWI) activities and an increase of sucrose accumulation in both base parts of the leaves 2 to 7 days after pollinated kernels. In summary, the results support the hypothesis that INV-related sink growth in response to drought treatment is (partially) caused by a silencing of INV activity via drought-induced induction of Zm-INVINH4 protein.
Collapse
Affiliation(s)
- Lin Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaohong Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojia Huang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuming Long
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Steffen Greiner
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Thomas Rausch
- Centre for Organismal Studies Heidelberg, Department of Plant Molecular Physiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Hongbo Zhao
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
4
|
Vu JCV, Allen LH. Growth at elevated CO(2) delays the adverse effects of drought stress on leaf photosynthesis of the C(4) sugarcane. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:107-16. [PMID: 18462832 DOI: 10.1016/j.jplph.2008.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 02/29/2008] [Accepted: 02/29/2008] [Indexed: 05/09/2023]
Abstract
Sugarcane (Saccharum officinarum L. cv. CP72-2086) was grown in sunlit greenhouses at daytime [CO(2)] of 360 (ambient) and 720 (elevated)mumolmol(-1). Drought stress was imposed for 13d when plants were 4 months old, and various photosynthetic parameters and levels of nonstructural carbohydrates were determined for uppermost fully expanded leaves of well-watered (control) and drought stress plants. Control plants at elevated [CO(2)] were 34% and 25% lower in leaf stomatal conductance (g(s)) and transpiration rate (E) and 35% greater in leaf water-use efficiency (WUE) than their counterparts at ambient [CO(2)]. Leaf CO(2) exchange rate (CER) and activities of Rubisco, NADP-malate dehydrogenase, NADP-malic enzyme and pyruvate P(i) dikinase were marginally affected by elevated [CO(2)], but were reduced by drought, whereas activity of PEP carboxylase was reduced by elevated [CO(2)], but not by drought. At severe drought developed at day 12, leaf g(s) and WUE of ambient-[CO(2)] stress plants declined to 5% and 7%, while elevated-[CO(2)] stress plants still maintained g(s) and WUE at 20% and 74% of their controls. In control plants, elevated [CO(2)] did not enhance the midday levels of starch, sucrose, or reducing sugars. For both ambient- and elevated-[CO(2)] stress plants, severe drought did not affect the midday level of sucrose but substantially reduced that of starch. Nighttime starch decomposition in control plants was 55% for ambient [CO(2)] and 59% for elevated [CO(2)], but was negligible for stress plants of both [CO(2)] treatments. For both ambient-[CO(2)] control and stress plants, midday sucrose level at day 12 was similar to the predawn value at day 13. In contrast, sucrose levels of elevated-[CO(2)] control and stress plants at predawn of day 13 were 61-65% of the midday values of day 12. Levels of reducing sugars were much greater for both ambient- and elevated-[CO(2)] stress plants, implying an adaptation to drought stress. Sugarcane grown at elevated [CO(2)] had lower leaf g(s) and E and greater leaf WUE, which helped to delay the adverse effects of drought and, thus, allowed the stress plants to continue photosynthesis for at least an extra day during episodic drought cycles.
Collapse
Affiliation(s)
- Joseph C V Vu
- United States Department of Agriculture - Agricultural Research Service, Center for Medical, Agricultural and Veterinary Entomology, Chemistry Research Unit, Gainesville, FL 32608-1069, USA.
| | | |
Collapse
|
5
|
Cuellar-Ortiz SM, De La Paz Arrieta-Montiel M, Acosta-Gallegos J, Covarrubias AA. Relationship between carbohydrate partitioning and drought resistance in common bean. PLANT, CELL & ENVIRONMENT 2008; 31:1399-409. [PMID: 18643951 DOI: 10.1111/j.1365-3040.2008.01853.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Drought is a major yield constraint in common bean (Phaseolus vulgaris L.). Pulse-chase (14)C-labelling experiments were performed using Pinto Villa (drought resistant) and Canario 60 (drought sensitive) cultivars, grown under optimal irrigation and water-deficit conditions. Starch and the radioactive label incorporated into starch were measured in leaves and pods at different time points, between the initiation of pod development and the production of mature pods. The water-stress treatment induced a higher starch accumulation in the drought-resistant cultivar pods than in those of the drought-sensitive cultivar. This effect was more noticeable during the early stages of pod development. Consistently, a reduction of starch content occurred in the leaves of the drought-resistant cultivar during the grain-filling stage. Furthermore, a synchronized accumulation of sucrose was observed in immature pods of this cultivar. These data indicate that carbohydrate partitioning is affected by drought in common bean, and that the modulation of this partitioning towards seed filling has been a successful strategy in the development of drought-resistant cultivars. In addition, our results suggest that, in the drought-resistant cultivar, the efficient carbon mobilization towards the seeds in response to water limitation is favoured by a mechanism that implies a more effective sucrose transport.
Collapse
Affiliation(s)
- Sonia M Cuellar-Ortiz
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | |
Collapse
|
6
|
Luquet D, Clément-Vidal A, Fabre D, This D, Sonderegger N, Dingkuhn M. Orchestration of transpiration, growth and carbohydrate dynamics in rice during a dry-down cycle. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:689-704. [PMID: 32688823 DOI: 10.1071/fp08027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 07/22/2008] [Indexed: 05/27/2023]
Abstract
The regulation of carbohydrate metabolism and source-sink relationships among organs play a key role in plant adaptation to drought. This study aimed at characterising the dynamics of transpiration, development, growth and carbon metabolism, as well as the expression of invertase genes, in response to drought during a dry-down cycle. Three 1-month experiments were conducted in controlled environment using the rice genotype IR64 (Oryza sativa L., indica). Plant leaf relative transpiration and expansion rates decreased linearly when fraction of transpirable soil water (FTSW) dropped below 0.66 and 0.58, respectively. Hexose and starch concentration responses to FTSW in a given organ were generally linear and opposite: in source leaves, hexose concentration increased and starch decreased, and vice versa in sink leaves and roots. Sucrose remained constant in source leaves and increased slightly in sink leaves. Starch reserves built up during stress in sink organs were rapidly mobilised upon rewatering, indicating its involvement in a mechanism to ensure recovery. Expression of cell-wall and vacuolar invertase genes under stress increased in sink leaves, interpreted as a mechanism to maintain sink activity (cell wall) and osmotic adjustment (vacuolar). It is concluded that carbohydrate metabolism in sink organs under drought is highly regulated, and important for stress adaptation.
Collapse
Affiliation(s)
- D Luquet
- CIRAD, UPR 59, F-34398 Montpellier, France
| | | | - D Fabre
- CIRAD, UPR 59, F-34398 Montpellier, France
| | - D This
- CIRAD, UMR DAP, F-34398 Montpellier, France
| | | | - M Dingkuhn
- CIRAD, UPR 59, F-34398 Montpellier, France
| |
Collapse
|
7
|
Beebe SE, Rao IM, Cajiao C, Grajales M. Selection for Drought Resistance in Common Bean Also Improves Yield in Phosphorus Limited and Favorable Environments. CROP SCIENCE 2008; 48:582-592. [PMID: 0 DOI: 10.2135/cropsci2007.07.0404] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Stephen E. Beebe
- Centro Internacional de Agricultura Tropical (CIAT); A.A. 6713 Cali Colombia
| | - Idupulapati M. Rao
- Centro Internacional de Agricultura Tropical (CIAT); A.A. 6713 Cali Colombia
| | - César Cajiao
- Centro Internacional de Agricultura Tropical (CIAT); A.A. 6713 Cali Colombia
| | - Miguel Grajales
- Centro Internacional de Agricultura Tropical (CIAT); A.A. 6713 Cali Colombia
| |
Collapse
|