1
|
Rangarajan H, Hadka D, Reed P, Lynch JP. Multi-objective optimization of root phenotypes for nutrient capture using evolutionary algorithms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:38-53. [PMID: 35426959 PMCID: PMC9544003 DOI: 10.1111/tpj.15774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 05/11/2023]
Abstract
Root phenotypes are avenues to the development of crop cultivars with improved nutrient capture, which is an important goal for global agriculture. The fitness landscape of root phenotypes is highly complex and multidimensional. It is difficult to predict which combinations of traits (phene states) will create the best performing integrated phenotypes in various environments. Brute force methods to map the fitness landscape by simulating millions of phenotypes in multiple environments are computationally challenging. Evolutionary optimization algorithms may provide more efficient avenues to explore high dimensional domains such as the root phenotypic space. We coupled the three-dimensional functional-structural plant model, SimRoot, to the Borg Multi-Objective Evolutionary Algorithm (MOEA) and the evolutionary search over several generations facilitated the identification of optimal root phenotypes balancing trade-offs across nutrient uptake, biomass accumulation, and root carbon costs in environments varying in nutrient availability. Our results show that several combinations of root phenes generate optimal integrated phenotypes where performance in one objective comes at the cost of reduced performance in one or more of the remaining objectives, and such combinations differed for mobile and non-mobile nutrients and for maize (a monocot) and bean (a dicot). Functional-structural plant models can be used with multi-objective optimization to identify optimal root phenotypes under various environments, including future climate scenarios, which will be useful in developing the more resilient, efficient crops urgently needed in global agriculture.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Patrick Reed
- Civil and Environmental EngineeringCornell UniversityIthacaNew YorkUSA
| | - Jonathan P. Lynch
- Department of Plant ScienceThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Root System Architecture and Symbiotic Parameters of Summer Mung Bean (Vigna Radiata) under Different Conservation Agriculture Practices. SUSTAINABILITY 2022. [DOI: 10.3390/su14073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Root system architecture plays a vital role in plant growth, development, and adaptation by absorbing water and nutrients and providing mechanical support for growing plants. Unfortunately, little information is available in the literature on the root dynamics of summer mung bean under conservation agriculture conditions. In this study, field experiments were conducted during the summer seasons of two consecutive years (2020 and 2021) to investigate the root system dynamics of summer mung bean under different conservation agriculture practices. The highest stem and system width, depth to width length, number of nodal roots, taproot diameter, secondary root length (both right and left) of summer mung bean were recorded in the Soybean (permanent bed; PB)-Wheat(PB)-Summer mung (PB)(+Residual; +R) based cropping systems, followed by Maize(PB)-Wheat(PB)-Summer mung (PB)(+R), while, the lowest values of above parameters were recorded in the Puddled Transplanted Rice–Conventional till (PTR-CT)Wheat-Summer mung (-R). Further, the pod length, number of seeds per pod, number of pods per plant, seed yield and symbiotic parameters (including number of nodules per plant, leghaemoglobin content) and root dry weight were recorded highest in Soybean (PB)-Wheat (PB)-Summer mung (PB)(+R). Interestingly, the yield of summer mung bean increased around 13.4–29.5% when residues were retained on the soil surface with treatments involving residual removal. The soil dehydrogenase enzyme activity increased significantly under Soybean (PB)-Wheat (PB)-Summer mung (PB)(+R) based cropping system as compared to PTR-CT Wheat-Summer mung (-R). In addition, the number of pods per plant exhibited a significantly positive correlation with yield during both crop seasons. Overall, this study suggests that the inclusion of summer mung in soybean-based cropping systems may substantially improve the root architecture and soil quality and increase crop yield under conservation agriculture.
Collapse
|
3
|
Liu D. Root developmental responses to phosphorus nutrition. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1065-1090. [PMID: 33710755 DOI: 10.1111/jipb.13090] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 03/07/2021] [Indexed: 05/25/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and development. Root system architecture (RSA) affects a plant's ability to obtain phosphate, the major form of phosphorus that plants uptake. In this review, I first consider the relationship between RSA and plant phosphorus-acquisition efficiency, describe how external phosphorus conditions both induce and impose changes in the RSA of major crops and of the model plant Arabidopsis, and discuss whether shoot phosphorus status affects RSA and whether there is a universal root developmental response across all plant species. I then summarize the current understanding of the molecular mechanisms governing root developmental responses to phosphorus deficiency. I also explore the possible reasons for the inconsistent results reported by different research groups and comment on the relevance of some studies performed under laboratory conditions to what occurs in natural environments.
Collapse
Affiliation(s)
- Dong Liu
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Center for Plant Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Wang Y, Afeworki Y, Geng S, Kanchupati P, Gu M, Martins C, Rude B, Tefera H, Kim Y, Ge X, Auger D, Chen S, Yang P, Hu T, Wu Y. Hydrotropism in the primary roots of maize. THE NEW PHYTOLOGIST 2020; 226:1796-1808. [PMID: 32020611 DOI: 10.1111/nph.16472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Recent studies mainly in Arabidopsis have renewed interest and discussion in some of the key issues in hydrotropism of roots, such as the site of water sensing and the involvement of auxin. We examined hydrotropism in maize (Zea mays) primary roots. We determined the site of water sensing along the root using a nonintrusive method. Kinematic analysis was conducted to investigate spatial root elongation during hydrotropic response. Indole-3-acetic acid (IAA) and other hormones were quantified using LC-MS/MS. The transcriptome was analyzed using RNA sequencing. Main results: The very tip of the root is the most sensitive to the hydrostimulant. Hydrotropic bending involves coordinated adjustment of spatial cell elongation and cell flux. IAA redistribution occurred in maize roots, preceding hydrotropic bending. The redistribution is caused by a reduction of IAA content on the side facing a hydrostimulant, resulting in a higher IAA content on the dry side. Transcriptomic analysis of the elongation zone prior to bending identified IAA response and lignin synthesis/wall cross-linking as some of the key processes occurring during the early stages of hydrotropic response. We conclude that maize roots differ from Arabidopsis in the location of hydrostimulant sensing and the involvement of IAA redistribution.
Collapse
Affiliation(s)
- Yafang Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yohannes Afeworki
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 57007, USA
| | - Sisi Geng
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Praveena Kanchupati
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Muyu Gu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Chidi Martins
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Brady Rude
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Haileselassie Tefera
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Yongjun Kim
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Xijin Ge
- Department of Mathematics and Statistics, South Dakota State University, Brookings, SD, 57007, USA
| | - Donald Auger
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, 32610, USA
| | - Peizhi Yang
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Tianming Hu
- College of Grassland Agriculture, Northwest A&F University, 712100, Yangling, China
| | - Yajun Wu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| |
Collapse
|
5
|
Rangarajan H, Postma JA, Lynch JP. Co-optimization of axial root phenotypes for nitrogen and phosphorus acquisition in common bean. ANNALS OF BOTANY 2018; 122:485-499. [PMID: 29982363 PMCID: PMC6110351 DOI: 10.1093/aob/mcy092] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/04/2018] [Indexed: 05/02/2023]
Abstract
Background and Aims Root architecture is a primary determinant of soil resource acquisition. We hypothesized that root architectural phenes will display both positive and negative interactions with each other for soil resource capture because of competition for internal resources and functional trade-offs in soil exploration. Methods We employed the functional-structural plant model SimRoot to explore how interactions among architectural phenes in common bean determine the acquisition of phosphate and nitrate, two key soil resources contrasting in mobility. We evaluated the utility of basal root whorl number (BRWN) when basal root growth angle, hypocotyl-borne roots and lateral root branching density (LRBD) were varied, under varying availability of phosphate and nitrate. Key Results Three basal root whorls were optimal in most phenotypes. This optimum shifted towards greater values when LRBD decreased and to smaller numbers when LRBD increased. The maximum biomass accumulated for a given BRWN phenotype in a given limiting nutrient scenario depended upon root growth angle. Under phosphorus stress shallow phenotypes grew best, whereas under nitrate stress fanned phenotypes grew best. The effect of increased hypocotyl-borne roots depended upon BRWN as well as the limiting nutrient. Greater production of axial roots due to BRWN or hypocotyl-borne roots reduced rooting depth, leading to reduced biomass under nitrate-limiting conditions. Increased BRWN as well as greater LRBD increased root carbon consumption, resulting in reduced shoot biomass. Conclusions We conclude that the utility of a root architectural phenotype is determined by whether the constituent phenes are synergistic or antagonistic. Competition for internal resources and trade-offs for external resources result in multiple phenotypes being optimal under a given nutrient regime. We also find that no single phenotype is optimal across contrasting environments. These results have implications for understanding plant evolution and also for the breeding of more stress-tolerant crop phenotypes.
Collapse
Affiliation(s)
- Harini Rangarajan
- Department of Plant Science, The Pennsylvania State University, Tyson Building, University Park, PA, USA
| | | | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, Tyson Building, University Park, PA, USA
| |
Collapse
|
6
|
Polania J, Poschenrieder C, Rao I, Beebe S. Root traits and their potential links to plant ideotypes to improve drought resistance in common bean. THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY 2017; 29:143-154. [PMID: 33552846 PMCID: PMC7797623 DOI: 10.1007/s40626-017-0090-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 05/18/2023]
Abstract
Drought stress limits growth and yield of crops, particularly under smallholder production systems with minimal use of inputs and edaphic limitations such as nitrogen (N) deficiency. The development of genotypes adapted to these conditions through genetic improvement is an important strategy to address this limitation. The identification of morpho-physiological traits associated with drought resistance contributes to increasing the efficiency of breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool was evaluated. A greenhouse study using soil cylinders was conducted to determine root vigor traits (total root length and fine root production) under drought stress. Two field trials were conducted to determinate grain yield, symbiotic nitrogen fixation (SNF) ability and other shoot traits under drought stress. Field data on grain yield and other shoot traits measured under drought were related with the greenhouse data on root traits under drought conditions to test the relationships between shoot traits and root traits. Response of root vigor to drought stress appeared to be related with ideotypes of water use (water savers and water spenders). The water spender ideotypes presented deeper root system, while the water saver ideotypes showed a relatively shallower root system. Increase in SNF ability under drought stress was associated with greater values of mean root diameter while greater acquisition of N from soil was associated with finer root system. We identified seven common bean lines (SEA 15, NCB 280, SCR 16, SMC 141, BFS 29, BFS 67 and SER 119) that showed greater root vigor under drought stress in the greenhouse and higher values of grain yield under drought stress in the field. These lines could serve as parents for improving drought resistance in common bean.
Collapse
Affiliation(s)
- Jose Polania
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
- e-mail:
| | - Charlotte Poschenrieder
- Lab Fisiología Vegetal, Facultad de Biociencias, Universidad Autónoma de Barcelona, Bellaterra, Spain
| | - Idupulapati Rao
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
- Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA
| | - Stephen Beebe
- Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia
| |
Collapse
|
7
|
Burridge J, Jochua CN, Bucksch A, Lynch JP. Legume shovelomics: High—Throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. FIELD CROPS RESEARCH 2016; 192:21-32. [PMID: 0 DOI: 10.1016/j.fcr.2016.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
8
|
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. FRONTIERS IN PLANT SCIENCE 2015; 6:796. [PMID: 26483813 PMCID: PMC4586416 DOI: 10.3389/fpls.2015.00796] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/13/2015] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field.
Collapse
Affiliation(s)
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, BeijingChina
| |
Collapse
|
9
|
López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L. Phosphate nutrition: improving low-phosphate tolerance in crops. ANNUAL REVIEW OF PLANT BIOLOGY 2014; 65:95-123. [PMID: 24579991 DOI: 10.1146/annurev-arplant-050213-035949] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential nutrient that is required for all major developmental processes and reproduction in plants. It is also a major constituent of the fertilizers required to sustain high-yield agriculture. Levels of phosphate--the only form of phosphorus that can be assimilated by plants--are suboptimal in most natural and agricultural ecosystems, and when phosphate is applied as fertilizer in soils, it is rapidly immobilized owing to fixation and microbial activity. Thus, cultivated plants use only approximately 20-30% of the applied phosphate, and the rest is lost, eventually causing water eutrophication. Recent advances in the understanding of mechanisms by which wild and cultivated species adapt to low-phosphate stress and the implementation of alternative bacterial pathways for phosphorus metabolism have started to allow the design of more effective breeding and genetic engineering strategies to produce highly phosphate-efficient crops, optimize fertilizer use, and reach agricultural sustainability with a lower environmental cost. In this review, we outline the current advances in research on the complex network of plant responses to low-phosphorus stress and discuss some strategies used to manipulate genes involved in phosphate uptake, remobilization, and metabolism to develop low-phosphate-tolerant crops, which could help in designing more efficient crops.
Collapse
|
10
|
Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA. Current understanding on ethylene signaling in plants: the influence of nutrient availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:128-38. [PMID: 24095919 DOI: 10.1016/j.plaphy.2013.09.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/12/2013] [Indexed: 05/18/2023]
Abstract
The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | |
Collapse
|
11
|
Miguel MA, Widrig A, Vieira RF, Brown KM, Lynch JP. Basal root whorl number: a modulator of phosphorus acquisition in common bean (Phaseolus vulgaris). ANNALS OF BOTANY 2013; 112:973-82. [PMID: 23925972 PMCID: PMC3783229 DOI: 10.1093/aob/mct164] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/03/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Root architectural phenes enhancing topsoil foraging are important for phosphorus acquisition. In this study, the utility of a novel phene is described, basal root whorl number (BRWN), that has significant effects on topsoil foraging in common bean (Phaseolus vulgaris). METHODS Whorls are defined as distinct tiers of basal roots that emerge in a tetrarch fashion along the base of the hypocotyl. Wild and domesticated bean taxa as well as two recombinant inbred line (RIL) populations were screened for BRWN and basal root number (BRN). A set of six RILs contrasting for BRWN was evaluated for performance under low phosphorus availability in the greenhouse and in the field. In the greenhouse, plants were grown in a sand-soil media with low or high phosphorus availability. In the field, plants were grown in an Oxisol in Mozambique under low and moderate phosphorus availability. KEY RESULTS Wild bean accessions tended to have a BRWN of one or two, whereas cultivated accessions had BRWN reaching four and sometimes five. BRWN and BRN did not vary with phosphorus availability, i.e. BRWN was not a plastic trait in these genotypes. Greater BRWN was beneficial for phosphorus acquisition in low phosphorus soil. Genotypes with three whorls had almost twice the shoot biomass, greater root length and greater leaf area than related genotypes with two whorls. In low phosphorus soil, shoot phosphorus content was strongly correlated with BRWN (R(2) = 0.64 in the greenhouse and R(2) = 0.88 in the field). Genotypes with three whorls had shallower root systems with a greater range of basal root growth angles (from 10 to 45 ° from horizontal) than genotypes with two whorls (angles ranged from 60 to 85 ° from horizontal). CONCLUSIONS The results indicate that BRWN is associated with increased phosphorus acquisition and that this trait may have value for selection of genotypes with better performance in low phosphorus soils.
Collapse
Affiliation(s)
- M. A. Miguel
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - A. Widrig
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - R. F. Vieira
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
- Empresa de Pesquisa Agropecuária de Minas Gerais, Caixa Postal 216, CEP 36571-000 Viçosa, MG, Brazil
| | - K. M. Brown
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - J. P. Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
Lynch JP, Brown KM. New roots for agriculture: exploiting the root phenome. Philos Trans R Soc Lond B Biol Sci 2012; 367:1598-604. [PMID: 22527403 PMCID: PMC3321693 DOI: 10.1098/rstb.2011.0243] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in root biology are making it possible to genetically design root systems with enhanced soil exploration and resource capture. These cultivars would have substantial value for improving food security in developing nations, where yields are limited by drought and low soil fertility, and would enhance the sustainability of intensive agriculture. Many of the phenes controlling soil resource capture are related to root architecture. We propose that a better understanding of the root phenome is needed to effectively translate genetic advances into improved crop cultivars. Elementary, unique root phenes need to be identified. We need to understand the 'fitness landscape' for these phenes: how they affect crop performance in an array of environments and phenotypes. Finally, we need to develop methods to measure phene expression rapidly and economically without artefacts. These challenges, especially mapping the fitness landscape, are non-trivial, and may warrant new research and training modalities.
Collapse
Affiliation(s)
- Jonathan P Lynch
- Department of Horticulture, Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
13
|
Basu P, Pal A. Spatio-temporal analysis of development of basal roots of common bean (Phaseolus vulgaris L.). PLANT SIGNALING & BEHAVIOR 2011; 6:982-5. [PMID: 21701251 PMCID: PMC3257773 DOI: 10.4161/psb.6.7.15460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 05/31/2023]
Abstract
Temporal development of roots is key to the understanding of root system architecture of plants which influences nutrient uptake, anchorage and plant competition. Using time lapse imaging we analyzed developmental patterns of length, growth angle, depth and curvature of Phaseolus basal roots from emergence till 48 h in two genotypes, B98311 and TLP19 with contrasting growth angles. In both genotypes all basal roots appeared almost simultaneously, but their growth rates varied which accounted for differences in root length. The growth angles of the basal roots fluctuated rapidly during initial development due to oscillatory root growth causing local bends. Beyond 24 h, as the root curvature stabilized, so did the growth angle. Therefore growth angle of basal roots is not a very reliable quantity for characterizing root architecture, especially during early seedling development. Comparatively, tip depth is a more robust measure of vertical distribution of the basal roots even during early seedling development.
Collapse
Affiliation(s)
- Paramita Basu
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| | | |
Collapse
|
14
|
Basu P, Brown KM, Pal A. Detailed quantitative analysis of architectural traits of basal roots of young seedlings of bean in response to auxin and ethylene. PLANT PHYSIOLOGY 2011; 155:2056-65. [PMID: 21311033 PMCID: PMC3091101 DOI: 10.1104/pp.110.168229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/02/2011] [Indexed: 05/22/2023]
Abstract
Vertical placement of roots within the soil determines their efficiency of acquisition of heterogeneous belowground resources. This study quantifies the architectural traits of seedling basal roots of bean (Phaseolus vulgaris), and shows that the distribution of root tips at different depths results from a combined effect of both basal root growth angle (BRGA) and root length. Based on emergence locations, the basal roots are classified in three zones, upper, middle, and lower, with each zone having distinct architectural traits. The genotypes characterized as shallow on BRGA alone produced basal roots with higher BRGA, greater length, and more vertically distributed roots than deep genotypes, thereby establishing root depth as a robust measure of root architecture. Although endogenous indole-3-acetic acid (IAA) levels were similar in all genotypes, IAA and 1-N-naphthylphthalamic acid treatments showed different root growth responses to auxin because shallow and deep genotypes tended to have optimal and supraoptimal auxin levels, respectively, for root growth in controls. While IAA increased ethylene production, ethylene also increased IAA content. Although differences in acropetal IAA transport to roots of different zones can account for some of the differences in auxin responsiveness among roots of different emergence positions, this study shows that mutually dependent ethylene-auxin interplay regulates BRGA and root growth differently in different genotypes. Root length inhibition by auxin was reversed by an ethylene synthesis inhibitor. However, IAA caused smaller BRGA in deep genotypes, but not in shallow genotypes, which only responded to IAA in the presence of an ethylene inhibitor.
Collapse
Affiliation(s)
| | | | - Anupam Pal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India (P.B., A.P.); and Intercollege Program in Plant Biology (P.B., K.M.B.) and Department of Horticulture (K.M.B.), Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
15
|
Kim HJ, Lynch JP, Brown KM. Ethylene insensitivity impedes a subset of responses to phosphorus deficiency in tomato and petunia. PLANT, CELL & ENVIRONMENT 2008; 31:1744-55. [PMID: 18771572 DOI: 10.1111/j.1365-3040.2008.01886.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The role of ethylene in growth and developmental responses to low phosphorus stress was evaluated using ethylene-insensitive 'Never-ripe' (Nr) tomato and etr1 petunia plants. Low phosphorus increased adventitious root formation in 'Pearson' (wild-type) tomato plants, but not in Nr, supporting a role for ethylene in adventitious root development and showing that ethylene is important for this aspect of phosphorus response. Low phosphorus reduced ethylene production by adventitious roots of both genotypes, suggesting that ethylene perception--not production--regulates carbon allocation to adventitious roots at the expense of other roots under low phosphorus stress. With the exception of its effect on adventitious rooting, Nr had positive effects on growth and biomass accumulation in tomato whereas etr1 tended to have negative effects on petunia. This was particularly evident during the recovery from transplanting, when the effective quantum yield of photosystem II of etr1 petunia grown with low phosphorus was significantly lower than 'Mitchell Diploid', suggesting that etr1 petunia plants may undergo more severe post-transplant stress at low phosphorus availability. Our results demonstrate that ethylene mediates adventitious root formation in response to phosphorus stress and plays an important role for quick recovery of plants exposed to multiple environmental stresses, i.e. transplanting and low phosphorus.
Collapse
Affiliation(s)
- Hye-Ji Kim
- Department of Horticulture, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
16
|
|