1
|
Manea A, Tabassum S, Fernandez Winzer L, Leishman MR. Susceptibility to the fungal plant pathogen Austropuccinia psidii is related to monoterpene production in Australian Myrtaceae species. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AbstractIn 2010, the fungal plant pathogen that causes Myrtle rust, Austropuccinia psidii, which is native to South America, was first detected in Australia and has since had significant impacts on several Australian Myrtaceae species. Despite this, our understanding of the role secondary metabolites play in plant susceptibility to A. psidii is limited. This study aimed to determine: (1) whether secondary metabolite (phenolics, terpenes) production is induced after A. psidii inoculation and if so, (2) how their production relates to A. psidii susceptibility. To test these aims, we selected seven Myrtaceae species that have a wide range of within-species variability in their susceptibility to A. psidii. We found that five of the study species significantly increased either their phenolic or sesquiterpene production post-inoculation suggesting their pre-inoculation secondary metabolite levels were not sufficient to combat A. psidii infection. The two species (Angophora costata and Corymbia citriodora) that did not increase their secondary metabolite production post-inoculation tended to have the greatest pre-inoculation production levels amongst the species. Interestingly, across all species, monoterpenes were the only secondary metabolite found to reduce plant susceptibility to A. psidii. This study contributes to our limited understanding of the role that secondary metabolites play in plant susceptibility to A. psidii. In light of these findings, future research should aim to identify biomarkers (e.g. individual chemical compounds) that confer resistance to A. psidii, so that individuals with these biomarkers can be utilised in commercial and conservation projects.
Collapse
|
2
|
Sekiya A, Marques FG, Leite TF, Cataldi TR, de Moraes FE, Pinheiro ALM, Labate MTV, Labate CA. Network Analysis Combining Proteomics and Metabolomics Reveals New Insights Into Early Responses of Eucalyptus grandis During Rust Infection. FRONTIERS IN PLANT SCIENCE 2021; 11:604849. [PMID: 33488655 PMCID: PMC7817549 DOI: 10.3389/fpls.2020.604849] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/10/2020] [Indexed: 05/19/2023]
Abstract
Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects commercial plantations of Eucalyptus, a major raw material for the pulp and paper industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence microscopy was used to follow the fungus development inside the leaves of two contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also determine the comparative time-course of changes in metabolites and proteins in plants inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709 metabolomic features showed the suppression of many metabolites 6 h after inoculation (hai) in the rust-resistant genotype, with responses being induced after 12 hai. In contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to 18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses of genotypes and time points were used to select 16 differential metabolites mostly classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5 and 4 of them were significantly correlated to the selected metabolites. Functional analyses revealed roles for photosynthesis and oxidative-dependent responses leading to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance; while the initial over-accumulation of those molecules and suppression of supporting mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses after 12 hai in rust-susceptible genotype. This study provides some insights on how E. grandis plants are functionally modulated to integrate secondary metabolites and related enzymes from phenylpropanoid pathway and lead to temporal divergences of resistance and susceptibility responses to rust.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
3
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
4
|
Tobias PA, Christie N, Naidoo S, Guest DI, Külheim C. Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges. TREE PHYSIOLOGY 2017; 37:565-582. [PMID: 28338992 DOI: 10.1093/treephys/tpx010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Eucalyptus grandis (W. Hill ex Maiden) is an Australian Myrtaceae tree grown for timber in many parts of the world and for which the annotated genome sequence is available. Known to be susceptible to a number of pests and diseases, E. grandis is a useful study organism for investigating defense responses in woody plants. Chitinases are widespread in plants and cleave glycosidic bonds of chitin, the major structural component of fungal cell walls and arthropod exoskeletons. They are encoded by an important class of genes known to be up-regulated in plants in response to pathogens. The current study identified 67 chitinase gene models from two families known as glycosyl hydrolase 18 and 19 (36 GH18 and 31 GH19) within the E. grandis genome assembly (v1.1), indicating a recent gene expansion. Sequences were aligned and analyzed as conforming to currently recognized plant chitinase classes (I-V). Unlike other woody species investigated to date, E. grandis has a single gene encoding a putative vacuolar targeted Class I chitinase. In response to Leptocybe invasa (Fisher & La Salle) (the eucalypt gall wasp) and Chrysoporthe austroafricana (Gryzenhout & M.J. Wingf. 2004) (causal agent of fungal stem canker), this Class IA chitinase is strongly up-regulated in both resistant and susceptible plants. Resistant plants, however, indicate greater constitutive expression and increased up-regulation than susceptible plants following fungal challenge. Up-regulation within fungal resistant clones was further confirmed with protein data. Clusters of putative chitinase genes, particularly on chromosomes 3 and 8, are significantly up-regulated in response to fungal challenge, while a cluster on chromosome 1 is significantly down-regulated in response to gall wasp. The results of this study show that the E. grandis genome has an expanded group of chitinase genes, compared with other plants. Despite this expansion, only a single Class I chitinase is present and this gene is highly up-regulated within diverse biotic stress conditions. Our research provides insight into a major class of defense genes within E. grandis and indicates the importance of the Class I chitinase.
Collapse
Affiliation(s)
- Peri A Tobias
- School of Life and Environmental Science, Sydney Institute of Agriculture, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - David I Guest
- School of Life and Environmental Science, Sydney Institute of Agriculture, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Divya D, Singh YT, Nair S, Bentur JS. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes. Funct Integr Genomics 2016; 16:153-69. [DOI: 10.1007/s10142-016-0474-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022]
|
6
|
Serba DD, Uppalapati SR, Mukherjee S, Krom N, Tang Y, Mysore KS, Saha MC. Transcriptome Profiling of Rust Resistance in Switchgrass Using RNA-Seq Analysis. THE PLANT GENOME 2015; 8:eplantgenome2014.10.0075. [PMID: 33228298 DOI: 10.3835/plantgenome2014.10.0075] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/23/2014] [Indexed: 06/11/2023]
Abstract
Switchgrass rust caused by Puccinia emaculata is a major limiting factor for switchgrass (Panicum virgatum L.) production, especially in monoculture. Natural populations of switchgrass displayed diverse reactions to P. emaculata when evaluated in an Ardmore, OK, field. To identify the differentially expressed genes during the rust infection process and the mechanisms of switchgrass rust resistance, transcriptome analysis using RNA-Seq was conducted in two pseudo-F1 parents ('PV281' and 'NFGA472'), and three moderately resistant and three susceptible progenies selected from a three-generation, four-founder switchgrass population (K5 × A4) × (AP13 × VS16). On average, 23.5 million reads per sample (leaf tissue was collected at 0, 24, and 60 h post-inoculation (hpi)) were obtained from paired-end (2 × 100 bp) sequencing on the Illumina HiSeq2000 platform. Mapping of the RNA-Seq reads to the switchgrass reference genome (AP13 ver. 1.1 assembly) constructed a total of 84,209 transcripts from 98,007 gene loci among all of the samples. Further analysis revealed that host defense-related genes, including the nucleotide binding site-leucine-rich repeat domain containing disease resistance gene analogs, play an important role in resistance to rust infection. Rust-induced gene (RIG) transcripts inherited across generations were identified. The rust-resistant gene transcripts can be a valuable resource for developing molecular markers for rust resistance. Furthermore, the rust-resistant genotypes and gene transcripts identified in this study can expedite rust-resistant cultivar development in switchgrass.
Collapse
Affiliation(s)
- Desalegn D Serba
- Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
- Department of Energy, BioEnergy Science Center, Oak Ridge National Lab., Oak Ridge, TN, 37831
| | - Srinivasa Rao Uppalapati
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
- Dupont Pioneer, Dupont Knowledge Center, Turakapally, Hyderabad, Telangana, India, 500 078
| | - Shreyartha Mukherjee
- Computing Services, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
| | - Nick Krom
- Computing Services, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
- Department of Energy, BioEnergy Science Center, Oak Ridge National Lab., Oak Ridge, TN, 37831
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
| | - Malay C Saha
- Forage Improvement Division, The Samuel Roberts Noble Foundation, 2510 Sam Noble Pkwy., Ardmore, OK, 73401
- Department of Energy, BioEnergy Science Center, Oak Ridge National Lab., Oak Ridge, TN, 37831
| |
Collapse
|
7
|
Naidoo S, Külheim C, Zwart L, Mangwanda R, Oates CN, Visser EA, Wilken FE, Mamni TB, Myburg AA. Uncovering the defence responses of Eucalyptus to pests and pathogens in the genomics age. TREE PHYSIOLOGY 2014; 34:931-43. [PMID: 25261123 DOI: 10.1093/treephys/tpu075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Long-lived tree species are subject to attack by various pests and pathogens during their lifetime. This problem is exacerbated by climate change, which may increase the host range for pathogens and extend the period of infestation by pests. Plant defences may involve preformed barriers or induced resistance mechanisms based on recognition of the invader, complex signalling cascades, hormone signalling, activation of transcription factors and production of pathogenesis-related (PR) proteins with direct antimicrobial or anti-insect activity. Trees have evolved some unique defence mechanisms compared with well-studied model plants, which are mostly herbaceous annuals. The genome sequence of Eucalyptus grandis W. Hill ex Maiden has recently become available and provides a resource to extend our understanding of defence in large woody perennials. This review synthesizes existing knowledge of defence mechanisms in model plants and tree species and features mechanisms that may be important for defence in Eucalyptus, such as anatomical variants and the role of chemicals and proteins. Based on the E. grandis genome sequence, we have identified putative PR proteins based on sequence identity to the previously described plant PR proteins. Putative orthologues for PR-1, PR-2, PR-4, PR-5, PR-6, PR-7, PR-8, PR-9, PR-10, PR-12, PR-14, PR-15 and PR-17 have been identified and compared with their orthologues in Populus trichocarpa Torr. & A. Gray ex Hook and Arabidopsis thaliana (L.) Heynh. The survey of PR genes in Eucalyptus provides a first step in identifying defence gene targets that may be employed for protection of the species in future. Genomic resources available for Eucalyptus are discussed and approaches for improving resistance in these hardwood trees, earmarked as a bioenergy source in future, are considered.
Collapse
Affiliation(s)
- Sanushka Naidoo
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa;
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | - Lizahn Zwart
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Ronishree Mangwanda
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Caryn N Oates
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Erik A Visser
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Febé E Wilken
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Thandekile B Mamni
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Genetics, Genomics Research Institute (GRI), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|