1
|
Vincent M, Boubakri H, Gasser M, Hay AE, Herrera-Belaroussi A. What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions? Symbiosis 2023. [DOI: 10.1007/s13199-022-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
2
|
Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, Graça I, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Salt Stress Tolerance in Casuarina glauca: Insights from the Branchlets Transcriptome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2942. [PMID: 36365395 PMCID: PMC9658546 DOI: 10.3390/plants11212942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.
Collapse
Affiliation(s)
- Isabel Fernandes
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Octávio S. Paulo
- Computational Biology and Population Genomics Group, cE3c–Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Isabel Marques
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Indrani Sarjkar
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Arnab Sen
- Bioinformatics Facility, University of North Bengal, Siliguri 734013, India
| | - Inês Graça
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - José C. Ramalho
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Forest Research Centre (CEF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1349-017 Lisbon, Portugal
- GeoBioSciences, GeoTechnologies and GeoEngineering (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Monte de Caparica, Portugal
| |
Collapse
|
3
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
4
|
Graça I, Mendes VM, Marques I, Duro N, da Costa M, Ramalho JC, Pawlowski K, Manadas B, Pinto Ricardo CP, Ribeiro-Barros AI. Comparative Proteomic Analysis of Nodulated and Non-Nodulated Casuarina glauca Sieb. ex Spreng. Grown under Salinity Conditions Using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS). Int J Mol Sci 2019; 21:E78. [PMID: 31861944 PMCID: PMC6982049 DOI: 10.3390/ijms21010078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
Casuarina glauca displays high levels of salt tolerance, but very little is known about how this tree adapts to saline conditions. To understand the molecular basis of C. glauca response to salt stress, we have analyzed the proteome from branchlets of plants nodulated by nitrogen-fixing Frankia Thr bacteria (NOD+) and non-nodulated plants supplied with KNO3 (KNO3+), exposed to 0, 200, 400, and 600 mM NaCl. Proteins were identified by Short Gel, Long Gradient Liquid Chromatography coupled to Tandem Mass Spectrometry and quantified by Sequential Window Acquisition of All Theoretical Mass Spectra -Mass Spectrometry. 600 proteins were identified and 357 quantified. Differentially Expressed Proteins (DEPs) were multifunctional and mainly involved in Carbohydrate Metabolism, Cellular Processes, and Environmental Information Processing. The number of DEPs increased gradually with stress severity: (i) from 7 (200 mM NaCl) to 40 (600 mM NaCl) in KNO3+; and (ii) from 6 (200 mM NaCl) to 23 (600 mM NaCl) in NOD+. Protein-protein interaction analysis identified different interacting proteins involved in general metabolic pathways as well as in the biosynthesis of secondary metabolites with different response networks related to salt stress. Salt tolerance in C. glauca is related to a moderate impact on the photosynthetic machinery (one of the first and most important stress targets) as well as to an enhancement of the antioxidant status that maintains cellular homeostasis.
Collapse
Affiliation(s)
- Inês Graça
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, UC Biotech—Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Isabel Marques
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
| | - Nuno Duro
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Mário da Costa
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - José C. Ramalho
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden;
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, Universidade de Coimbra, UC Biotech—Parque Tecnológico de Cantanhede, Núcleo 04, Lote 8, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Cândido P. Pinto Ricardo
- Plant Biochemistry Lab, Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal;
| | - Ana I. Ribeiro-Barros
- PlantStress&Biodiversity Lab, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (I.G.); (I.M.); (N.D.); (M.d.C.); (J.C.R.)
- GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal
| |
Collapse
|
5
|
Kar P, Chakraborty AK, Dutta S, Bhattacharya M, Chaudhuri TK, Sen A. Fruit juice of silverberry (Elaeagnus) and bayberry (Myrica) may help in combating against kidney dysfunctions. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0117-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
6
|
Ribeiro-Barros AI, Catarino S, Moura I, Ramalho JC, Romeiras MM, Ghodhbane-Gtari F. Actinorhizal trees and shrubs from Africa: distribution, conservation and uses. Antonie van Leeuwenhoek 2018; 112:31-46. [PMID: 30315373 DOI: 10.1007/s10482-018-1174-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/30/2018] [Indexed: 12/26/2022]
Abstract
Actinorhizal plants are a group of perennial dicotyledonous angiosperms, comprised of more than 200 species, most of which can establish root-nodule symbiosis with the nitrogen fixing actinobacteria of the genus Frankia. They are key providers of fundamental goods and services and can give a major contribution to mitigate the combined effects of climate changes, human population growth and loss of biodiversity. This aspect is particularly relevant for the developing economies of many African countries, which are highly exposed to climate and anthropogenic disturbances. In this work we have analyzed the distribution, conservation and uses of actinorhizal species native to or introduced in Africa. A total of 42 taxa distributed over six botanical families (Betulaceae, Casuarinaceae, Myricaceae, Elaeagnaceae, Rhamnaceae and Coriariaceae) were identified. The vast majority is able to thrive under a range of diverse environments and has multiple ecological and economic potential. More than half of the identified species belong to the genus Morella (Myricaceae), most of them native to Middle, Eastern and Southern Africa. Although the information about the conservation status and uses of Morella spp. is largely incomplete, the available data is indicative of their potential in e.g. forestry and agroforestry, food and medicine. Therefore, efforts should be made to upgrade actinorhizal research in Africa towards the sustainable use of biodiversity at the service of local (bio)economies.
Collapse
Affiliation(s)
- Ana I Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal. .,GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Portugal.
| | - Sílvia Catarino
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Moura
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - José C Ramalho
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal.,GeoBioTec, Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, Portugal
| | - Maria M Romeiras
- Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisbon, Portugal
| | - Faten Ghodhbane-Gtari
- Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université Tunis El Manar, 2092, Tunis, Tunisia.,ISBST, Université La Manouba, Manouba, Tunisia
| |
Collapse
|
7
|
Scotti-Campos P, Duro N, Costa MD, Pais IP, Rodrigues AP, Batista-Santos P, Semedo JN, Leitão AE, Lidon FC, Pawlowski K, Ramalho JC, Ribeiro-Barros AI. Antioxidative ability and membrane integrity in salt-induced responses of Casuarina glauca Sieber ex Spreng. in symbiosis with N2-fixing Frankia Thr or supplemented with mineral nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2016; 196-197:60-9. [PMID: 27070734 DOI: 10.1016/j.jplph.2016.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 05/15/2023]
Abstract
The actinorhizal tree Casuarina glauca tolerates extreme environmental conditions, such as high salinity. This species is also able to establish a root-nodule symbiosis with N2-fixing bacteria of the genus Frankia. Recent studies have shown that C. glauca tolerance to high salt concentrations is innate and linked to photosynthetic adjustments. In this study we have examined the impact of increasing NaCl concentrations (200, 400 and 600mM) on membrane integrity as well as on the control of oxidative stress in branchlets of symbiotic (NOD+) and non-symbiotic (KNO3+) C. glauca. Membrane selectivity was maintained in both plant groups at 200mM NaCl, accompanied by an increase in the activity of antioxidative enzymes (superoxide dismutase, ascorbate peroxidase, glutathione reductase and catalase). Regarding cellular membrane lipid composition, linolenic acid (C18:3) showed a significant decline at 200mM NaCl in both NOD+ and KNO3+ plants. In addition, total fatty acids (TFA) and C18:2 also decreased in NOD+ plants at this salt concentration, resulting in malondialdehyde (MDA) production. Such initial impact at 200mM NaCl is probably due to the fact that NOD+ plants are subjected to a double stress, i.e., salinity and low nitrogen availability. At 400mM NaCl a strong reduction of TFA and C18:3 levels was observed in both plant groups. This was accompanied by a decrease in the unsaturation degree of membrane lipids in NOD+. However, in both NOD+ and KNO3+ lipid modifications were not reflected by membrane leakage at 200 or 400mM, suggesting acclimation mechanisms at the membrane level. The fact that membrane selectivity was impaired only at 600mM NaCl in both groups of plants points to a high tolerance of C. glauca to salt stress independently of the symbiotic relation with Frankia.
Collapse
Affiliation(s)
- Paula Scotti-Campos
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Nuno Duro
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Mário da Costa
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Isabel P Pais
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Ana P Rodrigues
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Paula Batista-Santos
- Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - José N Semedo
- Unidade de Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - A Eduardo Leitão
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Fernando C Lidon
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - José C Ramalho
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal
| | - Ana I Ribeiro-Barros
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Plant Stress & Biodiversity Group, LEAF-Linking Landscape, Environment, Agriculture and Food, School of Agriculture, University of Lisbon, Quinta do Marquês, Av. República, 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. República, Quinta do Marquês, 2780-157 Oeiras, Portugal.
| |
Collapse
|
8
|
Santi C, Bogusz D, Franche C. Biological nitrogen fixation in non-legume plants. ANNALS OF BOTANY 2013; 111:743-67. [PMID: 23478942 PMCID: PMC3631332 DOI: 10.1093/aob/mct048] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Nitrogen is an essential nutrient in plant growth. The ability of a plant to supply all or part of its requirements from biological nitrogen fixation (BNF) thanks to interactions with endosymbiotic, associative and endophytic symbionts, confers a great competitive advantage over non-nitrogen-fixing plants. SCOPE Because BNF in legumes is well documented, this review focuses on BNF in non-legume plants. Despite the phylogenic and ecological diversity among diazotrophic bacteria and their hosts, tightly regulated communication is always necessary between the microorganisms and the host plant to achieve a successful interaction. Ongoing research efforts to improve knowledge of the molecular mechanisms underlying these original relationships and some common strategies leading to a successful relationship between the nitrogen-fixing microorganisms and their hosts are presented. CONCLUSIONS Understanding the molecular mechanism of BNF outside the legume-rhizobium symbiosis could have important agronomic implications and enable the use of N-fertilizers to be reduced or even avoided. Indeed, in the short term, improved understanding could lead to more sustainable exploitation of the biodiversity of nitrogen-fixing organisms and, in the longer term, to the transfer of endosymbiotic nitrogen-fixation capacities to major non-legume crops.
Collapse
Affiliation(s)
- Carole Santi
- Université de Perpignan, Via Domitia, Avenue Paul Alduy, 66100 Perpignan, France
| | - Didier Bogusz
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| | - Claudine Franche
- Equipe Rhizogenèse, UMR DIADE (IRD/UM2), Institut de Recherche pour le Développement, 911 Avenue Agropolis, BP64501, 34394 Montpellier Cedex 5, France
| |
Collapse
|