1
|
Malhotra P, Basu S, Lee BW, Oeller L, Crowder DW. Effects of Soil Rhizobia Abundance on Interactions between a Vector, Pathogen, and Legume Plant Host. Genes (Basel) 2024; 15:273. [PMID: 38540332 PMCID: PMC10970239 DOI: 10.3390/genes15030273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Soil rhizobia promote nitrogen fixation in legume hosts, maximizing their tolerance to different biotic stressors, plant biomass, crop growth, and yield. While the presence of soil rhizobia is considered beneficial for plants, few studies have assessed whether variation in rhizobia abundance affects the tolerance of legumes to stressors. To address this, we assessed the effects of variable soil rhizobia inoculum concentrations on interactions between a legume host (Pisum sativum), a vector insect (Acyrthosiphon pisum), and a virus (Pea enation mosaic virus, PEMV). We showed that increased rhizobia abundance reduces the inhibitory effects of PEMV on the nodule formation and root growth in 2-week-old plants. However, these trends were reversed in 4-week-old plants. Rhizobia abundance did not affect shoot growth or virus prevalence in 2- or 4-week-old plants. Our results show that rhizobia abundance may indirectly affect legume tolerance to a virus, but effects varied based on plant age. To assess the mechanisms that mediated interactions between rhizobia, plants, aphids, and PEMV, we measured the relative expression of gene transcripts related to plant defense signaling. Rhizobia concentrations did not strongly affect the expression of defense genes associated with phytohormone signaling. Our study shows that an abundance of soil rhizobia may impact a plant's ability to tolerate stressors such as vector-borne pathogens, as well as aid in developing sustainable pest and pathogen management systems for legume crops. More broadly, understanding how variable rhizobia concentrations can optimize legume-rhizobia symbiosis may enhance the productivity of legume crops.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA; (P.M.); (B.W.L.); (L.O.); (D.W.C.)
| | | | | | | |
Collapse
|
2
|
Basu S, Clark RE, Blundell R, Casteel CL, Charlton AM, Crowder DW. Reciprocal plant‐mediated antagonism between a legume plant virus and soil rhizobia. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saumik Basu
- Department of Entomology Washington State University Pullman WA USA
| | - Robert E. Clark
- Department of Entomology Washington State University Pullman WA USA
| | - Robert Blundell
- Department of Plant Pathology University of California Davis Davis CA USA
- School of Integrative Plant Science, Plant Pathology and Plant‐Microbe Biology Section Cornell University Ithaca NY USA
| | - Clare L. Casteel
- Department of Plant Pathology University of California Davis Davis CA USA
- School of Integrative Plant Science, Plant Pathology and Plant‐Microbe Biology Section Cornell University Ithaca NY USA
| | | | - David W. Crowder
- Department of Entomology Washington State University Pullman WA USA
| |
Collapse
|
3
|
Andreola S, Rodriguez M, Parola R, Alemano S, Lascano R. Interactions between soybean, Bradyrhizobium japonicum and Soybean mosaic virus: the effects depend on the interaction sequence. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1036-1048. [PMID: 31575385 DOI: 10.1071/fp17361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
The symbiotic interaction between soybean and nitrogen-fixing rhizobia can lead to plant growth promotion and induced systemic responses. Symbiotic interactions may increase tolerance/resistance to abiotic/biotic stress conditions, but are also sensitive to environmental conditions. Soybean mosaic virus (SMV), which is transmitted by seed and aphids, severely affects crop yields in many areas of the world, consequently virus infection may precede rhizobium infection or vice versa in the field. With the hypothesis that sequence of interaction is a key determinant of the resulting responses; growth, primary metabolism and defence responses were evaluated in different interaction sequences. Results showed that vegetative growth was promoted by Bradyrhizobium japonicum (Bj) inoculation and drastically impaired by SMV infection. The negative effect of SMV single infection on soybean growth parameters was correlated with photosynthesis decrease, sugar accumulation, oxidative damage, and increases in salicylic acid levels. Bj inoculation partially reversed virus-induced symptoms, mainly at Bj-SMV sequence. However, this symptom attenuation did not correlate with less virus accumulation. Nodulation was negatively affected by SMV, particularly when virus infection was previous to Bj inoculation (SMV-Bj). Defence related hormones (salicylic acid (SA)/jasmonic acid (JA)) and the expression of defence-related genes were dependent on the sequence of tripartite interaction. The present study showed that the sequence of the tripartite interaction among soybean, Bj and SMV determinates the tolerance/susceptibility to SMV infection, through changes in the defence mechanism and metabolic alteration.
Collapse
Affiliation(s)
- Sofía Andreola
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino 60 Cuadras Km 5 y ½, X5020ICA, Córdoba, Argentina; and Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 cuadras km, 5.5 X5020ICA, Córdoba, Argentina
| | - Marianela Rodriguez
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino 60 Cuadras Km 5 y ½, X5020ICA, Córdoba, Argentina; and Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 cuadras km, 5.5 X5020ICA, Córdoba, Argentina
| | - Rodrigo Parola
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino 60 Cuadras Km 5 y ½, X5020ICA, Córdoba, Argentina; and Unidad de Estudios Agropecuarios (UDEA- CONICET), Camino 60 cuadras km, 5.5 X5020ICA, Córdoba, Argentina
| | - Sergio Alemano
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Ramiro Lascano
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, Camino 60 Cuadras Km 5 y ½, X5020ICA, Córdoba, Argentina; and Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 299, Córdoba, Argentina; and Corresponding author.
| |
Collapse
|
4
|
Robert G, Muñoz N, Alvarado-Affantranger X, Saavedra L, Davidenco V, Rodríguez-Kessler M, Estrada-Navarrete G, Sánchez F, Lascano R. Phosphatidylinositol 3-kinase function at very early symbiont perception: a local nodulation control under stress conditions? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2037-2048. [PMID: 29394394 DOI: 10.1093/jxb/ery030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/24/2018] [Indexed: 05/12/2023]
Abstract
Root hair curling is an early and essential morphological change required for the success of the symbiotic interaction between legumes and rhizobia. At this stage rhizobia grow as an infection thread within root hairs and are internalized into the plant cells by endocytosis, where the PI3K enzyme plays important roles. Previous observations show that stress conditions affect early stages of the symbiotic interaction, from 2 to 30 min post-inoculation, which we term as very early host responses, and affect symbiosis establishment. Herein, we demonstrated the relevance of the very early host responses for the symbiotic interaction. PI3K and the NADPH oxidase complex are found to have key roles in the microsymbiont recognition response, modulating the apoplastic and intracellular/endosomal ROS induction in root hairs. Interestingly, compared with soybean mutant plants that do not perceive the symbiont, we demonstrated that the very early symbiont perception under sublethal saline stress conditions induced root hair death. Together, these results highlight not only the importance of the very early host-responses on later stages of the symbiont interaction, but also suggest that they act as a mechanism for local control of nodulation capacity, prior to the abortion of the infection thread, preventing the allocation of resources/energy for nodule formation under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Germán Robert
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Nacira Muñoz
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Xochitl Alvarado-Affantranger
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Laura Saavedra
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| | - Vanina Davidenco
- Instituto de Fisiología y Recursos Genéticos Vegetales, Centro de Investigaciones Agropecuarias-INTA, de Septiembre, X5020ICA, Córdoba, Argentina
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Georgina Estrada-Navarrete
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Federico Sánchez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ramiro Lascano
- Cátedra de Fisiología Vegetal, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Av. Vélez Sarsfield, Córdoba, Argentina
| |
Collapse
|
5
|
Izaguirre-Mayoral ML, Brito M, Baral B, Garrido MJ. Silicon and Nitrate Differentially Modulate the Symbiotic Performances of Healthy and Virus-Infected Bradyrhizobium-nodulated Cowpea (Vigna unguiculata), Yardlong Bean (V. unguiculata subsp. sesquipedalis) and Mung Bean (V. radiata). PLANTS (BASEL, SWITZERLAND) 2017; 6:E40. [PMID: 28914770 PMCID: PMC5620596 DOI: 10.3390/plants6030040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/29/2022]
Abstract
The effects of 2 mM silicon (Si) and 10 mM KNO₃ (N)-prime signals for plant resistance to pathogens-were analyzed in healthy and Cowpea chlorotic mottle virus (CCMV) or Cowpea mild mottle virus (CMMV)-infected Bradyrhizobium-nodulated cowpea, yardlong bean and mung bean plants. In healthy plants of the three Vigna taxa, nodulation and growth were promoted in the order of Si + N > N > Si > controls. In the case of healthy cowpea and yardlong bean, the addition of Si and N decreased ureide and α-amino acids (AA) contents in the nodules and leaves in the order of Si + N> N > Si > controls. On the other hand, the addition of N arrested the deleterious effects of CCMV or CMMV infections on growth and nodulation in the three Vigna taxa. However, the addition of Si or Si + N hindered growth and nodulation in the CCMV- or CMMV-infected cowpea and yardlong bean, causing a massive accumulation of ureides in the leaves and nodules. Nevertheless, the AA content in leaves and nodules of CCMV- or CMMV-infected cowpea and yardlong bean was promoted by Si but reduced to minimum by Si + N. These results contrasted to the counteracting effects of Si or Si + N in the CCMV- and CMMV-infected mung bean via enhanced growth, nodulation and levels of ureide and AA in the leaves and nodules. Together, these observations suggest the fertilization with Si + N exclusively in virus-free cowpea and yardlong bean crops. However, Si + N fertilization must be encouraged in virus-endangered mung bean crops to enhance growth, nodulation and N-metabolism. It is noteworthy to see the enhanced nodulation of the three Vigna taxa in the presence of 10 mM KNO₃.
Collapse
Affiliation(s)
- Maria Luisa Izaguirre-Mayoral
- Instituto Venezolano de Investigaciones Científicas, Centro de Microbiología y Biología Celular, Caracas 1020-A, Venezuela.
| | - Miriam Brito
- Laboratorio de VirologíaVegetal, Facultad de Agronomía, Universidad Central de Venezuela, Maracay 1050,Venezuela.
| | - Bikash Baral
- Department of Biochemistry, University of Turku, Turku 20500, Finland.
| | - Mario José Garrido
- Laboratorio de VirologíaVegetal, Facultad de Agronomía, Universidad Central de Venezuela, Maracay 1050,Venezuela.
| |
Collapse
|