1
|
Oguchi R, Nagano S, Pfleger A, Ozaki H, Hikosaka K, Osmond B, Chow WS. An Intraspecific Negative Correlation Between the Repair Capacity of Photoinhibition of Cold Acclimated Plants and the Habitat Temperature. PLANT, CELL & ENVIRONMENT 2025; 48:2298-2311. [PMID: 39592138 PMCID: PMC11788948 DOI: 10.1111/pce.15270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Both the activity of photosynthesis and the repair of damaged photosystems decline in cold environments, which may increase the extent of the damage of photosynthetic machinery by light, namely photoinhibition. We hypothesized that plants in colder habitats may possess greater tolerance to photoinhibition, especially in low-temperature conditions. We measured the rate of photoinhibition, rate of photoinhibition repair and other thylakoid activities in cold environments using 298 Arabidopsis thaliana ecotypes and studied the relationships among the indicators of photoinhibition tolerance and climatic data of the habitat of each ecotype. The plants acclimated to cold conditions (12°C) for 3 days showed a negative correlation between the rate of photoinhibition repair at 5°C and the mean annual temperature of habitats, although we could not see this correlation with the control plants grown at 22°C. This result would indicate that the acclimation capacity of photoinhibition tolerance in cold conditions can affect the distribution of plants, especially in colder regions.
Collapse
Affiliation(s)
- Riichi Oguchi
- Department of Biology, Graduate School of ScienceOsaka Metropolitan UniversityOsakaOsakaJapan
- Graduate School of Life SciencesTohoku UniversitySendaiMiyagiJapan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research InstituteForest Research and Management OrganizationHitachiIbarakiJapan
| | - Ana Pfleger
- Department of BotanyUniversity of InnsbruckInnsbruckTyrolAustria
| | - Hiroshi Ozaki
- Translational Research Support SectionNational Cancer Center Hospital EastKashiwaChibaJapan
| | - Kouki Hikosaka
- Graduate School of Life SciencesTohoku UniversitySendaiMiyagiJapan
| | - Barry Osmond
- Division of Plant Science, Research School of Biology, College of ScienceThe Australian National UniversityCanberraACTAustralia
| | - Wah Soon Chow
- Division of Plant Science, Research School of Biology, College of ScienceThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
2
|
Cutolo EA, Caferri R, Guardini Z, Dall'Osto L, Bassi R. Analysis of state 1-state 2 transitions by genome editing and complementation reveals a quenching component independent from the formation of PSI-LHCI-LHCII supercomplex in Arabidopsis thaliana. Biol Direct 2023; 18:49. [PMID: 37612770 PMCID: PMC10463614 DOI: 10.1186/s13062-023-00406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The light-harvesting antennae of photosystem (PS) I and PSII are pigment-protein complexes responsible of the initial steps of sunlight conversion into chemical energy. In natural environments plants are constantly confronted with the variability of the photosynthetically active light spectrum. PSII and PSI operate in series but have different optimal excitation wavelengths. The prompt adjustment of light absorption by photosystems is thus crucial to ensure efficient electron flow needed to sustain downstream carbon fixing reactions. Fast structural rearrangements equilibrate the partition of excitation pressure between PSII and PSI following the enrichment in the red (PSII-favoring) or far-red (PSI-favoring) spectra. Redox imbalances trigger state transitions (ST), a photoacclimation mechanism which involves the reversible phosphorylation/dephosphorylation of light harvesting complex II (LHCII) proteins by the antagonistic activities of the State Transition 7 (STN7) kinase/TAP38 phosphatase enzyme pair. During ST, a mobile PSII antenna pool associates with PSI increasing its absorption cross section. LHCII consists of assorted trimeric assemblies of Lhcb1, Lhcb2 and Lhcb3 protein isoforms (LHCII), several being substrates of STN7. However, the precise roles of Lhcb phosphorylation during ST remain largely elusive. RESULTS We inactivated the complete Lhcb1 and Lhcb2 gene clades in Arabidopsis thaliana and reintroduced either wild type Lhcb1.3 and Lhcb2.1 isoforms, respectively, or versions lacking N-terminal phosphorylatable residues proposed to mediate state transitions. While the substitution of Lhcb2.1 Thr-40 prevented the formation of the PSI-LHCI-LHCII complex, replacement of Lhcb1.3 Thr-38 did not affect the formation of this supercomplex, nor did influence the amplitude or kinetics of PSII fluorescence quenching upon state 1-state 2 transition. CONCLUSIONS Phosphorylation of Lhcb2 Thr-40 by STN7 alone accounts for ≈ 60% of PSII fluorescence quenching during state transitions. Instead, the presence of Thr-38 phosphosite in Lhcb1.3 was not required for the formation of the PSI-LHCI-LHCII supercomplex nor for re-equilibration of the plastoquinone redox state. The Lhcb2 phosphomutant was still capable of ≈ 40% residual fluorescence quenching, implying that a yet uncharacterized, STN7-dependent, component of state transitions, which is unrelated to Lhcb2 Thr-40 phosphorylation and to the formation of the PSI-LHCI-LHCII supercomplex, contributes to the equilibration of the PSI/PSII excitation pressure upon plastoquinone over-reduction.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Zeno Guardini
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Roberto Bassi
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134, Verona, Italy.
- Accademia Nazionale dei Lincei, Palazzo Corsini, Via Della Lungara, 10, 00165, Rome, Italy.
| |
Collapse
|
3
|
Heyno E, Ermakova M, Lopez‐Calcagno PE, Woodford R, Brown KL, Matthews JSA, Osmond B, Raines CA, von Caemmerer S. Rieske FeS overexpression in tobacco provides increased abundance and activity of cytochrome b 6 f. PHYSIOLOGIA PLANTARUM 2022; 174:e13803. [PMID: 36259085 PMCID: PMC9828649 DOI: 10.1111/ppl.13803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 05/31/2023]
Abstract
Photosynthesis is fundamental for plant growth and yield. The cytochrome b6 f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b6 f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex. Analysis of transgenic plants overexpressing Rieske FeS by the light-induced fluorescence transients technique revealed a more oxidised primary quinone acceptor of photosystem II (QA ) and plastoquinone pool and faster electron transport from the plastoquinone pool to photosystem I upon changes in irradiance, compared to control plants. A faster establishment of qE , the energy-dependent component of nonphotochemical quenching, in transgenic plants suggests a more rapid buildup of the transmembrane proton gradient, also supporting the increased in vivo cytochrome b6 f activity. However, there was no consistent increase in steady-state rates of electron transport or CO2 assimilation in plants overexpressing Rieske FeS grown in either laboratory conditions or field trials, suggesting that the in vivo activity of the complex was only transiently increased upon changes in irradiance. Our results show that overexpression of Rieske FeS in tobacco enhances the abundance of functional cytochrome b6 f and may have the potential to increase plant productivity if combined with other traits.
Collapse
Affiliation(s)
- Eiri Heyno
- Centre of Excellence for Translational Photosynthesis, Division of Plant ScienceResearch School of Biology, The Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Maria Ermakova
- Centre of Excellence for Translational Photosynthesis, Division of Plant ScienceResearch School of Biology, The Australian National UniversityActonAustralian Capital TerritoryAustralia
- School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Patricia E. Lopez‐Calcagno
- School of Biological SciencesUniversity of EssexColchesterUK
- School of Natural and Environmental SciencesNewcastle UniversityNewcastleUK
| | - Russell Woodford
- Centre of Excellence for Translational Photosynthesis, Division of Plant ScienceResearch School of Biology, The Australian National UniversityActonAustralian Capital TerritoryAustralia
| | - Kenny L. Brown
- School of Biological SciencesUniversity of EssexColchesterUK
| | | | - Barry Osmond
- Centre of Excellence for Translational Photosynthesis, Division of Plant ScienceResearch School of Biology, The Australian National UniversityActonAustralian Capital TerritoryAustralia
| | | | - Susanne von Caemmerer
- Centre of Excellence for Translational Photosynthesis, Division of Plant ScienceResearch School of Biology, The Australian National UniversityActonAustralian Capital TerritoryAustralia
| |
Collapse
|
4
|
Acebron K, Salvatori N, Alberti G, Muller O, Peressotti A, Rascher U, Matsubara S. Elucidating the photosynthetic responses in chlorophyll-deficient soybean (Glycine max, L.) Cultivar. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
6
|
Fu P, Montes CM, Siebers MH, Gomez-Casanovas N, McGrath JM, Ainsworth EA, Bernacchi CJ. Advances in field-based high-throughput photosynthetic phenotyping. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3157-3172. [PMID: 35218184 PMCID: PMC9126737 DOI: 10.1093/jxb/erac077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/23/2022] [Indexed: 05/22/2023]
Abstract
Gas exchange techniques revolutionized plant research and advanced understanding, including associated fluxes and efficiencies, of photosynthesis, photorespiration, and respiration of plants from cellular to ecosystem scales. These techniques remain the gold standard for inferring photosynthetic rates and underlying physiology/biochemistry, although their utility for high-throughput phenotyping (HTP) of photosynthesis is limited both by the number of gas exchange systems available and the number of personnel available to operate the equipment. Remote sensing techniques have long been used to assess ecosystem productivity at coarse spatial and temporal resolutions, and advances in sensor technology coupled with advanced statistical techniques are expanding remote sensing tools to finer spatial scales and increasing the number and complexity of phenotypes that can be extracted. In this review, we outline the photosynthetic phenotypes of interest to the plant science community and describe the advances in high-throughput techniques to characterize photosynthesis at spatial scales useful to infer treatment or genotypic variation in field-based experiments or breeding trials. We will accomplish this objective by presenting six lessons learned thus far through the development and application of proximal/remote sensing-based measurements and the accompanying statistical analyses. We will conclude by outlining what we perceive as the current limitations, bottlenecks, and opportunities facing HTP of photosynthesis.
Collapse
Affiliation(s)
- Peng Fu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher M Montes
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Matthew H Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Nuria Gomez-Casanovas
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Justin M McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- United States Department of Agriculture, Global Change and Photosynthesis Research Unit, Agricultural Research Service, Urbana, IL, USA
- Institute for Sustainability, Energy & Environment, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
7
|
Osmond CB, Chow WS, Robinson SA. Inhibition of non-photochemical quenching increases functional absorption cross-section of photosystem II as excitation from closed reaction centres is transferred to open centres, facilitating earlier light saturation of photosynthetic electron transport. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:463-482. [PMID: 33705686 DOI: 10.1071/fp20347] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Induction of non-photochemical quenching (NPQ) of chlorophyll fluorescence in leaves affords photoprotection to the photosynthetic apparatus when, for whatever reason, photon capture in the antennae of photosystems exceeds their capacity to utilise this excitation in photochemistry and ultimately in CO2 assimilation. Here we augment traditional monitoring of NPQ using the fast time resolution, remote and relatively non-intrusive light induced fluorescence transient (LIFT) technique (Kolber et al . 2005 ; Osmond et al . 2017 ) that allows direct measurement of functional (σ'PSII ) and optical cross-sections (a 'PSII ) of PSII in situ , and calculates the half saturation light intensity for ETR (E k ). These parameters are obtained from the saturation and relaxation phases of fluorescence transients elicited by a sequence of 270, high intensity 1 μs flashlets at controlled time intervals over a period of 30 ms in the QA flash at intervals of a few seconds. We report that although σ'PSII undergoes large transient increases after transfer from dark to strong white light (WL) it declines little in steady-state as NPQ is induced in shade- and sun-grown spinach and Arabidopsis genotypes Col , OEpsbs , pgr 5bkg , stn 7 and stn 7/8. In contrast, σ'PSII increases by ~30% when induction of NPQ in spinach is inhibited by dithiothreitol and by inhibition of NPQ in Arabidopsis npq 1, npq 4 and pgr 5. We propose this increase in σ'PSII arises as some excitation from closed PSII reaction centres is transferred to open centres when excitation partitioning to photochemistry (Y II ) and NPQ (Y NP ) declines, and is indicated by an increased excitation dissipation from closed PSII centres (Y NO , including fluorescence emission). Although E k increases following dissipation of excitation as heat when NPQ is engaged, it declines when NPQ is inhibited. Evidently photochemistry becomes more easily light saturated when excitation is transferred from closed RCIIs to open centres with larger σ'PSII . The NPQ mutant pgr 5 is an exception; E k increases markedly in strong light as electron transport QA → PQ and PQ → PSI accelerate and the PQ pool becomes strongly reduced. These novel in situ observations are discussed in the context of contemporary evidence for functional and structural changes in the photosynthetic apparatus during induction of NPQ.
Collapse
Affiliation(s)
- Charles Barry Osmond
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; and Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia; and Corresponding author
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Sharon A Robinson
- Centre for Sustainable Ecosystem Solutions, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Keller B, Zimmermann L, Rascher U, Matsubara S, Steier A, Muller O. Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. PLANT PHYSIOLOGY 2022; 188:301-317. [PMID: 34662428 PMCID: PMC8774793 DOI: 10.1093/plphys/kiab483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/13/2021] [Indexed: 05/19/2023]
Abstract
Photosynthesis acclimates quickly to the fluctuating environment in order to optimize the absorption of sunlight energy, specifically the photosynthetic photon fluence rate (PPFR), to fuel plant growth. The conversion efficiency of intercepted PPFR to photochemical energy (ɛe) and to biomass (ɛc) are critical parameters to describe plant productivity over time. However, they mask the link of instantaneous photochemical energy uptake under specific conditions, that is, the operating efficiency of photosystem II (Fq'/Fm'), and biomass accumulation. Therefore, the identification of energy- and thus resource-efficient genotypes under changing environmental conditions is impeded. We long-term monitored Fq'/Fm' at the canopy level for 21 soybean (Glycine max (L.) Merr.) and maize (Zea mays) genotypes under greenhouse and field conditions using automated chlorophyll fluorescence and spectral scans. Fq'/Fm' derived under incident sunlight during the entire growing season was modeled based on genotypic interactions with different environmental variables. This allowed us to cumulate the photochemical energy uptake and thus estimate ɛe noninvasively. ɛe ranged from 48% to 62%, depending on the genotype, and up to 9% of photochemical energy was transduced into biomass in the most efficient C4 maize genotype. Most strikingly, ɛe correlated with shoot biomass in seven independent experiments under varying conditions with up to r = 0.68. Thus, we estimated biomass production by integrating photosynthetic response to environmental stresses over the growing season and identified energy-efficient genotypes. This has great potential to improve crop growth models and to estimate the productivity of breeding lines or whole ecosystems at any time point using autonomous measuring systems.
Collapse
Affiliation(s)
- Beat Keller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Lars Zimmermann
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Field Lab Campus Klein-Altendorf, University of Bonn, Rheinbach 53359, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Shizue Matsubara
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Angelina Steier
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
9
|
Zendonadi Dos Santos N, Piepho HP, Condorelli GE, Licieri Groli E, Newcomb M, Ward R, Tuberosa R, Maccaferri M, Fiorani F, Rascher U, Muller O. High-throughput field phenotyping reveals genetic variation in photosynthetic traits in durum wheat under drought. PLANT, CELL & ENVIRONMENT 2021; 44:2858-2878. [PMID: 34189744 DOI: 10.1111/pce.14136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/14/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Chlorophyll fluorescence (ChlF) is a powerful non-invasive technique for probing photosynthesis. Although proposed as a method for drought tolerance screening, ChlF has not yet been fully adopted in physiological breeding, mainly due to limitations in high-throughput field phenotyping capabilities. The light-induced fluorescence transient (LIFT) sensor has recently been shown to reliably provide active ChlF data for rapid and remote characterisation of plant photosynthetic performance. We used the LIFT sensor to quantify photosynthesis traits across time in a large panel of durum wheat genotypes subjected to a progressive drought in replicated field trials over two growing seasons. The photosynthetic performance was measured at the canopy level by means of the operating efficiency of Photosystem II ( Fq'/Fm' ) and the kinetics of electron transport measured by reoxidation rates ( Fr1' and Fr2' ). Short- and long-term changes in ChlF traits were found in response to soil water availability and due to interactions with weather fluctuations. In mild drought, Fq'/Fm' and Fr2' were little affected, while Fr1' was consistently accelerated in water-limited compared to well-watered plants, increasingly so with rising vapour pressure deficit. This high-throughput approach allowed assessment of the native genetic diversity in ChlF traits while considering the diurnal dynamics of photosynthesis.
Collapse
Affiliation(s)
| | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | | | - Eder Licieri Groli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Maria Newcomb
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Richard Ward
- Maricopa Agricultural Center, University of Arizona, Maricopa, Arizona, USA
| | - Roberto Tuberosa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Uwe Rascher
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Onno Muller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
10
|
Winter K. Diversity of CAM plant photosynthesis (crassulacean acid metabolism): a tribute to Barry Osmond. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:iii-ix. [PMID: 34099100 DOI: 10.1071/fpv48n7_fo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This special issue is a tribute to the Australian plant biologist Professor Charles Barry Osmond - Fellow of the Australian Academy of Sciences, the Royal Society of London, and Leopoldina, the German National Academy of Sciences - and his many contributions to our understanding of the biochemistry and physiological ecology of CAM (crassulacean acid metabolism) photosynthesis. This water-conserving photosynthetic pathway is characterised by nocturnal uptake of atmospheric CO2 and typically enables succulent plants to perform and survive in warm semiarid terrestrial and epiphytic habitats. The idea for this issue is to mark the occasion of Barry's 80th birthday in 2019. The foreword highlights some of his outstanding contributions and introduces the research papers of the special issue.
Collapse
Affiliation(s)
- Klaus Winter
- Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panama.
| |
Collapse
|
11
|
Zeng F, Wang G, Liang Y, Guo N, Zhu L, Wang Q, Chen H, Ma D, Wang J. Disentangling the photosynthesis performance in japonica rice during natural leaf senescence using OJIP fluorescence transient analysis. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:206-217. [PMID: 33099327 DOI: 10.1071/fp20104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Rice undergoes leaf senescence accompanied with grain filling when the plants reach the end of their temporal niche, and a delay in leaf senescence ultimately improves the yield and quality of grain. To estimate the decline in photosynthesis during leaf senescence and to find an efficient and useful tool to identify rice genotypes with a longer duration of active photosynthesis, we examined PSII photosynthetic activity in the flag leaves of japonica rice Shennong265 (SN265) and Beigeng3 (BG3) during leaf senescence using chlorophyll a fluorescence kinetics. The results show that inhibition occurred in the electron transport chains, but the energetic connectivity of PSII units was not affected as dramatically during leaf senescence. PSII reaction centres (RCs) were transformed into 'silent RCs,' and the chlorophyll content decreased during leaf senescence. However the size of the 'economic' antennae increased. Further, the percentage of variation of the specific energy flux parameters can rationally be used to indicate leaf senescence from the perspective of energy balance. Although the performance indices were more sensitive than other functional and structural JIP-test parameters, they still did not serve as an indicator of crop yield.
Collapse
Affiliation(s)
- Faliang Zeng
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojiao Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China; and Corresponding authors. ;
| | - Yinpei Liang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Naihui Guo
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lin Zhu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qi Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongwei Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiayu Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China; and Corresponding authors. ;
| |
Collapse
|
12
|
Oja V, Laisk A. Time- and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. PHOTOSYNTHESIS RESEARCH 2020; 145:209-225. [PMID: 32918663 DOI: 10.1007/s11120-020-00783-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/02/2020] [Indexed: 05/16/2023]
Abstract
Lettuce (Lactuca sativa) and benth (Nicotiana benthamiana) leaves were illuminated with 720 nm background light to mix S-states and oxidize electron carriers. Green-filtered xenon flashes of different photon dose were applied and O2 evolution induced by a flash was measured. After light intensity gradient across the leaf was mathematically considered, the flash-induced PSII electron transport (= 4·O2 evolution) exponentially increased with the flash photon dose in any differential layer of the leaf optical density. This proved the absence of excitonic connectivity between PSII units. Time courses of flash light intensity and 680 nm chlorophyll fluorescence emission were recorded. While with connected PSII the sigmoidal fluorescence rise has been explained by quenching of excitation in closed PSII by its open neighbors, in the absence of connectivity the sigmoidicity indicates gradual rise of the fluorescence yield of an individual closed PSII during the induction. Two phases were discerned: the specific fluorescence yield immediately increased from Fo to 1.8Fo in a PSII, whose reaction center became closed; fluorescence yield of the closed PSII was keeping time-dependent rise from 1.8Fo to about 3Fo, approaching the flash fluorescence yield Ff = 0.6Fm during 40 μs. The time-dependent fluorescence rise was resolved from the quenching by 3Car triplets and related to protein conformational change. We suggest that QA reduction induces a conformational change, which by energetic or structural means closes the gate for excitation entrance into the central radical pair trap-efficiently when QB cannot accept the electron, but less efficiently when it can.
Collapse
Affiliation(s)
- Vello Oja
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia
| | - Agu Laisk
- Institute of Technology, University of Tartu, Nooruse st. 1, 50411, Tartu, Estonia.
| |
Collapse
|
13
|
Chukhutsina VU, Liu X, Xu P, Croce R. Light-harvesting complex II is an antenna of photosystem I in dark-adapted plants. NATURE PLANTS 2020; 6:860-868. [PMID: 32572215 DOI: 10.1038/s41477-020-0693-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 05/14/2020] [Indexed: 05/19/2023]
Abstract
Photosystem I (PSI) is a major player in the light reactions of photosynthesis. In higher plants, it consists of a core complex and four external antennae, Lhca1-4 forming the PSI-light-harvesting complex I (LHCI) supercomplex. The protein and pigment composition as well as the spectroscopic properties of this complex are considered to be identical in different higher plant species. In addition to the four Lhca, a pool of mobile LHCII increases the antenna size of PSI under most light conditions. In this work, we have first investigated purified PSI complexes and then PSI in vivo upon long-term dark-adaptation of four well-studied plant species: Arabidopsis thaliana, Zea mays, Nicotiana tabacum and Hordeum vulgare. By performing time-resolved fluorescence measurements, we show that LHCII is associated with PSI also in a dark-adapted state in all the plant species investigated. The number of LHCII subunits per PSI is plant-dependent, varying between one and three. Furthermore, we show that the spectroscopic properties of PSI-LHCI supercomplexes differ in different plants.
Collapse
Affiliation(s)
- Volha U Chukhutsina
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Xin Liu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Pengqi Xu
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands
| | - Roberta Croce
- Biophysics of Photosynthesis, Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam and LaserLaB Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Evans JR, Lawson T. From green to gold: agricultural revolution for food security. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2211-2215. [PMID: 32251509 DOI: 10.1093/jxb/eraa110] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- John R Evans
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|