1
|
Burge CA, Friedman CS, Kachmar ML, Humphrey KL, Moore JD, Elston RA. The first detection of a novel OsHV-1 microvariant in San Diego, California, USA. J Invertebr Pathol 2021; 184:107636. [PMID: 34116033 DOI: 10.1016/j.jip.2021.107636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 06/04/2021] [Indexed: 11/15/2022]
Abstract
The spread, emergence, and adaptation of pathogens causing marine disease has been problematic to fisheries and aquaculture industries for the last several decades creating the need for strategic management and biosecurity practices. The Pacific oyster (Crassostrea gigas), a highly productive species globally, has been a target of disease and mortality caused by a viral pathogen, the Ostreid herpesvirus 1 (OsHV-1) and its microvariants (OsHV-1 µvars). During routine surveillance to establish health history at a shellfish aquaculture nursery system in San Diego, California, the presence of OsHV-1 in Pacific oyster juveniles was detected. Quantification of OsHV-1 in tissues of oysters revealed OsHV-1 viral loads > 106 copies/mg. We characterized and identified the OsHV-1 variant by sequencing of ORFs 4 (C2/C6) and 43 (IA1/IA2), which demonstrated that this variant is a novel OsHV-1 microvariant: OsHV-1 µvar SD. A pilot transmission study indicates that OsHV-1 µvar SD is infectious with high viral loads ~ 7.57 × 106 copies/mg detected in dead individuals. The detection of OsHV-1 µvar SD in a large port mirrors previous studies conducted in Australia where aquaculture farms and feral populations near port locations may be at a higher risk of OsHV-1 emergence. Further research is needed to understand the impacts of OsHV-1 µvar SD, such as transmission studies focusing on potential vectors and characterization of virulence as compared to other OsHV-1 µvars. To increase biosecurity of the global aquaculture industry, active and passive surveillance may be necessary to reduce spread of pathogens and make appropriate management decisions.
Collapse
Affiliation(s)
- Colleen A Burge
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA.
| | - Carolyn S Friedman
- School of Aquatic & Fishery Sciences, University of Washington, Box 355020, Seattle, WA 98105, USA
| | - Mariah L Kachmar
- Institute of Marine & Environmental Technology, University of Maryland Baltimore County, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | - James D Moore
- California Department of Fish & Wildlife, UC Davis Bodega Marine Laboratory, 2099 Westside Road, Bodega Bay, CA 94923, USA
| | - Ralph A Elston
- AquaTechnics Inc, 455 West Bell Street, Sequim, WA 98382, USA
| |
Collapse
|
2
|
Pecl GT, Ogier E, Jennings S, van Putten I, Crawford C, Fogarty H, Frusher S, Hobday AJ, Keane J, Lee E, MacLeod C, Mundy C, Stuart-Smith J, Tracey S. Autonomous adaptation to climate-driven change in marine biodiversity in a global marine hotspot. AMBIO 2019; 48:1498-1515. [PMID: 31098878 PMCID: PMC6883019 DOI: 10.1007/s13280-019-01186-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/01/2019] [Accepted: 04/09/2019] [Indexed: 05/05/2023]
Abstract
While governments and natural resource managers grapple with how to respond to climatic changes, many marine-dependent individuals, organisations and user-groups in fast-changing regions of the world are already adjusting their behaviour to accommodate these. However, we have little information on the nature of these autonomous adaptations that are being initiated by resource user-groups. The east coast of Tasmania, Australia, is one of the world's fastest warming marine regions with extensive climate-driven changes in biodiversity already observed. We present and compare examples of autonomous adaptations from marine users of the region to provide insights into factors that may have constrained or facilitated the available range of autonomous adaptation options and discuss potential interactions with governmental planned adaptations. We aim to support effective adaptation by identifying the suite of changes that marine users are making largely without government or management intervention, i.e. autonomous adaptations, to better understand these and their potential interactions with formal adaptation strategies.
Collapse
Affiliation(s)
- Gretta T. Pecl
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
| | - Emily Ogier
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
| | - Sarah Jennings
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
- Tasmanian School of Business and Economics, University of Tasmania, Private Bag 84, Hobart, TAS 7001 Australia
| | - Ingrid van Putten
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
- CSIRO Oceans and Atmosphere, 3-4 Castray Esplanade, Hobart, TAS 7004 Australia
| | - Christine Crawford
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
| | - Hannah Fogarty
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
| | - Stewart Frusher
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
| | - Alistair J. Hobday
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
- CSIRO Oceans and Atmosphere, 3-4 Castray Esplanade, Hobart, TAS 7004 Australia
| | - John Keane
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
| | - Emma Lee
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
- Centre for Social Impact at Swinburne University of Technology, Hawthorn, VIC 3122 Australia
| | - Catriona MacLeod
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
- Centre for Marine Socioecology, University of Tasmania, Private Bag 49, Hobart, TAS 7001 Australia
| | - Craig Mundy
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
| | - Jemina Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
| | - Sean Tracey
- Institute for Marine and Antarctic Studies, University of Tasmania, PO Box 49, Hobart, TAS 7001 Australia
| |
Collapse
|
3
|
RNA-seq of HaHV-1-infected abalones reveals a common transcriptional signature of Malacoherpesviruses. Sci Rep 2019; 9:938. [PMID: 30700734 PMCID: PMC6353905 DOI: 10.1038/s41598-018-36433-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Haliotid herpesvirus-1 (HaHV-1) is the viral agent causative of abalone viral ganglioneuritis, a disease that has severely affected gastropod aquaculture. Although limited, the sequence similarity between HaHV-1 and Ostreid herpesvirus-1 supported the assignment of both viruses to Malacoherpesviridae, a Herpesvirales family distantly related with other viruses. In this study, we reported the first transcriptional data of HaHV-1, obtained from an experimental infection of Haliotis diversicolor supertexta. We also sequenced the genome draft of the Chinese HaHV-1 variant isolated in 2003 (HaHV-1-CN2003) by PacBio technology. Analysis of 13 million reads obtained from 3 RNA samples at 60 hours post injection (hpi) allowed the prediction of 51 new ORFs for a total of 117 viral genes and the identification of 207 variations from the reference genome, consisting in 135 Single Nucleotide Polymorphisms (SNPs) and 72 Insertions or Deletions (InDels). The pairing of genomic and transcriptomic data supported the identification of 60 additional SNPs, representing viral transcriptional variability and preferentially grouped in hotspots. The expression analysis of HaHV-1 ORFs revealed one putative secreted protein, two putative capsid proteins and a possible viral capsid protease as the most expressed genes and demonstrated highly synchronized viral expression patterns of the 3 infected animals at 60 hpi. Quantitative reverse transcription data of 37 viral genes supported the burst of viral transcription at 30 and 60 hpi during the 72 hours of the infection experiment, and allowed the distinction between early and late viral genes.
Collapse
|
4
|
Young T, Kesarcodi-Watson A, Alfaro AC, Merien F, Nguyen TV, Mae H, Le DV, Villas-Bôas S. Differential expression of novel metabolic and immunological biomarkers in oysters challenged with a virulent strain of OsHV-1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:229-245. [PMID: 28373065 DOI: 10.1016/j.dci.2017.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 06/07/2023]
Abstract
Early lifestages of the Pacific oyster (Crassostrea gigas) are highly susceptible to infection by OsHV-1 μVar, but little information exists regarding metabolic or pathophysiological responses of larval hosts. Using a metabolomics approach, we identified a range of metabolic and immunological responses in oyster larvae exposed to OsHV-1 μVar; some of which have not previously been reported in molluscs. Multivariate analyses of entire metabolite profiles were able to separate infected from non-infected larvae. Correlation analysis revealed the presence of major perturbations in the underlying biochemical networks and secondary pathway analysis of functionally-related metabolites identified a number of prospective pathways differentially regulated in virus-exposed larvae. These results provide new insights into the pathogenic mechanisms of OsHV-1 infection in oyster larvae, which may be applied to develop disease mitigation strategies and/or as new phenotypic information for selective breeding programmes aiming to enhance viral resistance.
Collapse
Affiliation(s)
- Tim Young
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | | | - Andrea C Alfaro
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - Fabrice Merien
- AUT-Roche Diagnostics Laboratory, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Thao V Nguyen
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Hannah Mae
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Dung V Le
- Institute for Applied Ecology New Zealand, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - Silas Villas-Bôas
- Metabolomics Laboratory, School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|