1
|
Fonseka WTL, Do SQ, Van PN, Nguyen HT, Wakai T, Funahashi H. The impact of cumulus cell viability and pre-culture with the healthy cell mass on brilliant cresyl blue (BCB) staining assessment and meiotic competence of suboptimal porcine oocytes. Theriogenology 2024; 226:158-166. [PMID: 38901215 DOI: 10.1016/j.theriogenology.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Objectives of the present study were to investigate the characteristics including glucose-6-phosphate dehydrogenase activity, as determined by Brilliant Cresyl Blue (BCB) staining, of suboptimal porcine oocytes and to enhance the meiotic competence of those through pre-culture with cumulus cell masses (CCMs). Percentage of oocyte-cumulus complexes (OCCs) derived from small follicles (SF; <3 mm in diameter) containing the oocytes that were assessed as BCB-negative (BCB-) was significantly higher than those derived from medium follicles (MF; 3-6 mm in diameter). Degrees of dead cumulus cells were significantly higher in OCCs containing BCB- oocytes, regardless of the origin of OCCs (MF vs. SF), than those containing BCB-positive (BCB+) ones. Exposing OCCs containing BCB+ oocytes to the apoptosis inducer, carbonyl cyanide m-chlorophenylhydrazone, for 20 h significantly induced the transition to BCB- and meiotic progression of exposed OCCs were significantly reduced in both SF and MF derived ones. Transit of BCB- oocytes to BCB+ was induced when OCCs were pre-cultured with CCMs of MF derived OCCs containing BCB+ oocytes for 20 h before IVM. This pre-culture also significantly increased the meiotic competence of BCB- oocytes, particularly in SF derived ones. However, reactive oxygen species levels were significantly higher in BCB+ oocytes as compared with BCB- ones, regardless of pre-culture with CCMs, whereas no significant differences were found in the ATP contents among the treatment groups. In conclusion, the BCB result of oocytes could be regulated by the healthy status and content of surrounding cumulus cells and the meiotic competence of suboptimal BCB- porcine oocytes is improved by pre-culture with healthy CCMs.
Collapse
Affiliation(s)
| | - Son Quang Do
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Phong Ngoc Van
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hai Thanh Nguyen
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Takuya Wakai
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Hiroaki Funahashi
- Department of Animal Science, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Wang S, Wu X, Yang J, Peng Y, Miao F, Li M, Zeng J. Sterigmatocystin declines mouse oocyte quality by inducing ferroptosis and asymmetric division defects. J Ovarian Res 2024; 17:175. [PMID: 39198920 PMCID: PMC11351269 DOI: 10.1186/s13048-024-01499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Sterigmatocystin (STE) is a mycotoxin widely found in contaminated food and foodstuffs, and excessive long-term exposure to STE is associated with several health issues, including infertility. However, there is little information available regarding the effects of STE toxin on the female reproductive system, particularly concerning oocyte maturation. METHODS In the present study, we investigated the toxic effects of STE on mouse oocyte maturation. We also used Western blot, immunofluorescence, and image quantification analyses to assess the impact of STE exposure on the oocyte maturation progression, mitochondrial distribution, oxidative stress, DNA damages, oocyte ferroptosis and asymmetric division defects. RESULTS Our results revealed that STE exposure disrupted mouse oocyte maturation progression. When we examined the cellular changes following 100 µM STE treatment, we found that STE adversely affected polar body extrusion and induced asymmetric division defects in oocytes. RNA-sequencing data showed that STE exposure affects the expression of several pathway-correlated genes during oocyte meiosis in mice, suggesting its toxicity to oocytes. Based on the RNA-seq data, we showed that STE exposure induced oxidative stress and caused DNA damage in oocytes. Besides, ferroptosis and α-tubulin acetylation were also found in STE-exposed oocytes. Moreover, we determined that STE exposure resulted in reduced RAF1 protein expression in mouse oocytes, and inhibition of RAF1 activity also causes defects in asymmetric division of mouse oocytes. CONCLUSIONS Collectively, our research provides novel insights into the molecular mechanisms whereby STE contributes to abnormal meiosis.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuan Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Juan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Yuwan Peng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Fulu Miao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China
| | - Juan Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Heifei, Anhui, 230022, China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
3
|
Ahuja K, Batra V, Kumar R, Datta TK. Transient suppression of Wnt signaling in poor-quality buffalo oocytes improves their developmental competence. Front Vet Sci 2024; 10:1324647. [PMID: 38274663 PMCID: PMC10808588 DOI: 10.3389/fvets.2023.1324647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction One of the most evolutionary conserved communication systems, the Wnt signaling pathway is a major gene regulatory pathway that affects the developmental competence of oocytes and regulates most embryonic developmental processes. The present study was undertaken to modulate the canonical Wnt (Wingless/integration) signaling pathway in the poor-quality (colorless cytoplasm after Brilliant Cresyl Blue staining, BCB-) buffalo cumulus-oocyte complexes (COCs) to improve their in vitro maturation (IVM) and embryo production (IVEP) rates. Methods The expression of key Wnt pathway genes was initially assessed in the good (blue cytoplasm after Brilliant Cresyl Blue staining, BCB+) and poor quality (BCB-) buffalo COCs to establish a differential activity of the Wnt pathway. The BCB- COCs were supplemented with the Wnt pathway inhibitor, Dickkopf-related protein 1 (DKK1) and later subjected to IVM and IVEP along with the BCB+ and BCB- controls. The cumulus expansion index (CEI), rate of nuclear maturation (mean percentage of oocytes in the MII stage) and embryo production, and the expression of developmentally important genes were evaluated to assess the effect of Wnt pathway inhibition on the development competence of these poor-quality oocytes. Results The Wnt pathway genes exhibited a significantly higher expression (p < 0.05) in the poor-quality BCB- oocytes compared to the good-quality BCB+ oocytes during the early maturation stages. The supplementation of BCB- COCs with 100 ng/mL DKK1 effectively inhibited the expression of the key mediators of the Wnt pathway (β-catenin and dishevelled homolog 1, DVL1). DKK1 supplemented BCB- COCs exhibited significantly improved cytoplasmic and nuclear maturation indices, development rates and significantly elevated expression (p < 0.05) of genes implicated in germinal vesicle breakdown (GVBD) and embryonic genome activation (EGA) vis-à-vis BCB- control COCs. Conclusion These data indicate that inhibition of the Wnt pathway during the initial course of oocyte maturation can improve the development competence of poor-quality buffalo oocytes.
Collapse
Affiliation(s)
- Kriti Ahuja
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Vipul Batra
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Rakesh Kumar
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, India
| |
Collapse
|
4
|
Elgendy O, Kitahara G, Yamada K, Taniguchi S, Osawa T. 5-Aminolevulinic acid/sodium ferrous citrate improves the quality of heat-stressed bovine oocytes by reducing oxidative stress. J Reprod Dev 2023; 69:261-269. [PMID: 37599082 PMCID: PMC10602763 DOI: 10.1262/jrd.2023-038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
A high temperature-humidity index during summer has deleterious effects on mitochondrial function, reducing oocyte developmental competence. 5-Aminolevulinic acid (5-ALA) and sodium ferrous citrate (SFC) are both known to support mitochondrial function and have strong anti-oxidant and anti-apoptotic activities. This study aimed to determine the mechanism of action of 5-ALA/SFC on oocyte quality. Bovine oocytes were collected from medium-sized follicles during summer (July-September, temperature-humidity index:76.6), cultured with 0, 1, 2, 4, and 8 µM 5-ALA with SFC at a molar ratio of 1:0.125, fertilized, and cultured for 10 days. The addition of 8/1 µM 5-ALA/SFC had a deleterious effect on oocyte cleavage rate in comparison with control oocytes, but did not affect the blastocyst rate, while 1/0.125 µM 5-ALA/SFC had a significantly higher increase in blastocyst rate than 8/1 µM 5-ALA/SFC. The addition of 1/0.125 and 2/0.25 µM 5-ALA/SFC improved oocyte quality by increasing the mitochondrial distribution pattern and metaphase-II oocytes, reducing reactive oxygen species and upregulating nuclear factor erythroid-2-related factor 2, heme oxygenase-1, and superoxide dismutase-1 in oocytes, and nuclear factor erythroid-2-related factor 2 and mitochondrial transcription factor A in cumulus cells. These results indicate that 1/0.125 and 2/0.25 µM 5-ALA/SFC may support oocyte quality and developmental competence and provide anti-oxidant actions in cumulus-oocyte complexes.
Collapse
Affiliation(s)
- Omnia Elgendy
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Theriogenology, Faculty of Veterinary Medicine, Benha University, Qalyobia 13736, Egypt
| | - Go Kitahara
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Kentaro Yamada
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Shin Taniguchi
- One Health Business Department, Neopharma Japan Co., Ltd., Tokyo 102-0071, Japan
- Present: Hokusatsu Regional Promotion Bureau, Kagoshima pref., Kagoshima, Japan
| | - Takeshi Osawa
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-2192, Japan
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
5
|
Bittner-Schwerda L, Herrera C, Wyck S, Malama E, Wrenzycki C, Bollwein H. Brilliant Cresyl Blue Negative Oocytes Show a Reduced Competence for Embryo Development after In Vitro Fertilisation with Sperm Exposed to Oxidative Stress. Animals (Basel) 2023; 13:2621. [PMID: 37627412 PMCID: PMC10451622 DOI: 10.3390/ani13162621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The extent of oxidative damage transferred by the damaged sperm to the progeny is likely to be limited by the oocyte's repair and antioxidative capacity. We aimed to assess the association between Brilliant Cresyl Blue (BCB) staining in oocytes and their competence for embryo development after in vitro fertilisation (IVF) with damaged sperm. For this purpose, bovine sperm were incubated without (non-oxidised sperm, NOX S) or with 100 µM H2O2 (oxidised sperm, OX S) and were used to fertilise in-vitro-matured bovine oocytes (BCB-pos./BCB-neg.). Unstained oocytes served as controls (US). Development was assessed at 30, 46, 60 h and on Days (D) 7 and 8 after IVF. Total cell number and apoptotic index were analysed in D7 blastocysts. BCB-neg. oocytes showed lower cleavage rates and blastocyst rates than unstained oocytes after IVF with NOX S (p < 0.05). They showed the highest reduction in D7 blastocyst rate upon fertilisation with OX S and showed a delayed embryo development at 46 and 60 h after IVF compared to embryos produced with NOX S (p < 0.05). Total cell number in blastocysts produced with BCB-neg. oocytes was lower (p < 0.05) in the embryos produced with OX S than in embryos after IVF with NOX S. In conclusion, BCB-neg. oocytes have a lower competence to support embryo development after in vitro fertilisation with oxidised sperm.
Collapse
Affiliation(s)
- Lilli Bittner-Schwerda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zuerich, Switzerland
| | - Carolina Herrera
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zuerich, Switzerland
| | - Sarah Wyck
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zuerich, Switzerland
| | - Eleni Malama
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zuerich, Switzerland
| | - Christine Wrenzycki
- Veterinary Clinic for Reproductive Medicine and Neonatology, Chair for Molecular Reproductive Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zuerich, Switzerland
| |
Collapse
|
6
|
Gad A, Murin M, Bartkova A, Kinterova V, Marcollova K, Laurincik J, Prochazka R. Small-extracellular vesicles and their microRNA cargo from porcine follicular fluids: the potential association with oocyte quality. J Anim Sci Biotechnol 2022; 13:82. [PMID: 35725584 PMCID: PMC9208166 DOI: 10.1186/s40104-022-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicular fluids (FFs) contain several kinds of regulatory factors that maintain a suitable microenvironment for oocyte development. Extracellular vesicles (EVs) are among the factors that play essential roles in regulating follicle and oocyte development through their cargo molecules that include microRNAs (miRNAs). This study aimed to investigate small-EV (s-EV) miRNAs in porcine FFs and their potential association with oocyte quality. Methods Individual aspirated oocytes were stained with lissamine green B stain (LB), a vital stain for oocyte quality, and each oocyte was classified as high-quality (unstained; HQ) or low-quality (stained; LQ). FFs corresponding to oocytes were pooled together into HQ and LQ groups. Small-EVs were isolated from FFs, characterized, and their miRNA cargo was identified using the Illumina NovaSeq sequencing platform. Additionally, s-EVs from the HQ and LQ groups were utilized to investigate their effect on oocyte development after co-incubation during in vitro maturation. Results A total of 19 miRNAs (including miR-125b, miR-193a-5p, and miR-320) were significantly upregulated, while 23 (including miR-9, miR-206, and miR-6516) were downregulated in the HQ compared to the LQ group. Apoptosis, p53 signaling, and cAMP signaling were among the top pathways targeted by the elevated miRNAs in the HQ group while oocyte meiosis, gap junction, and TGF-beta signaling were among the top pathways targeted by the elevated miRNAs in the LQ group. The supplementation of small-EVs during maturation does not affect the oocyte developmental rates. However, LQ s-EVs increase the proportion of oocytes with homogeneous mitochondrial distribution and decrease the proportion of heterogeneous distribution. Conclusion Our findings indicated that FF-EVs contain different miRNA cargos associated with oocyte quality and could affect the mitochondrial distribution patterns during oocyte maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00723-1.
Collapse
Affiliation(s)
- Ahmed Gad
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Matej Murin
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.
| | - Alexandra Bartkova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94901, Nitra, Slovakia
| | - Veronika Kinterova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Katerina Marcollova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| | - Jozef Laurincik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic.,Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94901, Nitra, Slovakia
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721, Liběchov, Czech Republic
| |
Collapse
|
7
|
Kuzmina TI, Chistyakova IV, Prituzhalova AO, Tatarskaya DN. The role of highly dispersed silica nanoparticles in the realization of the effects of granulosa on the maturation and fertilization competence of <i>Sus scrofa domesticus</i> oocytes. Vavilovskii Zhurnal Genet Selektsii 2022; 26:234-239. [PMID: 35733817 PMCID: PMC9164121 DOI: 10.18699/vjgb-22-30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/02/2022] Open
Abstract
Reproductive technologies are some of the key directions in the context of the need to preserve and select highly productive farmed animals in terms of economically useful traits. Improvements of the existing models of the in vitro oocyte maturation system help to solve the problem of low yield of porcine embryos at the final stages of preimplantation development. In the present study, a model of culture medium for gametes (NCSU-23 with 10 % homologous follicular fluid, 10 IU hCG and 10 IU eCG) modernized by the addition of 1·106 granulosa cells (GCs) per
ml and 0.001 % of highly dispersed silica nanoparticles (HDSn) is proposed for use in the IVM and IVF technology
of donor porcine oocytes. Analysis of the oocyte chromatin status by the Tarkowsky method and assessment of
the level of destructive changes in chromatin (apoptosis, pyknosis) revealed a significant percentage increase in
matured oocytes and a decrease in the proportion of granulosa cells with degenerated chromatin when using the
original culture system. The positive effects of a joint addition of GCs and HDSn to the maturation system have
made it possible to increase the indicators of the meiotic maturation and fertilization of oocytes. Optimal results
of developmental competence of oocytes were achieved with the joint use of GCs and HDSn in the maturation
system (the proportion of matured cells reached 89 %, the level of oocytes with chromosome degeneration was
12 %, 39 % of embryos reached the final stage of preimplantation development). The positive effect of HDSn on
oocyte fertilization was accompanied by an abrupt decrease in destructive processes in GCs during culture in the
presence of HDSn. The level of somatic cells with pyknotic nuclei was 32 % and the level of apoptosis (TUNELtest),
21 %, compared with the control (43 and 31 %, p <0.01, respectively). Thus, a high efficiency of the porcine
oocyte maturation system in the joint culture of gametes with GCs and HDSn was revealed. It makes it possible to
recommend a model of this culture medium at the IVM of female gametes of Sus scrofa domesticus for improving the
quality of donor oocytes used in cell and genetic engineering.
Collapse
Affiliation(s)
- T. I. Kuzmina
- Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
| | - I. V. Chistyakova
- Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
| | - A. O. Prituzhalova
- Russian Research Institute of Farm Animal Genetics and Breeding – Branch of the L.K. Ernst Federal Research Center for Animal Husbandry
| | | |
Collapse
|
8
|
Yang SG, Joe SY, Bae JW, Heo GD, Park HJ, Koo DB. Melatonin Protects Against Mdivi-1-Induced Abnormal Spindle Assembly and Mitochondrial Superoxide Production During Porcine Oocyte Maturation. Front Cell Dev Biol 2021; 9:693969. [PMID: 34307369 PMCID: PMC8297652 DOI: 10.3389/fcell.2021.693969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) reportedly provides a close connection between oocyte maturation and mitochondrial function in pigs. N-acetyl-5-methoxy-tryptamine (melatonin) is known to be a representative antioxidant with the ability to rehabilitate meiotic maturation of porcine oocytes. However, the ability of melatonin to recover Mdivi-1-mediated disruption of spindle formation during meiotic maturation of porcine oocytes during in vitro maturation (IVM) has not been studied. Here, we first investigated changes in mitochondrial length, such as fragmentation and elongation form, in mature porcine oocytes during IVM. Mature oocytes require appropriate mitochondrial fission for porcine oocyte maturation. We identified a dose-dependent reduction in meiotic maturation in porcine oocytes following Mdivi-1 treatment (50, 75, and 100 μM). We also confirmed changes in mitochondrial fission protein levels [dynamin-related protein 1 phosphorylation at serine 616 (pDRP1-Ser616) and dynamin-related protein 1 (DRP1)], mitochondrial membrane potential, and ATP production in 75 μM Mdivi-1-treated oocytes. As expected, Mdivi-1 significantly reduced mitochondrial function and DRP1 protein levels and increased spindle abnormalities in porcine oocytes. In addition, we confirmed that melatonin restores abnormal spindle assembly and reduces meiotic maturation rates by Mdivi-1 during porcine oocyte maturation. Interestingly, the expression levels of genes that reduce DNA damage and improve tubulin formation were enhanced during porcine meiotic maturation. Taken together, these results suggest that melatonin has direct beneficial effects on meiotic maturation through tubulin formation factors during porcine oocyte maturation.
Collapse
Affiliation(s)
- Seul-Gi Yang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Seung-Yeon Joe
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Jin-Wook Bae
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Gyeong-Deok Heo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, South Korea.,Institute of Infertility, Daegu University, Gyeongsan, South Korea
| |
Collapse
|
9
|
Fathi M, Elkarmoty AF. Effect of adding growth factors during in vitro maturation on the developmental potentials of ewe oocytes selected by brilliant cresyl blue staining. Vet World 2021; 14:452-456. [PMID: 33776311 PMCID: PMC7994115 DOI: 10.14202/vetworld.2021.452-456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Aim: Several factors had been concerned with the developmental competence of the sheep oocyte. This study aims to investigate the effect of adding growth factors (insulin-like growth factor 1 [IGF-1] and epidermal growth factor [EGF]) in the maturation medium of ewe oocytes selected based on brilliant cresyl blue (BCB) screening on in vitro maturation (IVM), fertilization, and pre-implantation embryo development. Materials and Methods: Cumulus-oocyte complexes (COCs) were obtained from the ovaries of slaughtered ewes by either aspiration or slicing techniques. COCs were in vitro matured in a medium containing IGF-1 and EGF (control group). For BCB screening, oocytes were stained and divided into BCB+ oocytes that matured in the same maturation conditions without adding growth factors (Group 2) or in the presence of growth factors (Group 3), and BCB− oocytes that matured in medium without growth factors (Group 4) or with growth factors (Group 5). Results: The supplementation of the maturation medium with growth factors during IVM of (BCB+) oocytes resulted in a significant increase in nuclear maturation rate (90.9%), fertilization rate (75.6%), and embryo developmental rates (60.0%, 46.7%, and 33.3% for cleavage, morula, and blastocyst, respectively). Conclusion: Culturing BCB+ oocytes in a maturation medium containing both EGF and IGF-1 showed a significant improvement in nuclear maturation, fertilization, and pre-implantation embryo development in vitro.
Collapse
Affiliation(s)
- Mohamed Fathi
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Amr F Elkarmoty
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
10
|
Martínez-Quezada R, González-Castañeda G, Bahena I, Domínguez A, Domínguez-López P, Casas E, Betancourt M, Casillas F, Rodríguez J, Álvarez L, Mateos R, Altamirano M, Bonilla E. Effect of perfluorohexane sulfonate on pig oocyte maturation, gap-junctional intercellular communication, mitochondrial membrane potential and DNA damage in cumulus cells in vitro. Toxicol In Vitro 2021; 70:105011. [DOI: 10.1016/j.tiv.2020.105011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/23/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
|
11
|
Anethole Supplementation During Oocyte Maturation Improves In Vitro Production of Bovine Embryos. Reprod Sci 2020; 27:1602-1608. [PMID: 32436196 DOI: 10.1007/s43032-020-00190-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is one of the most detrimental factors that affect oocyte developmental competence and embryo development in vitro. The impact of anethole supplementation to in vitro maturation (IVM) media on oocyte maturation and further bovine in vitro embryo production was investigated. Oocytes of slaughterhouse-derived bovine ovaries were placed in IVM with anethole at different concentrations of 30 (AN30), 300 (AN300), and 2000 μg/mL (AN2000), or without (control treatment). The oocytes were assessed for maturation rates, and for reactive oxygen species (ROS) and ferric reducing antioxidant power (FRAP) levels, and mitochondrial membrane potential. Embryo development was assessed by cleavage and blastocyst rates, and embryo cell number. The percentage of metaphase II oocytes were similar among the treatments (range, 77%-96%). Anethole at 300 μg/mL was the only treatment that yielded higher cleavage and embryo development (morula and blastocyst) rates compared to the control treatment. The ROS production in the oocytes after maturation did not differ among treatments. However, oocytes treated with anethole at 300 μg/mL had higher (P < .05) FRAP and mitochondrial membrane potential compared to the control treatment. Furthermore, AN300 treatment increased (P < .05) the average number of total cells in blastocysts compared to the control and AN30 treatments. The use of anethole at 300 μg/mL during IVM is suggested to improve the quantity and quality of bovine embryos produced in vitro. The beneficial effects of anethole on embryonic developmental competence in vitro seems to be related to its capacity to regulate the redox balance and improve mitochondrial function in oocytes and embryos.
Collapse
|
12
|
Bartkova A, Morovic M, Strejcek F, Murin M, Benc M, Percinic FP, Laurincik J. Characterization of porcine oocytes stained with Lissamine Green B and their developmental potential in vitro. Anim Reprod 2020; 17:e20200533. [PMID: 33791031 PMCID: PMC7995255 DOI: 10.1590/1984-3143-ar2020-0533] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Traditional methods for the evaluation of oocyte quality are based on morphological classification of the follicle, cumulus-oocyte complex, polar body and meiotic spindle. This study is focused on the differences between the morphological assessment of oocyte quality, the assessment based on Lissamine Green B (LB) staining and the analysis of oocytes using a proteomic approach. We evaluated the effectiveness of electrochemical and chemical parthenogenetic activation under our laboratory conditions and evaluated the applicability of Lissamine Green B staining of cumulus-oocyte complexes (COCs) as a non-invasive method for predicting the maturational and developmental competence of porcine oocytes cultured in vitro. We determined that chemical parthenogenetic activation using ionomycin and 6-dimethylaminopurine was slightly more effective than electrochemical activation. After oocyte selection according to LB staining, we found significant differences (P<0.05) between the LB- group and LB+ group and the control group in their maturation, cleavage rate and rate of blastocysts. Proteomic analyses identified a selection of proteins that were differentially expressed in each group of analysed oocytes. Oocytes of the LB- group exhibited an increased variability of proteins involved in transcription regulation, proteosynthesis and the protein folding crucial for oocyte maturation and further embryonic development. These results found a better competence of LB- oocytes in maturation, cleavage and ability to reach the blastocyst stage.
Collapse
Affiliation(s)
- Alexandra Bartkova
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Martin Morovic
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Frantisek Strejcek
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Matej Murin
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Michal Benc
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic
| | - Florina Popovska Percinic
- Faculty of Veterinary Medicine, Ss. Cyril and Methodius University in Skopje, Skopje, Republic of North Macedonia
| | - Jozef Laurincik
- Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
13
|
CoQ10 improves meiotic maturation of pig oocytes through enhancing mitochondrial function and suppressing oxidative stress. Theriogenology 2020; 159:77-86. [PMID: 33113448 DOI: 10.1016/j.theriogenology.2020.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Coenzyme Q10 (CoQ10) is essential to many fundamental biological processes. However, the effect of CoQ10 on meiotic maturation of pig oocytes still remains elusive. In the present study we aimed to understand the effects of CoQ10 on porcine oocyte maturation, by supplementing different concentrations of CoQ10 (25, 50 and 100 μM) into the maturation medium. We showed that CoQ10 at 50 μM had better capacity to promote the nuclear maturation of pig oocytes derived from both small and large antral follicles. Though the cleavage and blastocyst rates of parthenotes stayed stable, 50 μM CoQ10 treatment could accelerate the development of parthenotes to blastocyst stage, and increase the average cell number of blastocyst. For cumulus-oocyte complexes from large antral follicles categorized by the brilliant cresyl blue (BCB) test, 50 μM CoQ10 treatment could specifically promote the nuclear maturation of poor-quality oocytes in the BCB-negative group. Mitochondrial function of oocytes treated by 50 μM CoQ10 could be boosted, through increasing the levels of mitochondrial membrane potential, ATP production and CoQ6, and changing the pattern of mitochondrial distribution as well. Moreover, 50 μM CoQ10 treatment suppressed the level of reactive oxygen species and reduced the percentage of oocytes with early apoptosis signal. Taken together, CoQ10 could improve the meiotic maturation of pig oocytes, especially for poor-quality oocytes, mainly through enhancing mitochondrial function and suppressing oxidative stress to reduce apoptosis.
Collapse
|
14
|
Piras AR, Ariu F, Zedda MT, Paramio MT, Bogliolo L. Selection of Immature Cat Oocytes with Brilliant Cresyl Blue Stain Improves In Vitro Embryo Production during Non-Breeding Season. Animals (Basel) 2020; 10:ani10091496. [PMID: 32847086 PMCID: PMC7552244 DOI: 10.3390/ani10091496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/22/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary The domestic cat is commonly used as a model for the development of assisted reproductive technologies, including in vitro embryo production (IVEP) in felid species. Seasonal reproduction is a feature of domestic cats as well as of several species of wild feline. Likewise, the number and the quality of blastocysts produced in in vitro systems is linked to season. Maintaining stable in vitro embryo production throughout the year is crucial not only for research purposes but also for programs aimed at protecting endangered felines. We assess whether using Brilliant Cresyl Blue (BCB) selection in addition to the classical morphological selection could improve the IVEP outcomes during non-breeding season. Blastocyst yield and quality of the embryos (hatching rate and blastocyst cell numbers) were higher after IVM/IVF in oocytes defined as BCB+ (colored cytoplasm) based on the BCB test than in oocytes only morphologically selected. Furthermore, no adverse effects on bioenergetic/oxidative status were observed in oocytes subjected to BCB staining. In conclusion, BCB test implementation in IVEP programs might ensure a steady output of domestic cat blastocysts throughout the year. Abstract In domestic cats, the maturation, fertilization, and development potential in vitro decreases during the non-breeding season. This study aims at evaluating the efficacy of Brilliant Cresyl Blue (BCB) staining in selecting developmentally competent oocytes to be used in in vitro embryo production (IVEP) programs in order to overcome the season variability in blastocyst yield. Cumulus-oocytes complexes (COCs) collected from antral follicles of domestic cat ovaries during the anestrus phase (July to November) were selected by BCB staining and classified as BCB+ (colored cytoplasm) and BCB− (colorless cytoplasm). COCs not exposed to BCB staining were used as control. Before and after in vitro maturation mitochondrial activity and reactive oxygen species (ROS) were measured. Following in vitro fertilization, blastocyst rate, hatching rate, and blastocyst cell numbers were recorded. The results show that BCB staining did not alter the mitochondrial function and ROS production in cat oocytes. BCB+ oocytes presented a higher (p < 0.05) blastocyst rate, hatching rate, and blastocyst cell number than BCB− and control oocytes. In conclusion, BCB staining does not affect the bioenergetic/oxidative status of the oocyte while being a useful tool for selecting good quality oocytes to increase IVEP in domestic cats during non-breeding season.
Collapse
Affiliation(s)
- Anna Rita Piras
- Department of Veterinary Medicine, University of Sassari, 070100 Sassari, Italy; (F.A.); (M.-T.Z.); (L.B.)
- Correspondence:
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, 070100 Sassari, Italy; (F.A.); (M.-T.Z.); (L.B.)
| | - Maria-Teresa Zedda
- Department of Veterinary Medicine, University of Sassari, 070100 Sassari, Italy; (F.A.); (M.-T.Z.); (L.B.)
| | - Maria-Teresa Paramio
- Departament de ciencia Animal i Dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, 070100 Sassari, Italy; (F.A.); (M.-T.Z.); (L.B.)
| |
Collapse
|
15
|
Antioxidant Nobiletin Enhances Oocyte Maturation and Subsequent Embryo Development and Quality. Int J Mol Sci 2020; 21:ijms21155340. [PMID: 32727154 PMCID: PMC7432792 DOI: 10.3390/ijms21155340] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Nobiletin is a polymethoxylated flavonoid isolated from citrus fruits with wide biological effects, including inhibition of reactive oxygen species (ROS) production and cell cycle regulation, important factors for oocyte in vitro maturation (IVM). Therefore, the objective of the present study was to evaluate the antioxidant activity of nobiletin during IVM on matured bovine oocyte quality (nuclear and cytoplasmic maturation; oocyte mitochondrial activity; intracellular ROS and glutathione (GSH) levels) and their developmental competence, steroidogenesis of granulosa cells after maturation, as well as quantitative changes of gene expression in matured oocytes, their cumulus cells, and resulting blastocysts. Bovine cumulus-oocyte complexes were in vitro matured in TCM-199 +10% fetal calf serum (FCS) and 10 ng/mL epidermal growth factor (EGF) (Control) supplemented with 10, 25, 50, or 100 μM of nobiletin (Nob10, Nob25, Nob50, and Nob100, respectively) or 0.1% dimethyl sulfoxide (CDMSO: vehicle for nobiletin dilution). A significantly higher percentage of matured oocytes in metaphase II was observed in Nob25 and Nob50 compared to other groups. Similarly, cleavage rate and cumulative blastocyst yield on Days 7 and 8 were significantly higher for Nob25 and Nob50 groups. Oocytes matured with 25 and 50 μM nobiletin showed a higher rate of migration of cortical granules and mitochondrial activity and a reduction in the ROS and GSH content in comparison with all other groups. This was linked to a modulation in the expression of genes related to metabolism (CYP51A1), communication (GJA1), apoptosis (BCL2), maturation (BMP15 and MAPK1), and oxidative stress (SOD2 and CLIC1). In conclusion, nobiletin offers a novel alternative for counteracting the effects of the increase in the production of ROS during IVM, improves oocyte nuclear and cytoplasmic maturation, and subsequent embryo development and quality in cattle.
Collapse
|
16
|
Intranuclear characteristics of pig oocytes stained with brilliant cresyl blue and nucleologenesis of resulting embryos. ZYGOTE 2019; 27:232-240. [PMID: 31397243 DOI: 10.1017/s0967199419000352] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brilliant cresyl blue (BCB) vital labelling is a powerful method for analyzing the quality of porcine cumulus-oocyte complexes. Our aim was to investigate the correlation between the selection of porcine oocytes using BCB labelling and selected intranuclear characteristics of porcine oocytes and parthenotes. Moreover, BCB labelling was correlated with the diameter of the oocyte and the developmental potential of the parthenotes. The following methods were used: BCB labelling, measurement of the diameter of the oocyte, parthenogenetic activation, immunocytochemistry, transmission electron microscopy, enucleation and relative protein concentration (RPC) analysis. We determined that the diameter of the oocytes in the BCB-positive (BCB+) group was significantly larger than in the BCB-negative (BCB-) group. Immediately after oocyte selection according to BCB labelling, we found significant difference in chromatin configuration between the analyzed groups. BCB+ oocytes were significantly better at maturation than BCB- oocytes. BCB+ embryos were significantly more competent at cleaving and in their ability to reach the blastocyst stage than BCB- embryos. Ultrastructural analyses showed that the formation of active nucleoli in the BCB+ group started at the 8-cell stage. Conversely, most BCB- embryos at the 8-cell and 16-cell stages were fragmented. No statistically significant difference in RPC in nucleolus precursor bodies (NPBs) between BCB+ and BCB- oocytes was found. We can conclude that BCB labelling could be suitable for assessing the quality of porcine oocytes. Moreover, the evaluation of RPC indicates that the quantitative content of proteins in NPB is already established in growing oocytes.
Collapse
|
17
|
Transcriptomic Pattern of Genes Regulating Protein Response and Status of Mitochondrial Activity Are Related to Oocyte Maturational Competence-A Transcriptomic Study. Int J Mol Sci 2019; 20:ijms20092238. [PMID: 31067669 PMCID: PMC6539048 DOI: 10.3390/ijms20092238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/22/2023] Open
Abstract
This paper aims to identify and describe new genetic markers involved in the processes of protein expression and modification reflected in the change of mitochondrial activity before and after in vitro maturation of the oocyte. Porcine oocytes collected from the ovaries of slaughtered landrace gilts were subjected to the process of in vitro maturation. Transcriptomic changes in the expression profile of oocyte genes involved in response to hypoxia, the transmembrane protein receptor serine threonine kinase signaling pathway, the “transforming growth factor β receptor signaling pathway”, “response to protein stimulus”, and “response to organic substance” were investigated using microarrays. The expression values of these genes in oocytes was analyzed before (immature) and after (mature) in vitro maturation, with significant differences found. All the significantly altered genes showed downregulation after the maturation process. The most changed genes from these gene ontologies, FOS, ID2, VEGFA, BTG2, CYR61, ESR1, AR, TACR3, CCND2, CHRDL1, were chosen to be further validated, described and related to the literature. Additionally, the mitochondrial activity of the analyzed oocytes was measured using specific dyes. We found that the mitochondrial activity was higher before the maturation process. The analysis of these results and the available literature provides a novel insight on the processes that occur during in vitro oocyte maturation. While this knowledge may prove to be useful in further research of the procedures commonly associated with in vitro fertilization procedures, it serves mostly as a basic reference for further proteomic, in vivo, and clinical studies that are necessary to translate it into practical applications.
Collapse
|
18
|
Sá NAR, Vieira LA, Ferreira ACA, Cadenas J, Bruno JB, Maside C, Sousa FGC, Cibin FWS, Alves BG, Rodrigues APR, Leal-Cardoso JH, Gastal EL, Figueiredo JR. Anethole Supplementation During Oocyte Maturation Improves In Vitro Production of Bovine Embryos. Reprod Sci 2019:1933719119831783. [PMID: 30808260 DOI: 10.1177/1933719119831783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Oxidative stress is one of the most detrimental factors that affect oocyte developmental competence and embryo development in vitro. The impact of anethole supplementation to in vitro maturation (IVM) media on oocyte maturation and further bovine in vitro embryo production was investigated. Oocytes of slaughterhouse-derived bovine ovaries were placed in IVM with anethole at different concentrations of 30 (AN30), 300 (AN300), and 2000 μg/mL (AN2000), or without (control treatment). The oocytes were assessed for maturation rates, and for reactive oxygen species (ROS) and ferric reducing antioxidant power (FRAP) levels, and mitochondrial membrane potential. Embryo development was assessed by cleavage and blastocyst rates, and embryo cell number. The percentage of metaphase II oocytes were similar among the treatments (range, 77%-96%). Anethole at 300 µg/mL was the only treatment that yielded higher cleavage and embryo development (morula and blastocyst) rates compared to the control treatment. The ROS production in the oocytes after maturation did not differ among treatments. However, oocytes treated with anethole at 300 µg/mL had higher ( P < .05) FRAP and mitochondrial membrane potential compared to the control treatment. Furthermore, AN300 treatment increased ( P < .05) the average number of total cells in blastocysts compared to the control and AN30 treatments. The use of anethole at 300 μg/mL during IVM is suggested to improve the quantity and quality of bovine embryos produced in vitro. The beneficial effects of anethole on embryonic developmental competence in vitro seems to be related to its capacity to regulate the redox balance and improve mitochondrial function in oocytes and embryos.
Collapse
Affiliation(s)
- Naiza A R Sá
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Luís A Vieira
- 2 Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Anna Clara A Ferreira
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Jesús Cadenas
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Jamily B Bruno
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Carolina Maside
- 2 Department of Physiology, Veterinary Faculty, University of Murcia, Murcia, Spain
| | - Francisca G C Sousa
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Francielli W S Cibin
- 3 Laboratory of Reproduction Biotechnology (Biotech), Campus Uruguaiana, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Benner G Alves
- 4 Laboratory of Reproductive Biology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Ana Paula R Rodrigues
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| | - José H Leal-Cardoso
- 5 Laboratory of Electrophysiology (LEF), Superior Institute of Biomedical Sciences, State University of Ceara, Fortaleza, Ceara, Brazil
| | - Eduardo L Gastal
- 6 Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, USA
| | - José R Figueiredo
- 1 Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
19
|
Liu XM, Wang YK, Liu YH, Yu XX, Wang PC, Li X, Du ZQ, Yang CX. Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation. J Biol Chem 2017; 293:1767-1780. [PMID: 29222335 DOI: 10.1074/jbc.m117.809608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/03/2017] [Indexed: 02/02/2023] Open
Abstract
The brilliant cresyl blue (BCB) test is used in both basic biological research and assisted reproduction to identify oocytes likely to be developmentally competent. However, the underlying molecular mechanism targeted by the BCB test is still unclear. To explore this question, we first confirmed that BCB-positive porcine oocytes had higher rates of meiotic maturation, better rates of cleavage and development into blastocysts, and lower death rates. Subsequent single-cell transcriptome sequencing on porcine germinal vesicle (GV)-stage oocytes identified 155 genes that were significantly differentially expressed between BCB-negative and BCB-positive oocytes. These included genes such as cdc5l, ldha, spata22, rgs2, paip1, wee1b, and hsp27, which are enriched in functionally important signaling pathways including cell cycle regulation, oocyte meiosis, spliceosome formation, and nucleotide excision repair. In BCB-positive GV oocytes that additionally had a lower frequency of DNA double-strand breaks, the CDC5L protein was significantly more abundant. cdc5l/CDC5L inhibition by short interference (si)RNA or antibody microinjection significantly impaired porcine oocyte meiotic maturation and subsequent parthenote development. Taken together, our single-oocyte sequencing data point to a potential new role for CDC5L in porcine oocyte meiosis and early embryo development, and supports further analysis of this protein in the context of the BCB test.
Collapse
Affiliation(s)
- Xiao-Man Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yan-Kui Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yun-Hua Liu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiao-Xia Yu
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Pei-Chao Wang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Li
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhi-Qiang Du
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Cai-Xia Yang
- From the Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
20
|
Sowińska N, Müller K, Niżański W, Jewgenow K. Mitochondrial characteristics in oocytes of the domestic cat (Felis catus
) after in vitro maturation and vitrification. Reprod Domest Anim 2017; 52:806-813. [DOI: 10.1111/rda.12982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/16/2017] [Indexed: 11/28/2022]
Affiliation(s)
- N Sowińska
- Department of Reproduction Biology; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
- Department of Reproduction and Clinic of Farm Animals; Wroclaw University of Environmental and Life Science; Wroclaw Poland
- Center of Experimental and Innovative Medicine; University Center of Veterinary Medicine JU-AU; University of Agriculture in Krakow; Krakow Poland
| | - K Müller
- Department of Reproduction Biology; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| | - W Niżański
- Department of Reproduction and Clinic of Farm Animals; Wroclaw University of Environmental and Life Science; Wroclaw Poland
| | - K Jewgenow
- Department of Reproduction Biology; Leibniz Institute for Zoo and Wildlife Research; Berlin Germany
| |
Collapse
|
21
|
Selection of porcine oocytes in vitro through brilliant cresyl blue staining in distinct incubation media. ZYGOTE 2016; 25:49-55. [PMID: 27955714 DOI: 10.1017/s0967199416000319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Staining with brilliant cresyl blue (BCB) may be used for oocyte selection, but BCB staining itself and the most commonly used selection medium (DMPBS) may compromise the development of porcine oocytes in vitro. This study evaluated DNA fragmentation, nuclear maturation, the area of migration of cortical granules (CG) and embryo development for stained (BCB+) and unstained (BCB-) oocytes incubated in DMPBS and in a modified medium (ReproPel) tested for the first time. Unexposed (UN), BCB+ and BCB- oocytes were incubated composing six groups: DMPBS/UN; DMPBS/BCB+; DMPBS/BCB-; ReproPel/UN; ReproPel/BCB+; and ReproPel/BCB-. There were more BCB+ oocytes in ReproPel than in DMPBS (P < 0.05). The DNA fragmentation was evaluated for oocytes in DMPBS/BCB+, DMPBS/BCB-, ReproPel/BCB+, ReproPel/BCB- and in porcine follicular fluid (control). The frequency of oocytes with no DNA fragmentation was greatest (64.6%) in DMPBS/BCB+ and lowest in ReproPel/BCB+ and ReproPel/BCB- (26.8 and 34.1%, respectively) (P < 0.05). Nuclear maturation rates were greater (P < 0.05) for DMPBS/BCB+ (63.1%), ReproPel/UN (55.1%) and ReproPel/BCB+ (50.2%) than for DMPBS/UN (40.8%) and ReproPel/BCB- (35.5%). The area of CG was greater (P < 0.05) for ReproPel/BCB- (80.7%) and DMPBS/UN (77.6%) than for ReproPel/UN (34.7%). Cleavage rates for DMPBS/BCB+ and ReproPel/BCB+ were greater than for DMPBS/UN (P < 0.05). Blastocyst development rates were greatest (P < 0.05) for ReproPel/UN and ReproPel/BCB+. In both media, BCB staining was apparently unable to select competent oocytes, which likely occurred due to toxicity. Despite the similar nuclear maturation and area of CG compared with DMPBS, oocytes selected in ReproPel presented impaired DNA integrity.
Collapse
|
22
|
Wang L, Jiang X, Wu Y, Lin J, Zhang L, Yang N, Huang J. Effect of milrinone on the developmental competence of growing lamb oocytes identified with brilliant cresyl blue. Theriogenology 2016; 86:2020-7. [DOI: 10.1016/j.theriogenology.2016.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 11/25/2022]
|
23
|
Yang M, Hall J, Fan Z, Regouski M, Meng Q, Rutigliano HM, Stott R, Rood KA, Panter KE, Polejaeva IA. Oocytes from small and large follicles exhibit similar development competence following goat cloning despite their differences in meiotic and cytoplasmic maturation. Theriogenology 2016; 86:2302-2311. [PMID: 27650944 DOI: 10.1016/j.theriogenology.2016.07.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
Abstract
Reduced developmental competence after IVF has been reported using oocyte derived from small follicles in several species including cattle, sheep, and goats. No information is currently available about the effect of follicle size of the cytoplast donor on in vivo development after somatic cell nuclear transfer (SCNT) in goats. Oocytes collected from large (≥3 mm) and small follicles (<3 mm) were examined for maturation and in vivo developmental competence after SCNT. Significantly greater maturation rate was observed in oocytes derived from large follicles compared with that of small follicles (51.6% and 33.7%, P < 0.05). Greater percent of large follicle oocytes exhibited a low glucose-6-phosphate dehydrogenase activity at germinal vesicle stage compared with small follicle oocytes (54.9% and 38.7%, P < 0.05). Relative mRNA expression analysis of 48 genes associated with embryonic and fetal development revealed that three genes (MATER, IGF2R, and GRB10) had higher level of expression in metaphase II oocytes from large follicles compared with oocytes from small follicles. Nevertheless, no difference was observed in pregnancy rates (33.3% vs. 47.1%) and birth rates (22.2% vs. 16.7%) after SCNT between the large and small follicle groups). These results indicate that metaphase II cytoplasts from small and large follicles have similar developmental competence when used in goat SCNT.
Collapse
Affiliation(s)
- Min Yang
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Justin Hall
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Zhiqiang Fan
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Misha Regouski
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Qinggang Meng
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Rusty Stott
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Kerry A Rood
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA; School of Veterinary Medicine, Utah State University, Logan, Utah, USA
| | - Kip E Panter
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA.
| |
Collapse
|
24
|
Huang W, Kang SS, Nagai K, Yanagawa Y, Takahashi Y, Nagano M. Mitochondrial activity during pre-maturational culture in in vitro-grown bovine oocytes is related to maturational and developmental competences. Reprod Fertil Dev 2016; 28:349-56. [DOI: 10.1071/rd14023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 06/05/2014] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to investigate the dynamics of mitochondrial activity in in vitro-grown (IVG) bovine oocytes during pre-maturational culture (pre-IVM) and its relationship to their developmental competence upon being subjected to different pre-IVM durations. After 12-day IVG culture, oocytes were cultured for 0, 10 or 20 h with 3-isobutyl-1-methylxanthine (IBMX) as pre-IVM. Mitochondrial activity in IVG oocytes after 10 h pre-IVM was the highest among all the pre-IVM durations (P < 0.05). In addition, cleavage (79.4%) and blastocyst rates (38.9%) of embryos derived from IVG oocytes with 10 h pre-IVM were higher than those with 20 h pre-IVM (63.0 and 25.8%, respectively; P < 0.05) and similar to those of in vivo-grown oocytes (82.7 and 36.7%, respectively). To confirm the developmental ability of IVG oocytes with 10 h pre-IVM beyond the blastocyst stage in vivo, embryo transfer was attempted. Transferred embryos developed to the elongated embryonic stage (63.6%, 7/11) in the recipient uterus at Day 16 of oestrus, and a male calf was delivered (50%, 1/2). In conclusion, it was indicated that the mitochondrial activity of bovine IVG oocytes peaked at 10 h pre-IVM and was closely correlated with the nuclear maturation and developmental competences of IVG oocytes.
Collapse
|
25
|
Abstract
The selection of human immature oocytes destined for in vitro maturation (IVM) is performed according to their cumulus-oocyte complex (COC) morphology. In animal models, oocyte pre-selection with brilliant cresyl blue (BCB) staining improves fertilization and blastocyst rates and even increases the number of calves born. As the granulosa cells and cumulus cells (GCs and CCs) have a close relationship with the oocyte and are available in in vitro fertilization (IVF) programs, applying BCB staining to these cells may help to elucidate whether BCB shows toxicity to human oocytes and to determine the safest protocol for this dye. GCs and CCs were isolated from 24 patients who underwent controlled ovarian stimulation. After 48 h, cells were exposed to: Dulbecco's Modified Eagle Medium (DMEM) with or without phenol red, DPBS and mDPBS for 60 min; 13, 20 and 26 μM BCB for 60 min; and 60, 90 or 120 min to 13 μM BCB. Cellular viability was tested using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) and trypan blue assays. The 20 and 26 μM BCB exposures resulted in lower cell viability, similar to when cells were exposed to BCB for 90 or 120 min. GCs and CCs viabilities were equal among control group and 13 μM BCB group after 60 min. BCB staining was not toxic to GCs and CCs when the regime of 13 μM BCB for 60 min was used. Due to the close molecular/biochemical relationship between these cells and the gamete, we propose that it is unlikely that the use of BCB could interfere with the viability/health of human oocytes.
Collapse
|
26
|
Abstract
The inhibition of nuclear maturation allows time for the oocyte to accumulate molecules that are important for embryonic development. Thus, the objective of this work was to evaluate the effect of blocking oocyte meiosis with the addition of forskolin, an efficient inhibitor of nuclear maturation, in in vitro maturation (IVM) medium. Forskolin was added to the IVM medium for 6 h at concentrations of 0.1 mM, 0.05 mM or 0.025 mM, then the oocytes were allowed to mature in drug-free medium for 18 h. The oocytes were assessed for the stage of nuclear maturation, the activity and distribution of mitochondria, oocyte ultrastructure, the number of viable cells and the apoptosis rate. After forskolin treatment, the oocytes were fertilized in vitro and cultured for 7 days. On day 7, the blastocyst rate, the ultrastructure, the number of intact cells and the apoptosis rate of the blastocysts were measured. No differences were observed for the stage of nuclear maturation of the oocyte, the mitochondrial activity and distribution, the blastocyst rate or total number of intact cells. However, a higher rate of apoptosis was observed in the blastocysts produced from oocytes blocked for 6 h with the higher concentration of forskolin (P < 0.05). We conclude that all the experimental groups reached the MII stage after the addition of forskolin and that the highest concentration of forskolin caused cellular degeneration without harming embryo production on the 7th day.
Collapse
|
27
|
Mohammadi-Sangcheshmeh A, Held E, Rings F, Ghanem N, Salilew-Wondim D, Tesfaye D, Sieme H, Schellander K, Hoelker M. Developmental competence of equine oocytes: impacts of zona pellucida birefringence and maternally derived transcript expression. Reprod Fertil Dev 2015; 26:441-52. [PMID: 23622680 DOI: 10.1071/rd12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/22/2013] [Indexed: 12/14/2022] Open
Abstract
In the present study, equine oocytes were classified into groups of presumably high and low developmental competence according to cumulus morphology, as well as oocyte ability to metabolise brilliant cresyl blue (BCB) stain. All oocytes were evaluated individually in terms of morphometry, zona pellucida birefringence (ZPB) and relative abundance of selected candidate genes. Oocytes with an expanded cumulus (Ex), representing those with presumably high developmental competence, had a significantly thicker zona (18.2 vs 17.3µm) and a significantly higher ZPB (64.6 vs 62.1) than oocytes with a compacted cumulus (Cp). Concurrently, oocytes classified as highly developmentally competent (BCB+) had a significantly thicker zona (18.8 vs 16.1µm) and significantly higher ZPB (63.1 vs 61.3) compared with oocytes classified as having low developmental competence. Expression of TFAM, STAT3 and CKS2 was significantly higher in Ex compared with Cp oocytes, whereas expression of COX1, ATPV6E and DNMT1 was lower. Together, the data reveal that developmentally competent equine oocytes are larger in size, have higher ZPB values and exhibit a typical genetic signature of maternally derived transcripts compared with oocytes with lower in vitro developmental competence.
Collapse
Affiliation(s)
- Abdollah Mohammadi-Sangcheshmeh
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Eva Held
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Franca Rings
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Nasser Ghanem
- Animal Production Department, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Harald Sieme
- Clinic for Horses, Unit of Reproductive Medicine of Clinics, University of Veterinary Medicine Hannover Foundation, 30559 Hannover, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany
| |
Collapse
|
28
|
Microfluidic method of pig oocyte quality assessment in relation to different follicular size based on lab-on-chip technology. BIOMED RESEARCH INTERNATIONAL 2014; 2014:467063. [PMID: 25548771 PMCID: PMC4274715 DOI: 10.1155/2014/467063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/12/2014] [Indexed: 11/17/2022]
Abstract
Since microfollicular environment and the size of the follicle are important markers influencing oocyte quality, the aim of this study is to present the spectral characterization of oocytes isolated from follicles of various sizes using lab-on-chip (LOC) technology and to demonstrate how follicle size may affect oocyte quality. Porcine oocytes (each, n = 100) recovered from follicles of different sizes, for example, from large (>5 mm), medium (3–5 mm), and small (<3 mm), were analyzed after preceding in vitro maturation (IVM). The LOC analysis was performed using a silicon-glass sandwich with two glass optical fibers positioned “face-to-face.” Oocytes collected from follicles of different size classes revealed specific and distinguishable spectral characteristics. The absorbance spectra (microspectrometric specificity) for oocytes isolated from large, medium, and small follicles differ significantly (P < 0.05) and the absorbance wavelengths were between 626 and 628 nm, between 618 and 620 nm, and less than 618 nm, respectively. The present study offers a parametric and objective method of porcine oocyte assessment. However, up to now this study has been used to evidence spectral markers associated with follicular size in pigs, only. Further investigations with functional-biological assays and comparing LOC analyses with fertilization and pregnancy success and the outcome of healthy offspring must be performed.
Collapse
|
29
|
Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci 2014; 72:251-71. [PMID: 25280482 DOI: 10.1007/s00018-014-1739-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 02/01/2023]
Abstract
Obesity, diabetes, and related metabolic disorders are major health issues worldwide. As the epidemic of metabolic disorders continues, the associated medical co-morbidities, including the detrimental impact on reproduction, increase as well. Emerging evidence suggests that the effects of maternal nutrition on reproductive outcomes are likely to be mediated, at least in part, by oocyte metabolism. Well-balanced and timed energy metabolism is critical for optimal development of oocytes. To date, much of our understanding of oocyte metabolism comes from the effects of extrinsic nutrients on oocyte maturation. In contrast, intrinsic regulation of oocyte development by metabolic enzymes, intracellular mediators, and transport systems is less characterized. Specifically, decreased acid transport proteins levels, increased glucose/lipid content and elevated reactive oxygen species in oocytes have been implicated in meiotic defects, organelle dysfunction and epigenetic alteration. Therefore, metabolic disturbances in oocytes may contribute to the diminished reproductive potential experienced by women with metabolic disorders. In-depth research is needed to further explore the underlying mechanisms. This review also discusses several approaches for metabolic analysis. Metabolomic profiling of oocytes, the surrounding granulosa cells, and follicular fluid will uncover the metabolic networks regulating oocyte development, potentially leading to the identification of oocyte quality markers and prevention of reproductive disease and poor outcomes in offspring.
Collapse
Affiliation(s)
- Ling Gu
- College of Animal Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, Jiangsu, China,
| | | | | | | | | | | |
Collapse
|
30
|
Mohammadi-Sangcheshmeh A, Veshkini A, Hajarizadeh A, Jamshidi-Adegani F, Zhandi M, Abazari-Kia AH, Cinar MU, Soleimani M, Gastal EL. Association of glucose-6-phosphate dehydrogenase activity with oocyte cytoplasmic lipid content, developmental competence, and expression of candidate genes in a sheep model. J Assist Reprod Genet 2014; 31:1089-98. [PMID: 24913026 DOI: 10.1007/s10815-014-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 05/27/2014] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To evaluate associations of glucose-6-phosphate dehydrogenase (G6PDH) activity in sheep oocytes with cytoplasmic lipid content, maturational competence, developmental competence to the blastocyst stage, and gene expression of certain molecular markers. METHODS Before brilliant cresyl blue (BCB) staining test, oocytes were classified as high, middle, and low cytoplasmic lipid content (HCLC, MCLC, and LCLC) and after the test as having low or high G6PDH-activity (BCB(+) and BCB(-), respectively). After maturation in vitro, a group of oocytes were subjected to IVF followed by in vitro embryo culture and another group was used for evaluation of expression of candidate genes. RESULTS The cleavage and blastosyst rates were lowest (P < 0.05) in LCLC group, intermediate (P < 0.05) in MCLC group and highest (P < 0.05) in HCLC group. More (P < 0.05) oocytes in HCLC group were BCB(+), and higher (P < 0.05) maturation, cleavage, and blastocyst rates were seen for BCB(+) oocytes than the BCB(-) oocytes. Our gene expression data indicated that mRNA transcript abundance of ITGB2, pZP3, BMP15, and GDF9 genes was similar between BCB oocytes groups. However, the expression of ATP1A1 was higher (P < 0.05) for BCB(+) oocytes compared to BCB(-) oocytes. In addition, BAX transcript abundance was similar (P > 0.05) among BCB(+), BCB(-), and control groups, before and after maturation in vitro. CONCLUSION Activity of G6PDH in sheep oocytes is highly associated with lipid content, and compared with the morphological parameters might be a more precise and objective predictor for subsequent developmental competence in vitro.
Collapse
|
31
|
Jeseta M, Ctvrtlikova Knitlova D, Hanzalova K, Hulinska P, Hanulakova S, Milakovic I, Nemcova L, Kanka J, Machatkova M. Mitochondrial patterns in bovine oocytes with different meiotic competence related to their in vitro maturation. Reprod Domest Anim 2014; 49:469-75. [PMID: 24716726 DOI: 10.1111/rda.12313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/08/2014] [Indexed: 11/28/2022]
Abstract
This study was designed to specify chromatin and mitochondrial patterns in bovine oocytes with different meiotic competence in relation to maturation progress, resumption of meiosis, MII onset and completion of maturation. Oocytes with greater or lesser meiotic competence, recovered separately from medium (MF) and small follicles (SF), were categorized according to morphology. Four oocyte categories, healthy and light-atretic MF and healthy and light-atretic SF oocytes were matured and collected at 0, 3, 7, 16 and 24 h of maturation. Specific differences in terms of chromatin and mitochondrial patterns were found among the maturing oocyte categories. Resumption of meiosis was accelerated in light-atretic oocytes, as compared with healthy oocytes, regardless of their meiotic competence. More competent oocytes activated mitochondria twice during maturation, before resumption of meiosis and before completion of maturation, while less competent oocytes did it only once, before completion of maturation. Changes in mitochondrial activity differed in light-atretic compared with healthy in both more and less competent oocytes. Healthy meiotically more competent oocytes formed clusters and produced ATP for the whole time of maturation until its completion, while light-atretic more competent oocytes and healthy less competent oocytes reduced these activities earlier, at MII onset. Contrary to these oocyte categories, light-atretic less competent oocytes increased cluster formation significantly before resumption of meiosis. It can be concluded that bovine oocytes with different meiotic competence and health differed in the kinetics of mitochondrial patterns during maturation.
Collapse
Affiliation(s)
- M Jeseta
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Intracellular glutathione content, developmental competence and expression of apoptosis-related genes associated with G6PDH-activity in goat oocyte. J Assist Reprod Genet 2013; 31:313-21. [PMID: 24356867 DOI: 10.1007/s10815-013-0159-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/10/2013] [Indexed: 10/25/2022] Open
Abstract
PURPOSE To associate glucose-6-phosphate dehydrogenase (G6PDH) activity in goat oocytes with intracellular glutathione (GSH) content, meiotic competence, developmental potential, and relative abundance of Bax and Bcl-2 genes transcripts. METHODS Goat oocytes were exposed to brilliant cresyl blue (BCB) staining test and categorized into BCB(+) (blue-cytoplasm), and BCB(-) (colorless-cytoplasm) groups. A group of oocytes were not exposed to BCB test and was considered as a control group. After maturation in vitro, a group of oocytes were used for determination of nuclear status and intracellular GSH content while another group was subjected to parthenogenetic activation followed by in vitro embryo culture. RESULTS We found that BCB(+) oocytes not only yielded higher rate of maturation, but also showed an increased level of intracellular GSH content than BCB(-) and control oocytes. Furthermore, BCB(+) oocytes produced more blastocysts than BCB(-) and control oocytes. Our data revealed that the expression of anti-apoptotic (Bcl-2) and pro-apoptotic (Bax) genes were interacted with G6PDH-activity in mature oocyte, their surrounding cumulus cells, and blastocyst-stage embryos. CONCLUSIONS The results of this study demonstrate that selection of goat oocytes based on G6PDH-activity through the BCB test improves their developmental competence, increases intracellular GSH content, and affects the expression of the apoptosis-related genes.
Collapse
|
33
|
Pawlak P, Warzych E, Chabowska A, Lechniak D. Differences in cytoplasmic maturation between the BCB+ and control porcine oocytes do not justify application of the BCB test for a standard IVM protocol. J Reprod Dev 2013; 60:28-36. [PMID: 24284835 PMCID: PMC3963294 DOI: 10.1262/jrd.2013-092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Brilliant Cresyl Blue (BCB) test relies on G6PDH activity and a simple protocol for
the selection of higher quality oocytes. Although the BCB+ oocytes of all the species that
have been investigated are characterized by superior quality when compared to BCB-
counterparts, application of the test for embryo production still remains an open issue.
The aim of our study was to compare BCB+ and the control oocytes (not subjected to the BCB
test) in terms of selected aspects of cytoplasmic maturation (mtDNA copy number,
mitochondria distribution, relative transcript abundance of six marker genes). The results
of our study revealed more relevant differences within the BCB+ and the control oocytes
(before and after IVM) than between the two categories of oocytes. There was no difference
in the transcript abundance of the BCB+ and the control oocytes in 5 out of 6 analyzed
genes (BMP15, GDF9, ATP5A1,
EEF1A, ZAR1) and in mtDNA content (pre-IVM 179609
vs. 176595 and post-IVM 187243 vs. 246984,
respectively). With regard to mitochondria distribution in pre- and post-IVM oocytes,
there was nonsignificant tendency for a more frequent occurrence of the expected patterns
in the BCB+ group. The results of the present study do not support the application of BCB
staining in a routine IVM protocol due to relatively high similarity in selected
parameters characterizing cytoplasmic maturation of BCB+ and control oocytes. This high
similarity may results from the limited amount of less competent BCB- oocytes (10%) still
present among nonselected oocytes of proper morphology.
Collapse
Affiliation(s)
- Piotr Pawlak
- Department of Genetics And Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | | | | | | |
Collapse
|
34
|
González R, Sjunnesson YCB. Effect of blood plasma collected after adrenocorticotropic hormone administration during the preovulatory period in the sow on oocyte in vitro maturation. Theriogenology 2013; 80:673-83. [PMID: 23886600 DOI: 10.1016/j.theriogenology.2013.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 06/23/2013] [Accepted: 06/23/2013] [Indexed: 11/29/2022]
Abstract
Reproduction may be affected by stressful events changing the female endocrine or metabolic profile. An altered environment during oocyte development could influence the delicate process of oocyte maturation. Here, the effect of simulated stress by media supplementation with blood plasma from sows after adrenocorticotropic hormone (ACTH) administration during the preovulatory period was assessed. Oocytes were matured for 46 hours in the presence of plasma from ACTH-treated sows, or plasma from NaCl-treated control sows, or medium without plasma (BSA group). The plasma used had been collected at 36 and 12 hours (±2 hours) before ovulation (for the first 24 hours + last 22 hours of maturation, respectively). Subsequent fertilization and embryo development were evaluated. Actin cytoskeleton and mitochondrial patterns were studied by confocal microscopy both in the oocytes and the resulting blastocysts. Nuclear maturation did not differ between treatments. Subtle differences were observed in the actin microfilaments in oocytes; however, mitochondrial patterns were associated with the treatment (P < 0.001). These differences in mitochondrial patterns were not reflected by in vitro outcomes, which were similar in all groups. In conclusion, an altered hormonal environment provided by a brief exposure to plasma from ACTH-treated sows during in vitro oocyte maturation could induce alterations in actin cytoskeleton and mitochondrial patterns in oocytes. However, these changes might not hamper the subsequent in vitro embryo development.
Collapse
Affiliation(s)
- R González
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.
| | | |
Collapse
|
35
|
Opiela J, Kątska-Książkiewicz L. The utility of Brilliant Cresyl Blue (BCB) staining of mammalian oocytes used for in vitro embryo production (IVP). Reprod Biol 2013; 13:177-83. [PMID: 24011188 DOI: 10.1016/j.repbio.2013.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 11/28/2012] [Indexed: 11/24/2022]
Abstract
The present article summarizes the results of experiments investigating the Brilliant Cresyl Blue (BCB) staining for selection of immature oocytes before in vitro embryo production or somatic cell nuclear transfer. Developmental competence of oocytes stained with BCB and quality of blastocysts derived from such oocytes as well as the expression of apoptosis-related genes, mitochondrial DNA (mtDNA) replication-related genes and the transcripts encoded by the mitochondrial genome in BCB stained oocytes are discussed.
Collapse
Affiliation(s)
- Jolanta Opiela
- National Research Institute of Animal Production, Department of Biotechnology of Animal Reproduction, Balice/Kraków, Poland.
| | | |
Collapse
|
36
|
Pawlak P, Cieslak A, Warzych E, Zejden Z, Szumacher-Strabel M, Molinska-Glura M, Lechniak D. No single way to explain cytoplasmic maturation of oocytes from prepubertal and cyclic gilts. Theriogenology 2012; 78:2020-30. [DOI: 10.1016/j.theriogenology.2012.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 01/23/2023]
|
37
|
Machatkova M, Jeseta M, Hulinska P, Knitlova D, Nemcova L, Kanka J. Characteristics of bovine oocytes with different meiotic competence in terms of their mitochondrial status and expression of nuclear-encoded factors. Reprod Domest Anim 2011; 47:806-14. [PMID: 22171698 DOI: 10.1111/j.1439-0531.2011.01972.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study was designed to characterize bovine oocytes with different meiotic competence and atresia levels in terms of their mitochondrial status. Oocyte subpopulations were recovered either from medium (MF) or small (SF) follicles and categorized as healthy, light-atretic and mid-atretic according to oocyte morphology. Mitochondrial activity, morphology and distribution, adenosine triphosphate (ATP) content and expression of mitochondrial transcription factor A (TFAM) and nuclear respiratory factor 1 (NRF1) were assessed before (GV) and after (MII) maturation. The data were related to follicular size regardless of or with regard to oocyte atresia. Regardless of atresia, the MF subpopulation showed a significantly higher mitochondrial activity and frequency of oocytes with granulated mitochondria at GV and clustered mitochondria at MII than the SF subpopulation. With regard to atresia, mitochondrial activity decreased from healthy to mid-atretic oocytes in both MF and SF subpopulations at GV, but in the SF subpopulation at MII, the mitochondrial activity and frequency of oocytes with clustered mitochondria were significantly higher in light-atretic than in healthy oocytes. The light-atretic oocytes also produced more ATP than healthy ones in both SF and MF subpopulations. However, a significantly higher relative abundance of mRNA TFAM was found in SF than MF subpopulations at GV, and this difference remained in mid-atretic oocytes at MII. It can be concluded that meiotic competence and atresia level influence mitochondrial status of immature bovine oocytes. After maturation, healthy oocytes from medium follicles and light-atretic oocytes from small follicles were more developed in terms of mitochondrial status than the other oocytes.
Collapse
Affiliation(s)
- M Machatkova
- Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|
38
|
Mohammadi-Sangcheshmeh A, Soleimani M, Deldar H, Salehi M, Soudi S, Hashemi SM, Schellander K, Hoelker M. Prediction of oocyte developmental competence in ovine using glucose-6-phosphate dehydrogenase (G6PDH) activity determined at retrieval time. J Assist Reprod Genet 2011; 29:153-8. [PMID: 21870182 DOI: 10.1007/s10815-011-9625-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To determine whether G6PDH-activity measured by Brilliant Cresyl Blue known as BCB dye, predicts developmental competence within cohorts of ovine oocytes. METHODS Ovine oocytes were exposed to BCB staining and categorized into two groups: BCB+ (blue cytoplasm, low G6PDH-activity) and BCB- (colorless cytoplasm, high G6PDH-activity). After maturation in vitro, oocytes were subjected to fertilization followed by in vitro embryo culture. RESULTS We observed a significant difference in oocyte diameter considering BCB+ and BCB- oocytes. BCB+ and Control groups showed significantly higher maturation rates compared to BCB- group. There were significantly more cleaved embryos in BCB+ and control groups than in BCB- group. Blastocyst rate was significantly higher for BCB+ group compared to control and BCB- groups with control group being significantly higher than BCB- group. CONCLUSION G6PDH-activity is a strong predictive marker of oocyte competence and may be useful in identifying oocytes with a good prognosis for further develop.
Collapse
|
39
|
Mohammadi-Sangcheshmeh A, Held E, Ghanem N, Rings F, Salilew-Wondim D, Tesfaye D, Sieme H, Schellander K, Hoelker M. G6PDH-activity in equine oocytes correlates with morphology, expression of candidate genes for viability, and preimplantative in vitro development. Theriogenology 2011; 76:1215-26. [PMID: 21820165 DOI: 10.1016/j.theriogenology.2011.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 11/28/2022]
Abstract
Efficiencies for in vitro production of equine embryos are still low due to highly variable developmental competences of equine immature oocytes. In contrast to the equine, in vitro developmental competence of immature oocytes has been predicted successfully by the activity of glucose-6-phosphate dehydrogenase (G6PDH) indicated by brilliant cresyl blue (BCB) dye in a range of different species. Therefore, the aim of the present study was to test the association between G6PDH activity in equine oocytes with: (1) cumulus morphology and oocyte properties in terms of diameter and volume; (2) maturational competence; (3) gene expression of certain molecular markers; and (4) in vitro embryo development after intracytoplasmic sperm injection. Equine oocytes were exposed to BCB stain and were classified as BCB+ or BCB- according to their ability to convert the dye from blue to colorless. Additionally, BCB+ and BCB- oocytes were subclassified as having a compact (Cp) or expanded (Ex) cumulus complex. As a result, BCB+ oocytes had a greater proportion of expanded cumulus oocyte complexes compared with BCB- oocytes (71.2% vs. 49.5%). Moreover, we observed a significant difference in oocyte diameter and volume between BCB+ and BCB- oocytes irrespective of cumulus morphology. BCB+ oocytes reached a higher maturation rate compared with BCB- oocytes (59.0% vs. 28.7%). Regarding the analyzed candidate genes, relative transcript abundance was significantly different for nine genes. The expression of eight genes was significantly higher (P < 0.05) for BCB+ oocytes, including ATPV6E, IF-3, TFAM, DNMT1, STAT3, Aurora-A, ODC1, and CKS2 whereas BCB- oocytes showed higher in expression of COX1. These results are in line with the observed developmental competence. Cleavage rate (45.9% vs. 29.0%) and percentage of embryos that reached the blastocyst stage (9.2% vs. 1.4%) were significantly higher for embryos derived from BCB+ oocytes compared with BCB- oocytes. In conclusion, the present study provides evidence that G6PDH-activity in immature equine oocytes is a useful predictor for subsequent in vitro developmental competence.
Collapse
Affiliation(s)
- A Mohammadi-Sangcheshmeh
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Catalá MG, Izquierdo D, Uzbekova S, Morató R, Roura M, Romaguera R, Papillier P, Paramio MT. Brilliant Cresyl Blue stain selects largest oocytes with highest mitochondrial activity, maturation-promoting factor activity and embryo developmental competence in prepubertal sheep. Reproduction 2011; 142:517-27. [PMID: 21757473 DOI: 10.1530/rep-10-0528] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to test the Brilliant Cresyl Blue (BCB) stain to select prepubertal sheep oocytes for in vitro blastocyst production. Oocyte diameter, mitochondrial activity, maturation-promoting factor (MPF) activity and mRNA relative expression (RE) of genes related to metabolism (ATPase Na(+)/K(+) transporting α 1 (ATP1A1) and cytochrome c oxidase subunit 1 (COX1)) and constitutive function of the cell (cytoplasmic polyadenylation-element-binding protein (CPEB) and S100A10) were assessed. Immature oocytes were exposed to different BCB concentrations (13, 26, 39 and 52 μM) and classified according to their cytoplasm colouration as grown BCB+ (blue cytoplasm) and growing BCB- (colourless cytoplasm). Staining oocytes with 13 μM BCB during 60 min allows selection of (BCB+) the largest (123.66 μm) and most competent oocytes to develop to the blastocyst stage (21%) with a higher number of cells (69.71 ± 6.19 s.e.m.) compared with non-stained BCB- oocytes (106.82 μm, 9% and 45.91 ± 3.35 s.e.m. respectively). Mitochondrial activity, assessed by MitoTracker Orange CMTMRos probe, was significantly higher in BCB+ than in BCB- oocytes after in vitro maturation (3369 and 1565 AU respectively). MPF activity was assessed by CDC2 kinase activity assay showing significantly higher activity at metaphase II stage in BCB+ than in BCB- oocytes (1.479 ± 0.09 and 1.184 ± 0.05 optical density respectively). The genes analysed in this work, ATP1A1, COX1, CPEB and S100A 10, did not show significant effect in mRNA RE between BCB selected oocytes. In conclusion, BCB stains larger and more competent oocytes to develop to the blastocyst stage with more active mitochondria and MPF activity and higher blastocyst cell number.
Collapse
Affiliation(s)
- Maria Gracia Catalá
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Mitochondrial aggregation patterns and activity in in vitro cultured bovine oocytes recovered from early antral ovarian follicles. Theriogenology 2010; 75:662-70. [PMID: 21111463 DOI: 10.1016/j.theriogenology.2010.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/19/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
The low developmental competence seen in in vitro cultured oocytes collected from early antral follicles may be related to their mitochondrial status. The aim of this study was to examine the chromatin configuration, pattern of mitochondrial aggregation and mitochondrial activity of non-cultured and in vitro-cultured bovine oocytes originating from early antral ovarian follicles. Cumulus-oocyte complexes with adjacent granulosa cells (COCGs) were recovered from early antral follicles of 0.4 to 0.8 mm diameter. Control (Day 0) oocytes were recovered from freshly collected COCGs and fixed and stained. Selected COCGs were placed in growth culture for 7 days (Day 7) or 14 days (Day 14). Following growth culture, COCs with normal appearance were placed in maturation medium (IVM) for 24 h and then fixed and stained with MitoTracker CMTM Ros Orange and Hoechst 33258. The percentage of oocytes with an immature meiotic configuration after growth culture decreased with the time of growth culture, being 96.7; 72.5 and 35.4% respectively for Day 0, Day 7 and Day 14 of culture; the remaining oocytes were degenerating or resuming meiosis. After subsequent IVM the highest proportion of oocytes in diakinesis or metaphase I was found in the D7+IVM group (59.4%). When growth culture was prolonged to day 14 and IVM, the number of degenerated oocytes increased dramatically after IVM. The mitochondrial distribution in the oocytes changed from homogeneous to heterogeneous as growth culture time increased. The respiratory activity as measured by fluorescence intensity increased over the time of growth culture, and was highest in oocytes that had resumed GVBD. In conclusion, for oocytes in isolated COCGs from early antral follicles, culture conditions longer than 7 days should be more adapted for a slow nuclear maturation accompanied by a decreased energy metabolism to prevent chromatin pycnosis.
Collapse
|