1
|
Wysoczański B, Świątek M, Wójcik-Gładysz A. Organ-on-a-Chip Models-New Possibilities in Experimental Science and Disease Modeling. Biomolecules 2024; 14:1569. [PMID: 39766276 PMCID: PMC11674024 DOI: 10.3390/biom14121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
'Organ-on-a-chip' technology is a promising and rapidly evolving model in biological research. This innovative microfluidic cell culture device was created using a microchip with continuously perfused chambers, populated by living cells arranged to replicate physiological processes at the tissue and organ levels. By consolidating multicellular structures, tissue-tissue interfaces, and physicochemical microenvironments, these microchips can replicate key organ functions. They also enable the high-resolution, real-time imaging and analysis of the biochemical, genetic, and metabolic activities of living cells in the functional tissue and organ contexts. This technology can accelerate research into tissue development, organ physiology and disease etiology, therapeutic approaches, and drug testing. It enables the replication of entire organ functions (e.g., liver-on-a-chip, hypothalamus-pituitary-on-a-chip) or the creation of disease models (e.g., amyotrophic lateral sclerosis-on-a-chip, Parkinson's disease-on-a-chip) using specialized microchips and combining them into an integrated functional system. This technology allows for a significant reduction in the number of animals used in experiments, high reproducibility of results, and the possibility of simultaneous use of multiple cell types in a single model. However, its application requires specialized equipment, advanced expertise, and currently incurs high costs. Additionally, achieving the level of standardization needed for commercialization remains a challenge at this stage of development.
Collapse
Affiliation(s)
- Bartłomiej Wysoczański
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marcin Świątek
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jablonna, Poland
| |
Collapse
|
2
|
Przybył BJ, Szlis M, Wysoczański B, Wójcik-Gładysz A. The role of QRFP43 in the secretory activity of the gonadotrophic axis in female sheep. Sci Rep 2024; 14:8989. [PMID: 38637687 PMCID: PMC11026372 DOI: 10.1038/s41598-024-59801-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024] Open
Abstract
In mammals reproduction is regulated by many factors, among others by the peptides belonging to the RFamide peptide family. However, the knowledge concerning on the impact of recently identified member of this family (QRFP43) on the modulation of the gonadotrophic axis activity is still not fully understood and current research results are ambiguous. In the present study we tested the in vivo effect of QRFP43 on the secretory activity of the gonadotrophic axis at the hypothalamic-pituitary level in Polish Merino sheep. The animals (n = 48) were randomly divided into three experimental groups: controls receiving an icv infusion of Ringer-Locke solution, group receiving icv infusion of QRFP43 at 10 μg per day and 50 μg per day. All sheep received four 50 min icv infusions at 30 min intervals, on each of three consecutive days. Hypothalamic and pituitaries were collected and secured for further immunohistochemical and molecular biological analysis. In addition, during the experiment a blood samples have been collected for subsequent RIA determinations. QRFP43 was found to downregulate Kiss mRNA expression in the MBH and reduce the level of IR material in ME. This resulted in a reduction of GnRH IR material in the ME. QRFP43 increased plasma FSH levels while decreasing LH levels. Our findings indicate that QRFP43 inhibits the activity of the gonadotropic axis in the ovine at the level of the hypothalamus and may represent another neuromodulator of reproductive processes in animals.
Collapse
Affiliation(s)
- Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartłomiej Wysoczański
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
3
|
Liu X, Chen X, Wang C, Song J, Xu J, Gao Z, Huang Y, Suo H. Mechanisms of probiotic modulation of ovarian sex hormone production and metabolism: a review. Food Funct 2024; 15:2860-2878. [PMID: 38433710 DOI: 10.1039/d3fo04345b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Sex hormones play a pivotal role in the growth and development of the skeletal, neurological, and reproductive systems. In women, the dysregulation of sex hormones can result in various health complications such as acne, hirsutism, and irregular menstruation. One of the most prevalent diseases associated with excess androgens is polycystic ovary syndrome with a hyperandrogenic phenotype. Probiotics have shown the potential to enhance the secretion of ovarian sex hormones. However, the underlying mechanism of action remains unclear. Furthermore, comprehensive reviews detailing how probiotics modulate ovarian sex hormones are scarce. This review seeks to shed light on the potential mechanisms through which probiotics influence the production of ovarian sex hormones. The role of probiotics across various biological axes, including the gut-ovarian, gut-brain-ovarian, gut-liver-ovarian, gut-pancreas-ovarian, and gut-fat-ovarian axes, with a focus on the direct impact of probiotics on the ovaries via the gut and their effects on brain gonadotropins is discussed. It is also proposed herein that probiotics can significantly influence the onset, progression, and complications of ovarian sex hormone abnormalities. In addition, this review provides a theoretical basis for the therapeutic application of probiotics in managing sex hormone-related health conditions.
Collapse
Affiliation(s)
- Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, P. R. China.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P. R. China.
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P. R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, P. R. China
| |
Collapse
|
4
|
Przybył B, Wójcik-Gładysz A, Gajewska A, Szlis M. Brain-derived neurotrophic factor (BDNF) affects somatotrophic
axis activity in sheep. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/143353/2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
6
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
7
|
Młotkowska P, Marciniak E, Roszkowicz-Ostrowska K, Misztal T. Effects of allopregnanolone on central reproductive functions in sheep under natural and stressful conditions. Theriogenology 2020; 158:138-147. [PMID: 32956862 DOI: 10.1016/j.theriogenology.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Reproductive functions may be affected by internal and external factors that are integrated in the central nervous system (CNS). Stressful stimuli induce the neuroendocrine response of the hypothalamic-pituitary-adrenal axis, as well as the synthesis of the neurosteroid allopregnanolone (AL) in the brain. This study tested the hypothesis that centrally administered AL could affect the expression of certain genes involved in reproductive functions at the hypothalamus and pituitary levels, as well as pulsatile gonadotropin secretion in sheep under both natural and stressful conditions. Luteal-phase sheep (n = 24) were subjected to a three-day (day 12-14 of the estrous cycle) series of control or AL (4 × 15 μg/60 μL/30 min, at 30 min intervals) infusions into the third ventricle. Acute stressful stimuli (isolation from other sheep and partial movement restriction) were used in the third day of infusion. Stressful stimuli reduced kisspeptin-1 mRNA levels in both the mediobasal hypothalamus (MBH) and the preoptic area (POA), while pro-dynorphin (PDYN) mRNA level only in the MBH. AL alone decreased the abundances of these transcripts in both structures. Stress increased the expression of gonadotropin-releasing hormone (GnRH) mRNA in the MBH and POA, luteinizing hormone (LH) β subunit (LHβ) mRNA in the anterior pituitary (AP) and pulsatile LH secretion. In contrast, mRNA level of follicle stimulating hormone (FSH) β subunit (FSHβ) was decreased in the AP, with no effect of stress on pulsatile FSH secretion. In stressed sheep, AL counteracted the increase in GnRH mRNA expression only in the POA, but it decreased the level of this transcript in both hypothalamic tissues when infused alone. AL prevented the stress-induced increase in LHβ mRNA expression in the AP and pulsatile LH secretion, as well as inhibited almost all aspects of FSH secretion when administered alone. The suppressive effect of AL on GnRH receptor mRNA expression was also observed in both MBH and AP. We concluded that acute stress and AL exerted multidirectional effects on hypothalamic centers that regulate reproductive functions and secretory activity of AP gonadotrophs in sheep. However, we indicated the dominant inhibitory effect of AL under natural and stressful conditions.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Katarzyna Roszkowicz-Ostrowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| |
Collapse
|
8
|
Brain-Derived Neurotrophic Factor Affects mRNA and miRNA Expression of the Appetite Regulating Centre in the Sheep Arcuate Nucleus. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Abstract
The neuromodulatory effects of brain-derived neurotrophic factor (BDNF) on appetite regulation centre peptide gene activity in the sheep hypothalamus have not been examined yet. The aim of this study was to determine whether BDNF participates in modulation of neuropeptide Y (npy), agouti-related peptide (agrp), cocaine and amphetamine regulated transcript (cart), and proopiomelanocortin (pomc) mRNA expression and selected microRNAs in the sheep hypothalamic arcuate (ARC) nucleus. Animals (Polish Merino sheep, n=24) were divided into three groups. The control group received a central infusion of Ringer-Locke solution (480 µl/day) whereas the experimental groups were treated with BDNF in two doses: 10 or 60 μg/480 µl/day. All sheep received four intracerebroventricular infusions (performed from 08:40 a.m. to 01:30 p.m.; infusion scheme: 4 x 50 min infusions with 30 min intervals between them) on each of three consecutive days. Immediately after the last infusion, the sheep were slaughtered, and selected structures of the hypothalamus were frozen for further real-time qPCR analysis. Central infusion of BDNF evoked dose-dependent changes in npy, agrp, cart, pomc and peptidylglicine alpha-amidating monooxygenase (pam) mRNA expression in the sheep ARC nucleus. An increase in npy, agrp and pomc mRNA expression but also a decrease in cart mRNA expression in the ARC nucleus were detected. Moreover, a decrease in pam (gene encoding an enzyme that converts POMC into α-MSH) mRNA expression, was also noted. Furthermore, after central BDNF administration, changes in miRNA-33a-5p, miRNA-33b-5p, miRNA-377-3p, miRNA-214-3p, miRNA-485 and miRNA-488 expression were observed. Based on the presented results, it can be concluded that BDNF may affect the appetite regulating centre activity through modulation of npy, agrp, cart, pomc and pam mRNA expression in the ARC nucleus. It was also revealed that BDNF modulates miRNA expression in the sheep ARC nucleus.
Collapse
|
9
|
Szlis M, Wójcik-Gładysz A, Przybył BJ. Central obestatin administration affect the LH and FSH secretory activity in peripubertal sheep. Theriogenology 2020; 145:10-17. [PMID: 31982689 DOI: 10.1016/j.theriogenology.2020.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Obestatin - a 23 amino acid peptide is synthesized as another product of the ghrl gene and its synthesis occurs mainly in gastric mucosa cells. This hormone is involved in complex gut-brain neurohormonal networks, thereby can participates in the modulation of gonadotrophic axis activity. The aim of this study was to investigate the consequence of intracerebroventricular infusions of obestatin on LH and FSH pituitary cells secretory activity in peripubertal female sheep. Animals were randomly divided into two groups: the control group (n = 14) received intracerebroventricular infusions of Ringer-Lock solution (120 μL h-1), and the obestatin group (n = 14) was infused with obestatin (25 μg/120 μL h-1) diluted in Ringer-Lock solution. A series of four infusions was performed on three consecutive days. Blood samples were collected on day 0 and day 3. The sheep were slaughtered immediately after the end of the experiment. For molecular biological analysis, pituitaries from 7 sheep from each group (n = 7 + 7) were prepared and frozen in liquid nitrogen immediately after collection and then stored at -80 °C until Real Time RT-qPCR and RIA analyzes. For immunohistochemical analysis, pituitary tissues from the remaining animals (n = 7 + 7) was fixed in situ for further examination. Real-Time qPCR and immunohistochemistry analyses revealed substantial changes in the LH and FSH pituitary cells secretory activity in obestatin-infused sheep. Exogenous obestatin administration reduced LHβ mRNA expression and increased the accumulation of immunoreactive LH in gonadotrophic cells of the adenohypophysis. These changes were accompanied by a decrease in the mean LH concentration in the peripheral blood resulting from the lower LH pulse amplitude. Moreover, an increase in both FSHβ mRNA expression and FSH immunoreactivity and amount in pituitary cells were noted, while mean blood FSH concentration remained unchanged after obestatin treatment. The obtained results showed that exogenous obestatin affected LH secretory activity at the level of protein synthesis, accumulation and release as well as obestatin increase FSHβ mRNA expression and accumulation of this hormone but at the same time have no effect on FSH release to blood. Thus, obestatin can participate in the neuroendocrine network, which modulates gonadotrophic axis activity in sheep.
Collapse
Affiliation(s)
- Michał Szlis
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Wójcik-Gładysz
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland.
| | - Bartosz Jarosław Przybył
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
10
|
Wójcik-Gładysz A, Szlis M, Przybył BJ, Polkowska J. Obestatin may affect the GnRH/KNDy gene network in sheep hypothalamus. Res Vet Sci 2019; 123:51-58. [DOI: 10.1016/j.rvsc.2018.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
11
|
Das N, Kumar TR. Molecular regulation of follicle-stimulating hormone synthesis, secretion and action. J Mol Endocrinol 2018; 60:R131-R155. [PMID: 29437880 PMCID: PMC5851872 DOI: 10.1530/jme-17-0308] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Follicle-stimulating hormone (FSH) plays fundamental roles in male and female fertility. FSH is a heterodimeric glycoprotein expressed by gonadotrophs in the anterior pituitary. The hormone-specific FSHβ-subunit is non-covalently associated with the common α-subunit that is also present in the luteinizing hormone (LH), another gonadotrophic hormone secreted by gonadotrophs and thyroid-stimulating hormone (TSH) secreted by thyrotrophs. Several decades of research led to the purification, structural characterization and physiological regulation of FSH in a variety of species including humans. With the advent of molecular tools, availability of immortalized gonadotroph cell lines and genetically modified mouse models, our knowledge on molecular mechanisms of FSH regulation has tremendously expanded. Several key players that regulate FSH synthesis, sorting, secretion and action in gonads and extragonadal tissues have been identified in a physiological setting. Novel post-transcriptional and post-translational regulatory mechanisms have also been identified that provide additional layers of regulation mediating FSH homeostasis. Recombinant human FSH analogs hold promise for a variety of clinical applications, whereas blocking antibodies against FSH may prove efficacious for preventing age-dependent bone loss and adiposity. It is anticipated that several exciting new discoveries uncovering all aspects of FSH biology will soon be forthcoming.
Collapse
Affiliation(s)
- Nandana Das
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
| | - T. Rajendra Kumar
- Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Division of Reproductive Endocrinology and Infertility, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, U.S.A
- Author for Correspondence: T. Rajendra Kumar, PhD, Edgar L. and Patricia M. Makowski Professor, Associate Vice-Chair of Research, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Mail Stop 8613, Research Complex 2, Room # 15-3000B, 12700 E. 19th Avenue, Aurora, CO 80045, USA, Tel: 303-724-8689,
| |
Collapse
|