1
|
Hackerova L, Pilsova A, Pilsova Z, Zelenkova N, Tymich Hegrova P, Klusackova B, Chmelikova E, Sedmikova M, Simonik O, Postlerova P. Boar Sperm Motility Assessment Using Computer-Assisted Sperm Analysis: Current Practices, Limitations, and Methodological Challenges. Animals (Basel) 2025; 15:305. [PMID: 39943075 PMCID: PMC11816302 DOI: 10.3390/ani15030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 02/16/2025] Open
Abstract
Spermatozoa are highly specialized male cells that are characterized by a unique ability to move, which is a critical factor for successful fertilization. The relative simplicity of motility assessment, especially in livestock, has made it a widely used parameter for evaluating ejaculate quality or cryopreserved semen in the clinical field, and an advanced tool in reproductive physiology and toxicology research. Technological advances in image analysis and computational methods have substantially increased its accuracy through the use of computer-assisted sperm analysis (CASA) to minimize subjective bias in motility assessments. Nevertheless, this more objective method still presents some significant challenges, including variability in the sample preparation, imaging conditions, and analytical parameters. These issues contribute to inconsistency and impair the reproducibility and comparability of data between laboratories. The implementation of standardized protocols, combined with comprehensive training and rigorous evaluation, can serve to mitigate some of the emerging inconsistencies. In addition, the in vitro conditions under which CASA analyses are performed often differ significantly from the natural environment of the female reproductive tract in vivo. This review discusses the methodologies, critical issues, and limitations of sperm motility analyses using CASA, with a particular focus on the boar as an important agricultural and biomedical model species in which this system is widely used.
Collapse
Affiliation(s)
- Lenka Hackerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Zuzana Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Natalie Zelenkova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Pavla Tymich Hegrova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Barbora Klusackova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Eva Chmelikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Marketa Sedmikova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
| | - Ondrej Simonik
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic;
| | - Pavla Postlerova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic; (L.H.); (A.P.); (Z.P.); (N.Z.); (P.T.H.); (B.K.); (E.C.); (M.S.)
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic;
| |
Collapse
|
2
|
Oliveira CCV, Ferrão L, Gallego V, Mieiro C, Oliveira IB, Carvalhais A, Pachedo M, Cabrita E. Exposure to silver and titanium dioxide nanoparticles at supra-environmental concentrations decreased sperm motility and affected spermatozoa subpopulations in gilthead seabream, Sparus aurata. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1959-1970. [PMID: 37436567 DOI: 10.1007/s10695-023-01218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Marine pollution by nanoparticles (NPs) can be reprotoxic for fish and disturb successful reproduction of wild populations. In gilthead seabream (Sparus aurata), a mild effect on sperm motility was observed after exposure to high concentrations of silver NPs. Considering the great heterogeneity traits within a sperm sample, it is possible that NPs affect spermatozoa accordingly, modulating subpopulation profile. Thus, this work aimed to analyse NP effects in sperm motility in general and considering spermatozoa population structure, using a subpopulation approach. Seabream sperm samples from mature males were exposed for 1 h to increasing concentrations of titanium dioxide (1, 10, 100, 1000 and 10,000 μg L-1) and silver (0.25, 25 and 250 μg L-1) NPs, including Ag NP and Ag+, dissolved in a non-activating medium (0.9 % NaCl). Concentrations chosen include realistic (10-100 and 0.25 μg L-1, respectively, for TiO2 and Ag) and supra-environmental values. The mean particle diameter was determined as 19.34 ± 6.72 and 21.50 ± 8.27 nm in the stock suspension, respectively, for titanium dioxide and silver. After the ex vivo exposure, sperm motility parameters were determined using computer-assisted sperm analysis, and sperm subpopulations were later identified using a two-step cluster analysis. Results revealed a significant reduction in total motility after exposure to the 2 highest concentrations of titanium dioxide NPs, while curvilinear and straight-line velocities were not altered. Exposure to silver NPs (Ag NP and Ag+) lowered significantly total and progressive motilities at all concentrations, while curvilinear and straight-line velocities were significantly lower only at the highest concentration. Sperm subpopulations were also affected by the exposure to both titanium dioxide and silver NPs. In both cases, the highest levels of NPs triggered a decrease in the percentage of fast sperm subpopulations (38.2% in TiO2 1000 μg L-1, 34.8.% in Ag NP 250 μg L-1, and 45.0% in Ag+ 250 μg L-1 vs 53.4% in the control), while an increase on slow sperm subpopulations. A reprotoxic effect was proven for both NPs, but only at supra-environmental concentrations.
Collapse
Affiliation(s)
| | - Leonor Ferrão
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Aquaculture and Biodiversity Group, Universitat Politècnica de València, 46022, València, Spain
| | - Victor Gallego
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
- Aquaculture and Biodiversity Group, Universitat Politècnica de València, 46022, València, Spain
| | - Cláudia Mieiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Isabel B Oliveira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Ana Carvalhais
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário Pachedo
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
3
|
Blackburn H, Torres L, Liu Y, Tiersch TR. The Need for a Framework Addressing the Temporal Aspects of Fish Sperm Motility Leading to Community-Level Standardization. Zebrafish 2022; 19:119-130. [PMID: 35969383 PMCID: PMC9419943 DOI: 10.1089/zeb.2022.0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motility is a widely available parameter that can be used to assess sperm quality of aquatic species. Sperm from fishes with external fertilization usually undergo a dynamic and short-lived period of motility after activation. The common practice of assigning a single value at an arbitrary peak of motility presents challenges for reproducibility, community-level standardization, and comparisons across studies. This study aimed to explore statistical approaches to standardize motility reporting, and to develop an initial framework for community-level standards. Sperm samples from 14 zebrafish (Danio rerio) with a total of 21,705 cells were analyzed by use of computer-assisted sperm analysis with data collection starting at 10 s after activation at 5-s intervals for 50 s. Four common motility variables were selected for analyses: curvilinear velocity, straight-line velocity, beat cross frequency, and amplitude of lateral head displacement. Cluster analysis was used to evaluate sperm subpopulations within and among males over time, least-square means was used to explore temporal aspects, and the first derivative of the regression equations was used to calculate the rate of change for the motility parameters. Cluster analysis proved informative, but overlapping ephemeral clusters were not valuable for providing standardization options. Analysis of temporal aspects and rate of change indicated opportunities for standardization by reporting the overall motility-time functions or reporting during stable time windows instead of peak motility or at random times. These approaches could minimize the inconsistencies caused by male-to-male variation and dynamic changes of subpopulations while providing comparable information. An overall temporal framework was identified for motility reporting along the collection-processing-cryopreservation-thawing sequence to provide a basis to support efforts of community-level standardization.
Collapse
Affiliation(s)
- Harvey Blackburn
- National Animal Germplasm Program, Agricultural Research Service, United States Department of Agriculture, Fort Collins, Colorado, USA
| | - Leticia Torres
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Yue Liu
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
- Department of Biological and Agricultural Engineering, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Terrence R Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
4
|
Teves ME, Roldan ERS. Sperm bauplan and function and underlying processes of sperm formation and selection. Physiol Rev 2022; 102:7-60. [PMID: 33880962 PMCID: PMC8812575 DOI: 10.1152/physrev.00009.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 01/03/2023] Open
Abstract
The spermatozoon is a highly differentiated and polarized cell, with two main structures: the head, containing a haploid nucleus and the acrosomal exocytotic granule, and the flagellum, which generates energy and propels the cell; both structures are connected by the neck. The sperm's main aim is to participate in fertilization, thus activating development. Despite this common bauplan and function, there is an enormous diversity in structure and performance of sperm cells. For example, mammalian spermatozoa may exhibit several head patterns and overall sperm lengths ranging from ∼30 to 350 µm. Mechanisms of transport in the female tract, preparation for fertilization, and recognition of and interaction with the oocyte also show considerable variation. There has been much interest in understanding the origin of this diversity, both in evolutionary terms and in relation to mechanisms underlying sperm differentiation in the testis. Here, relationships between sperm bauplan and function are examined at two levels: first, by analyzing the selective forces that drive changes in sperm structure and physiology to understand the adaptive values of this variation and impact on male reproductive success and second, by examining cellular and molecular mechanisms of sperm formation in the testis that may explain how differentiation can give rise to such a wide array of sperm forms and functions.
Collapse
Affiliation(s)
- Maria Eugenia Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Eduardo R S Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
5
|
van der Horst G. Status of Sperm Functionality Assessment in Wildlife Species: From Fish to Primates. Animals (Basel) 2021; 11:1491. [PMID: 34064087 PMCID: PMC8224341 DOI: 10.3390/ani11061491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
(1) Background: in order to propagate wildlife species (covering the whole spectrum from species suitable for aquaculture to endangered species), it is important to have a good understanding of the quality of their sperm, oocytes and embryos. While sperm quality analyses have mainly used manual assessment in the past, such manual estimations are subjective and largely unreliable. Accordingly, quantitative and cutting-edge approaches are required to assess the various aspects of sperm quality. The purpose of this investigation was to illustrate the latest technology used in quantitative evaluation of sperm quality and the required cut-off points to distinguish the differential grades of fertility potential in a wide range of vertebrate species. (2) Methods: computer-aided sperm analysis (CASA) with an emphasis on sperm motility, 3D tracking and flagellar and sperm tracking analysis (FAST), as well as quantitative assessment of sperm morphology, vitality, acrosome status, fragmentation and many other complimentary technologies. (3) Results: Assessing sperm quality revealed a great deal of species specificity. For example, in freshwater fish like trout, sperm swam in a typical tight helical pattern, but in seawater species sperm motility was more progressive. In amphibian species, sperm velocity was slow, in contrast with some bird species (e.g., ostrich). Meanwhile, in African elephant and some antelope species, fast progressive sperm was evident. In most species, there was a high percentage of morphologically normal sperm, but generally, low percentages were observed for motility, vitality and normal morphology evident in monogamous species. (4) Conclusions: Sperm quality assessment using quantitative methodologies such as CASA motility, FAST analysis, morphology and vitality, as well as more progressive methodologies, assisted in better defining sperm quality-specifically, sperm functionality of high-quality sperm. This approach will assist in the propagation of wildlife species.
Collapse
Affiliation(s)
- Gerhard van der Horst
- Comparative Spermatology Laboratory, Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
6
|
Predictive Capacity of Boar Sperm Morphometry and Morphometric Sub-Populations on Reproductive Success after Artificial Insemination. Animals (Basel) 2021; 11:ani11040920. [PMID: 33805060 PMCID: PMC8064074 DOI: 10.3390/ani11040920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The efficiency of swine production measured as litter size influences the profitability of the pig industry. Furthermore, sow fertility potential depends in part on the boar semen quality and reproductive efficiency. The objective of this study is to compare boar sperm head size and morphometric features of shape to evaluate their relationships with reproductive success after artificial insemination (AI). A morphometric analysis of boar ejaculate reveals morphometrically separate sub-populations. The differences between sub-populations are displayed for sperm head size. In addition, sperm clustering into sub-populations did not have a predictive capacity on litter size variables. Nevertheless, the morphometric variables of the sperm may have a predictive, albeit reduced, capacity regarding litter size variables. The results of this study therefore open up possibilities for future assessments of fertility. Abstract The aim of the study was to compare the morphometric features of sperm head size and shape from the Pietrain line and the Duroc × Pietrain boar crossbred terminal lines, and to evaluate their relationship with reproductive success after artificial insemination of sows produced from crossbreeding the York, Landrace and Pietrain breeds. Semen samples were collected from 11 sexually mature boars. Only ejaculates with greater than 70% motility rate and <15% of abnormal sperm were used for artificial inseminations (AI) and included in the study. Samples were analyzed using an ISAS®v1 computer-assisted sperm analysis system for eight morphometric parameters of head shape and size (CASA-Morph). Sub-populations of morphometric ejaculates were characterized using multivariate procedures, such as principal component (PC) analysis and clustering methods (k-means model). Four different ejaculate sub-populations were identified from two PCs that involved the head shape and size of the spermatozoa. The discriminant ability of the different morphometric sperm variables to predict sow litter size was analyzed using a receiver operating characteristics (ROC) curve analysis. Sperm head length, ellipticity, elongation, and regularity showed significant predictive capacity on litter size (0.59, 0.59, 0.60, and 0.56 area under curve (AUC), respectively). The morphometric sperm sub-populations were not related to sow litter size.
Collapse
|
7
|
Valverde A, Castro-Morales O, Madrigal-Valverde M, Camacho M, Barquero V, Soler C, Roldan ERS. Sperm kinematic subpopulations of the American crocodile (Crocodylus acutus). PLoS One 2021; 16:e0248270. [PMID: 33690716 PMCID: PMC7942986 DOI: 10.1371/journal.pone.0248270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
There has been very limited use of computer assisted semen analysis (CASA) to evaluate reptile sperm. The aim of this study was to examine sperm kinematic variables in American crocodile (Crocodylus acutus) semen samples and to assess whether sperm subpopulations could be characterized. Eight ejaculates (two ejaculates/male) from four sexually mature captive crocodiles were obtained. An ISAS®v1 CASA-Mot system, with an image acquisition rate of 50 Hz, and ISAS®D4C20 counting chambers were used for sperm analyses. The percentages of motile and progressively motile spermatozoa did not differ among animals (P > 0.05) but there was a significant animal effect with regards to kinematic variables (P < 0.05). Principal component (PC) analysis revealed that kinematic variables grouped into three components: PC1, related to velocity; PC2 to progressiveness and PC3 to oscillation. Subpopulation structure analysis identified four groups (P < 0.05), which represented, on average, 9.8%, 32.1%, 26.8%, and 31.3% of the total sperm population. Males differed in the proportion of sperm in each of the kinematic subpopulations. This new approach for the analysis of reptile sperm kinematic subpopulations, reflecting quantifiable parameters generated by CASA system technology, opens up possibilities for future assessments of crocodile sperm and will be useful in the future development of assisted reproduction for these species.
Collapse
Affiliation(s)
- Anthony Valverde
- Costa Rica Institute of Technology, School of Agronomy, Cartago, Alajuela, Costa Rica
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | | | | | - Marlen Camacho
- Costa Rica Institute of Technology, School of Agronomy, Cartago, Alajuela, Costa Rica
| | - Vinicio Barquero
- Costa Rica Institute of Technology, School of Agronomy, Cartago, Alajuela, Costa Rica
| | - Carles Soler
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | - Eduardo R. S. Roldan
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
8
|
Gacem S, Bompart D, Valverde A, Catalán J, Miró J, Soler C. Optimal frame rate when there were stallion sperm motility evaluations and determinations for kinematic variables using CASA-Mot analysis in different counting chambers. Anim Reprod Sci 2020; 223:106643. [PMID: 33157363 DOI: 10.1016/j.anireprosci.2020.106643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022]
Abstract
This study was conducted to determine optimum image capture frame rates (FRO) when there was evaluation of different types of counting chambers used for CASA-Mot determinations of stallion sperm motility. Sperm VCL was determined at frame rates of 25-250 f/s in: 1) Spermtrack® (Spk) 10 and 20 chambers (drop displacement-type chambers 10 and 20 μm-deep respectively; and 2) ISAS®D4C10, ISAS®D4C20 (10 and 20 μm-deep respectively) and ISAS®D4C20 L (20 μm-deep) capillary loaded chambers. Values for different sperm kinematic variables were determined using each chamber at 250 f/s, which is the maximum frame rate that the software can be used for analyses. With evaluation of Spk chambers, there was a greater curvilinear velocity (VCL), average path velocity (VAP), straight line velocity (STR), amplitude of lateral head displacement (ALH) and beat cross frequency (BCF) values (P < 0.05) than with capillary loaded chambers, with there being greatest values with 20 μm-deep chambers. With the Spk10 chamber, VCL and ALH were greater at the chamber centre than periphery. There were no such differences for the Spk20 chamber. With evaluation of the D4C10 chamber, VSL and STR were less when there was a sperm deposition point towards the chamber end, while there were the opposite for the D4C20 chamber. When there was evaluation of the D4C20 chamber, there were also greater VCL, WOB and BCF values in distal areas. With use of most of these chambers, data should be collected from different fields and means determined, however, this is not necessary with Spk20 chambers.
Collapse
Affiliation(s)
- Sabrina Gacem
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain; Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino 9, Building 3 (CUE) Floor 1, 46980 Paterna, Spain
| | - Daznia Bompart
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100 Burjassot, Valencia, Spain; Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino 9, Building 3 (CUE) Floor 1, 46980 Paterna, Spain
| | - Anthony Valverde
- Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino 9, Building 3 (CUE) Floor 1, 46980 Paterna, Spain; Costa Rica Institute of Technology, School of Agronomy, San Carlos Campus, 223-21001 Alajuela, Costa Rica
| | - Jaime Catalán
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain; Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino 9, Building 3 (CUE) Floor 1, 46980 Paterna, Spain
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Spain; Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino 9, Building 3 (CUE) Floor 1, 46980 Paterna, Spain.
| | - Carles Soler
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100 Burjassot, Valencia, Spain; Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino 9, Building 3 (CUE) Floor 1, 46980 Paterna, Spain.
| |
Collapse
|
9
|
Kommisrud E, Myromslien FD, Stenseth EB, Zeremichael TT, Hofman N, Grevle I, Sunde J. Viability, motility, ATP content and fertilizing potential of sperm from Atlantic salmon (Salmo salar L.) in milt stored before cryopreservation. Theriogenology 2020; 151:58-65. [PMID: 32311601 DOI: 10.1016/j.theriogenology.2020.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 11/27/2022]
Abstract
Artificial fertilization is increasingly used in aquaculture, mostly applying short-term cold stored milt. Large scale cryopreservation of milt could be valuable for increased flexibility and acceleration of breeding progress. The aim of this study was to assess viability, motility and ATP content of sperm from Atlantic salmon as a function of storage time, before and after cryopreservation. The objective was also to investigate whether in vitro parameters were associated with sperm fertilizing ability after cryopreservation. Milt from six mature Atlantic salmon males were collected twice, one week apart. The milt was stored undiluted at 5 °C in cell culture flasks for six days. Samples were taken on days 1, 3 and 6 of storage for cryopreservation. In total, 36 batches were diluted to a standardized sperm concentration of 2 × 109 spermatozoa/mL, filled into 0.5 mL French medium straws and cryopreserved. In vitro analyses were assessed on the same sample for the 72 combinations of male, collection week, days of storage and cold stored or frozen-thawed. Fertilization trials with cryopreserved milt were carried out for all 36 batches in triplicate for each combination of male, collection week, storage time and sperm:egg ratios of either 2 or 4 × 106 sperm per egg, respectively, totally 218 experimental units, including two egg controls. There was a significant influence of storage and collection week on sperm quality parameters, both cold stored and cryopreserved, and cryopreservation had a significant effect on all tested sperm quality parameters. High correlations for cold stored vs cryopreserved samples was demonstrated for ATP content (p < 0.00001), motility and velocity parameters (p < 0.001), but not for viability, straightness and linearity. The overall percentage of fertilization achieved was 73.9 ± 1.7%. Sperm collected in week 2 showed significantly lower fertility when cryopreserved after six days of storage than after 1 or 3 days for sperm to egg ratios of 2 × 106 (p < 0.005), while there was no such effect for milt collected in week 1. Several post-thaw sperm parameters were correlated to fertilization rates, while curvilinear velocity best explained variations in fertilization by modelling. Our results suggest that cryopreservation of Atlantic salmon milt should be performed soon after milt collection to maximize the cryopreserved sperm quality. Fertilization results seems not to be compromised by storage for three days before cryopreservation.
Collapse
Affiliation(s)
- Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway.
| | - Frøydis D Myromslien
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Else-Berit Stenseth
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Teklu T Zeremichael
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Nadine Hofman
- Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | - Jan Sunde
- Møreforsking Ålesund AS, Ålesund, Norway
| |
Collapse
|
10
|
Ibanescu I, Siuda M, Bollwein H. Motile sperm subpopulations in bull semen using different clustering approaches - Associations with flow cytometric sperm characteristics and fertility. Anim Reprod Sci 2020; 215:106329. [PMID: 32216932 DOI: 10.1016/j.anireprosci.2020.106329] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 12/29/2022]
Abstract
There are sperm subpopulations (SPs) with different kinematic characteristics in various species, however, biological relevance of these SPs is still uncertain. The objective of the present study was to investigate associations of motile sperm SPs with sperm characteristics determined by evaluations with flow cytometry and assessment of bull fertility, using multiple approaches for sperm clustering. Semen from 24 bulls was evaluated concomitantly using computer-assisted sperm analysis (CASA) and flow cytometry before freezing and after thawing. Motile SPs were determined utilizing two acknowledged clustering methods (TwoStep and K-Means) and one customized method. With the customized method, there was utilization of mean values of sperm velocity and linearity as thresholds for direct assignment of motile spermatozoa into four SPs. Regardless of approach for identifying SPs, sperm quality, as determined using flow cytometry, was correlated particularly with the subpopulation (SP) of fast and linear spermatozoa immediately after thawing and with the SP of fast and nonlinear spermatozoa before freezing and 3 h after thawing. Furthermore, there was a positive correlation between proportion of spermatozoa with fast and nonlinear movements before freezing and bull non-return to estrous rates. These results indicate that with different sperm SPs, there are different biological implications which can be evaluated to gain useful information concerning semen quality as determined using flow cytometry and fertility. Furthermore, determining SPs by assigning motile spermatozoa into clusters based on a combination of "below and "above" threshold values for sperm velocity and linearity might be considered a practical alternative to otherwise intricate clustering procedures.
Collapse
Affiliation(s)
- Iulian Ibanescu
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland; Besamungsverein Neustadt a. d. Aisch e.V., Karl-Eibl-Strasse 23, 91413, Neustadt an der Aisch, Germany.
| | - Mathias Siuda
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| |
Collapse
|
11
|
Fish sperm competition in hatcheries and between wild and hatchery origin fish in nature. Theriogenology 2020; 133:201-209. [PMID: 31155035 DOI: 10.1016/j.theriogenology.2019.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
Males compete pre- and post-mating to fertilize the maximum number of eggs. In polyandry, sperm competition occurs when sperm from two or more males compete to fertilize eggs from a female. Here we review how sperm competition from hatchery origin fish can cause loss of genetic variability in fish populations kept in captivity and in wild populations. In fish hatchery practices, sperm competition occurs in mass spawners that release gametes in tanks, and in artificial fertilizations when pooled semen is used. In mass spawnings sperm competition is difficult to tease apart from pre-mating competition and other post-mating selective mechanisms, whereas, studies focused on the use of pooled semen in different fish species have shown a clear relationship between sperm motility parameters and precedence in fertilization. In both situations, sperm competition will result in a loss of genetic variability that accumulates over generations, but hatchery protocols can be adjusted to mitigate it. Another source of concern regarding sperm competition for hatchery produced fish is the spatial and temporal overlap in spawning with wild individuals, either via aquaculture escapees or purposeful stocking programs. This may result in sperm competition between hatchery origin and wild males and impact natural populations. Our review suggests that in order to give every adult selected as broodstock an equal opportunity to produce offspring in captivity, mass spawning and the use of pooled semen should be limited.
Collapse
|
12
|
Rodriguez Barreto D, Garcia de Leaniz C, Verspoor E, Sobolewska H, Coulson M, Consuegra S. DNA Methylation Changes in the Sperm of Captive-Reared Fish: A Route to Epigenetic Introgression in Wild Populations. Mol Biol Evol 2020; 36:2205-2211. [PMID: 31180510 PMCID: PMC6759066 DOI: 10.1093/molbev/msz135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interbreeding between hatchery-reared and wild fish, through deliberate stocking or escapes from fish farms, can result in rapid phenotypic and gene expression changes in hybrids, but the underlying mechanisms are unknown. We assessed if one generation of captive breeding was sufficient to generate inter- and/or transgenerational epigenetic modifications in Atlantic salmon. We found that the sperm of wild and captive-reared males differed in methylated regions consistent with early epigenetic signatures of domestication. Some of the epigenetic marks that differed between hatchery and wild males affected genes related to transcription, neural development, olfaction, and aggression, and were maintained in the offspring beyond developmental reprogramming. Our findings suggest that rearing in captivity may trigger epigenetic modifications in the sperm of hatchery fish that could explain the rapid phenotypic and genetic changes observed among hybrid fish. Epigenetic introgression via fish sperm represents a previously unappreciated mechanism that could compromise locally adapted fish populations.
Collapse
Affiliation(s)
| | | | - Eric Verspoor
- Rivers and Lochs Institute, University of the Highlands and Islands, Inverness College, Inverness, United Kingdom
| | - Halina Sobolewska
- Noahgene Ltd, The e-Centre, Cooperage Way Business Village, Alloa, United Kingdom
| | - Mark Coulson
- Rivers and Lochs Institute, University of the Highlands and Islands, Inverness College, Inverness, United Kingdom
| | - Sofia Consuegra
- Biosciences Department, College of Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
13
|
Valverde A, Madrigal-Valverde M, Castro-Morales O, Gadea-Rivas A, Johnston S, Soler C. Kinematic and head morphometric characterisation of spermatozoa from the Brown Caiman (Caiman crocodilus fuscus). Anim Reprod Sci 2019; 207:9-20. [PMID: 31266600 DOI: 10.1016/j.anireprosci.2019.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/23/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023]
Abstract
The development of analytical methods for the evaluation of crocodilian semen is an important component for the assessment of male breeding soundness and the development of assisted breeding technology in this taxon. Computer-Assisted Semen Analysis (CASA) technology is becoming an increasingly common technique in seminal evaluations for animals but there has been no application of this technique for reptilian spermatozoa. The aim of this study was to analyse sperm kinematic and morphometric variables in Caiman crocodilus fuscus semen samples and to determine whether there were sperm subpopulations. Four ejaculates from four sexually mature captive caimans were used for this study. A CASA-Mot and CASA-Morph system was used with an image acquisition rate of 50 Hz for 2 s of capture. The ISAS®D4C20 counting chambers were used and spermatozoa incubated at 25 °C. Total and progressive motilities did not differ among animals (P > 0.05). There was a significant animal effect in the model with respect to sperm morphometry, and kinematic indices including linearity (LIN) and straightness (STR) (P < 0.05). Results for principal component (PC) analysis indicated variables were grouped into four components: PC1 related to velocity, PC2 to progressivity, PC3 to oscillation and PC4 to sperm path cross-linking. Subpopulation (SP) structure analysis indicated there were four groups, namely, rapid non-progressive (SP1), slow non-progressive (SP2), rapid progressive (SP3) and medium progressive (SP4), representing 14.5%, 45.4%, 18.7%, and 21.4% respectively. Findings in the present study indicate the importance of continuing development of reliable protocols regarding the standardisation of computer-based semen analyses in reptilian species.
Collapse
Affiliation(s)
- Anthony Valverde
- Costa Rica Institute of Technology, School of Agronomy, San Carlos Campus, 223-21001, Alajuela, Costa Rica; University of Valencia, Department of Cellular Biology, Functional Biology and Physical Anthropology, Campus Burjassot, C/ Dr Moliner, 50, 46100, Burjassot, Spain.
| | - Mónica Madrigal-Valverde
- Costa Rica Institute of Technology, School of Agronomy, San Carlos Campus, 223-21001, Alajuela, Costa Rica; Federal University of Bahia, School of Veterinary Medicine and Animal Science, 40170-110, Salvador, Bahia, Brazil
| | - Olivier Castro-Morales
- Costa Rica Institute of Technology, School of Agronomy, San Carlos Campus, 223-21001, Alajuela, Costa Rica
| | - Arnoldo Gadea-Rivas
- Costa Rica Institute of Technology, School of Agronomy, San Carlos Campus, 223-21001, Alajuela, Costa Rica
| | - Stephen Johnston
- School of Agriculture and Food Science, The University of Queensland, Gatton, Qld, 4343, Australia
| | - Carles Soler
- University of Valencia, Department of Cellular Biology, Functional Biology and Physical Anthropology, Campus Burjassot, C/ Dr Moliner, 50, 46100, Burjassot, Spain; Proiser R+D, Scientific Park, University of Valencia, C/ Catedràtic Agustín Escardino, 9, Building 3 (CUE), Floor 1, 46980, Paterna, Valencia, Spain
| |
Collapse
|
14
|
Sperm quality in fish: Determinants and affecting factors. Theriogenology 2019; 135:94-108. [PMID: 31203093 DOI: 10.1016/j.theriogenology.2019.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 11/23/2022]
Abstract
Fish sperm quality assessment is helpful for optimizing production and for monitoring the environmental state. Sperm can be monitored relatively easy and, to date, various analyses have been applied and proven to be helpful in this task. Among them, sperm motility parameters such as sperm speed are one of the main performance traits during assisted fish reproduction. Apart from motility the sperm concentration, volume, and seminal plasma pH and osmolality are also frequently evaluated and are the main sperm quality indicators measured in fish sperm. However, other parameters also determine sperm fertilization potential. Recent knowledge reveals several additional parameters of high importance for sperm function. Among them are DNA integration, membrane stability, mitochondria status and enzymatic activity. Measuring all these parameters in fish sperm provides complex knowledge regarding male fertility and helps to improve broodstock maintenance protocols as well as gamete handling and fertilization processes. This review focuses on the presentation of the sperm quality measures for freshwater and marine species of the fish and provides information regarding recent methods of sperm quality evaluation.
Collapse
|
15
|
Valverde A, Madrigal-Valverde M, Lotz J, Bompart D, Soler C. Effect of video capture time on sperm kinematic parameters in breeding boars. Livest Sci 2019. [DOI: 10.1016/j.livsci.2018.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Valverde A, Madrigal M, Caldeira C, Bompart D, de Murga JN, Arnau S, Soler C. Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system. Reprod Domest Anim 2018; 54:167-175. [DOI: 10.1111/rda.13320] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Anthony Valverde
- School of Agronomy; Costa Rica Institute of Technology; Alajuela Costa Rica
- Department of Cellular Biology; Functional Biology and Physical Anthropology; University of Valencia; Valencia Spain
| | - Mónica Madrigal
- School of Agronomy; Costa Rica Institute of Technology; Alajuela Costa Rica
- School of Veterinary Medicine and Animal Science; Federal University of Bahia; Salvador Brazil
| | - Carina Caldeira
- Proiser R+D; Scientific Park; University of Valencia; Valencia Spain
| | - Daznia Bompart
- Proiser R+D; Scientific Park; University of Valencia; Valencia Spain
| | - Javier Núñez de Murga
- Department of Cellular Biology; Functional Biology and Physical Anthropology; University of Valencia; Valencia Spain
| | - Sandra Arnau
- Department of Cellular Biology; Functional Biology and Physical Anthropology; University of Valencia; Valencia Spain
| | - Carles Soler
- Department of Cellular Biology; Functional Biology and Physical Anthropology; University of Valencia; Valencia Spain
- Proiser R+D; Scientific Park; University of Valencia; Valencia Spain
| |
Collapse
|
17
|
Holt WV, Cummins JM, Soler C. Computer-assisted sperm analysis and reproductive science; a gift for understanding gamete biology from multidisciplinary perspectives. Reprod Fertil Dev 2018. [DOI: 10.1071/rdv30n6_fo] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|