1
|
Gross CA. Peering into the Bacterial Cell: From Transcription to Functional Genomics. J Mol Biol 2025; 437:169087. [PMID: 40081792 DOI: 10.1016/j.jmb.2025.169087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
I started my faculty career in 1981 at the UW-Madison in the Department of Bacteriology and moved to the University of California, San Francisco in 1993, where I am a Professor in the Departments of Microbiology and Immunology and Cell and Tissue Biology. In this article, I first review my contributions to understanding the molecular biology of the bacterial transcriptional apparatus and the global role of alternative sigmas (σs), a major pillar of bacterial transcriptional control. I then discuss my role in spearheading the development of bacterial systems biology, specifically to the genome-wide phenotyping approaches necessary for rapid understanding of gene function and the molecular basis of pathway connections across the bacterial universe.
Collapse
Affiliation(s)
- Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Yiu B, Robbins N, Cowen LE. Interdisciplinary approaches for the discovery of novel antifungals. Trends Mol Med 2024; 30:723-735. [PMID: 38777733 PMCID: PMC11987087 DOI: 10.1016/j.molmed.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Pathogenic fungi are an increasing public health concern. The emergence of antifungal resistance coupled with the scarce antifungal arsenal highlights the need for novel therapeutics. Fortunately, the past few years have witnessed breakthroughs in antifungal development. Here, we discuss pivotal interdisciplinary approaches for the discovery of novel compounds with efficacy against diverse fungal pathogens. We highlight breakthroughs in improving current antifungal scaffolds, as well as the utility of compound combinations to extend the lifespan of antifungals. Finally, we describe efforts to refine candidate chemical scaffolds by leveraging structure-guided approaches, and the use of functional genomics to expand our knowledge of druggable antifungal targets. Overall, we emphasize the importance of interdisciplinary collaborations in the endeavor to develop innovative antifungal strategies.
Collapse
Affiliation(s)
- Bonnie Yiu
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada.
| |
Collapse
|
3
|
Guan M, Wang X, Xu X, Ling T, Wu J, Qian J, Ma F, Zhang X. Bioactivity assessment of organophosphate flame retardants via a dose-dependent yeast functional genomics approach. ENVIRONMENT INTERNATIONAL 2024; 186:108596. [PMID: 38522228 DOI: 10.1016/j.envint.2024.108596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Organophosphate flame retardants (OPFRs) have been widely detected in multiple environment media and have many adverse effects with complex toxicity mechanisms. However, the early molecular responses to OPFRs have not been fully elucidated, thereby making it difficult to assess their risks accurately. In this work, we systematically explored the point of departure (POD) of biological pathways at genome-wide level perturbed by 14 OPFRs with three substituents (alkyl, halogen, and aryl) using a dose-dependent functional genomics approach in Saccharomyces cerevisiae at 24 h exposure. Firstly, our results demonstrated that the overall biological potency at gene level (PODDRG20) ranged from 0.013 to 35.079 μM for 14 OPFRs, especially the tributyl phosphate (TnBP) exhibited the strongest biological potency with the least PODDRG20. Secondly, we found that structural characteristics of carbon number and logKow were significantly negatively correlated with POD, and carbon number and logKow also significantly affected lipid metabolism associated processes. Thirdly, these early biological pathways of OPFRs toxification were found to be involved in lipid metabolism, oxidative stress, DNA damage, MAPK signaling pathway, and amino acid and carbohydrate metabolism, among which the lipid metabolism was the most sensitive molecular response perturbed by most OPFRs. More importantly, we identified one resistant mutant strain with knockout of ERG2 (YMR202W) gene participated in steroid biosynthesis pathway, which can serve as a key yeast strain of OPFRs toxification. Overall, our study demonstrated an effective platform for accurately assessing OPFRs risks and provided a basis for further green OPFRs development.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xiaoyang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Xinyuan Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Tianqi Ling
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, CA M5R 0A3, Canada
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Fei Ma
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
Yamamoto K, Tochikawa S, Miura Y, Matsunobu S, Hirose Y, Eki T. Sensing chemical-induced DNA damage using CRISPR/Cas9-mediated gene-deletion yeast-reporter strains. Appl Microbiol Biotechnol 2024; 108:188. [PMID: 38300351 PMCID: PMC10834598 DOI: 10.1007/s00253-024-13020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay. Despite exhibiting the lowest luciferase activity, the chromosomally integrated reporter assay showed the highest fold induction (i.e., the ratio of luciferase activity in the presence and absence of the chemical) compared with the established plasmid-based assay. Using CRISPR/Cas9 technology, we generated mutants with single- or double-gene deletions, affecting major DNA repair pathways or cell permeability. This enabled us to evaluate reporter gene responses to genotoxicants in a single-copy plasmid-based assay. Elevated background activities were observed in several mutants, such as mag1Δ cells, even without exposure to chemicals. However, substantial luciferase induction was detected in single-deletion mutants following exposure to specific chemicals, including mag1Δ, mms2Δ, and rad59Δ cells treated with methyl methanesulfonate; rad59Δ cells exposed to camptothecin; and mms2Δ and rad10Δ cells treated with mitomycin C (MMC) and cisplatin (CDDP). Notably, mms2Δ/rad10Δ cells treated with MMC or CDDP exhibited significantly enhanced luciferase induction compared with the parent single-deletion mutants, suggesting that postreplication and for nucleotide excision repair processes predominantly contribute to repairing DNA crosslinks. Overall, our findings demonstrate the utility of yeast-based reporter assays employing strains with multiple-deletion mutations in DNA repair genes. These assays serve as valuable tools for investigating DNA repair mechanisms and assessing chemical-induced DNA damage. KEY POINTS: • Responses to genotoxic chemicals were investigated in three types of reporter yeast. • Yeast strains with single- and double-deletions of DNA repair genes were tested. • Two DNA repair pathways predominantly contributed to DNA crosslink repair in yeast.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shintaro Tochikawa
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuuki Miura
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Shogo Matsunobu
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Laboratory of Genomics and Photobiology, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
5
|
Gaikani HK, Stolar M, Kriti D, Nislow C, Giaever G. From beer to breadboards: yeast as a force for biological innovation. Genome Biol 2024; 25:10. [PMID: 38178179 PMCID: PMC10768129 DOI: 10.1186/s13059-023-03156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024] Open
Abstract
The history of yeast Saccharomyces cerevisiae, aka brewer's or baker's yeast, is intertwined with our own. Initially domesticated 8,000 years ago to provide sustenance to our ancestors, for the past 150 years, yeast has served as a model research subject and a platform for technology. In this review, we highlight many ways in which yeast has served to catalyze the fields of functional genomics, genome editing, gene-environment interaction investigation, proteomics, and bioinformatics-emphasizing how yeast has served as a catalyst for innovation. Several possible futures for this model organism in synthetic biology, drug personalization, and multi-omics research are also presented.
Collapse
Affiliation(s)
- Hamid Kian Gaikani
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Monika Stolar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Guri Giaever
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Sterrett MC, Farchi D, Strassler SE, Boise LH, Fasken MB, Corbett AH. In vivo characterization of the critical interaction between the RNA exosome and the essential RNA helicase Mtr4 in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2023; 13:jkad049. [PMID: 36861343 PMCID: PMC10411580 DOI: 10.1093/g3journal/jkad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The RNA exosome is a conserved molecular machine that processes/degrades numerous coding and non-coding RNAs. The 10-subunit complex is composed of three S1/KH cap subunits (human EXOSC2/3/1; yeast Rrp4/40/Csl4), a lower ring of six PH-like subunits (human EXOSC4/7/8/9/5/6; yeast Rrp41/42/43/45/46/Mtr3), and a singular 3'-5' exo/endonuclease DIS3/Rrp44. Recently, several disease-linked missense mutations have been identified in structural cap and core RNA exosome genes. In this study, we characterize a rare multiple myeloma patient missense mutation that was identified in the cap subunit gene EXOSC2. This missense mutation results in a single amino acid substitution, p.Met40Thr, in a highly conserved domain of EXOSC2. Structural studies suggest that this Met40 residue makes direct contact with the essential RNA helicase, MTR4, and may help stabilize the critical interaction between the RNA exosome complex and this cofactor. To assess this interaction in vivo, we utilized the Saccharomyces cerevisiae system and modeled the EXOSC2 patient mutation into the orthologous yeast gene RRP4, generating the variant rrp4-M68T. The rrp4-M68T cells show accumulation of certain RNA exosome target RNAs and show sensitivity to drugs that impact RNA processing. We also identified robust negative genetic interactions between rrp4-M68T and specific mtr4 mutants. A complementary biochemical approach revealed that Rrp4 M68T shows decreased interaction with Mtr4, consistent with these genetic results. This study suggests that the EXOSC2 mutation identified in a multiple myeloma patient impacts the function of the RNA exosome and provides functional insight into a critical interface between the RNA exosome and Mtr4.
Collapse
Affiliation(s)
- Maria C Sterrett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Daniela Farchi
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Sarah E Strassler
- Biochemistry, Cell, and Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Milo B Fasken
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Noel D, Hallsworth JE, Gelhaye E, Darnet S, Sormani R, Morel-Rouhier M. Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or Toxin-stressors. Microb Biotechnol 2023. [PMID: 37191200 DOI: 10.1111/1751-7915.14242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 05/17/2023] Open
Abstract
Fungi and antifungal compounds are relevant to the United Nation's Sustainable Development Goals. However, the modes-of-action of antifungals-whether they are naturally occurring substances or anthropogenic fungicides-are often unknown or are misallocated in terms of their mechanistic category. Here, we consider the most effective approaches to identifying whether antifungal substances are cellular stressors, toxins/toxicants (that are target-site-specific), or have a hybrid mode-of-action as Toxin-stressors (that induce cellular stress yet are target-site-specific). This newly described 'toxin-stressor' category includes some photosensitisers that target the cell membrane and, once activated by light or ultraviolet radiation, cause oxidative damage. We provide a glossary of terms and a diagrammatic representation of diverse types of stressors, toxic substances, and Toxin-stressors, a classification that is pertinent to inhibitory substances not only for fungi but for all types of cellular life. A decision-tree approach can also be used to help differentiate toxic substances from cellular stressors (Curr Opin Biotechnol 2015 33: 228-259). For compounds that target specific sites in the cell, we evaluate the relative merits of using metabolite analyses, chemical genetics, chemoproteomics, transcriptomics, and the target-based drug-discovery approach (based on that used in pharmaceutical research), focusing on both ascomycete models and the less-studied basidiomycete fungi. Chemical genetic methods to elucidate modes-of-action currently have limited application for fungi where molecular tools are not yet available; we discuss ways to circumvent this bottleneck. We also discuss ecologically commonplace scenarios in which multiple substances act to limit the functionality of the fungal cell and a number of as-yet-unresolved questions about the modes-of-action of antifungal compounds pertaining to the Sustainable Development Goals.
Collapse
Affiliation(s)
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Eric Gelhaye
- Université de Lorraine, INRAE, IAM, Nancy, France
| | | | | | | |
Collapse
|
8
|
Saeki N, Yamamoto C, Eguchi Y, Sekito T, Shigenobu S, Yoshimura M, Yashiroda Y, Boone C, Moriya H. Overexpression profiling reveals cellular requirements in the context of genetic backgrounds and environments. PLoS Genet 2023; 19:e1010732. [PMID: 37115757 PMCID: PMC10171610 DOI: 10.1371/journal.pgen.1010732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/10/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Overexpression can help life adapt to stressful environments, making an examination of overexpressed genes valuable for understanding stress tolerance mechanisms. However, a systematic study of genes whose overexpression is functionally adaptive (GOFAs) under stress has yet to be conducted. We developed a new overexpression profiling method and systematically identified GOFAs in Saccharomyces cerevisiae under stress (heat, salt, and oxidative). Our results show that adaptive overexpression compensates for deficiencies and increases fitness under stress, like calcium under salt stress. We also investigated the impact of different genetic backgrounds on GOFAs, which varied among three S. cerevisiae strains reflecting differing calcium and potassium requirements for salt stress tolerance. Our study of a knockout collection also suggested that calcium prevents mitochondrial outbursts under salt stress. Mitochondria-enhancing GOFAs were only adaptive when adequate calcium was available and non-adaptive when calcium was deficient, supporting this idea. Our findings indicate that adaptive overexpression meets the cell's needs for maximizing the organism's adaptive capacity in the given environment and genetic context.
Collapse
Affiliation(s)
- Nozomu Saeki
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Chie Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuichi Eguchi
- Biomedical Business Center, RICOH Futures BU, Kanagawa, Japan
| | - Takayuki Sekito
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | | | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science, Wako, Japan
| | - Charles Boone
- RIKEN Center for Sustainable Resource Science, Wako, Japan
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hisao Moriya
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Robbins N, Ketela T, Kim SH, Cowen LE. Chemical-Genetic Approaches for Exploring Mode of Action of Antifungal Compounds in the Fungal Pathogen Candida albicans. Methods Mol Biol 2023; 2658:145-165. [PMID: 37024700 PMCID: PMC11019913 DOI: 10.1007/978-1-0716-3155-3_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Candida albicans is a prevalent fungal pathogen of humans that can cause both superficial and life-threatening disease, primarily in immunocompromised populations. Currently, antifungal drug classes available to treat fungal infections remain limited and the emergence of drug-resistant strains threatens antifungal efficacy, necessitating the discovery and development of additional therapeutics. The construction of the C. albicans double-barcoded heterozygous deletion collection (DBC) enables the rapid and systematic assessment of haploinsufficiency phenotypes in a pooled format. Specifically, this functional genomics resource can be used to identify heterozygous deletion mutants that are hypersensitive to compounds in order to define putative cellular targets and/or other modifiers of compound activity. Here, we describe protocols to characterize the mode of action of small molecules using the C. albicans DBC, including how to prepare compound-treated cultures, isolate genomic DNA, amplify strain-specific barcodes, and prepare DNA libraries for high-throughput sequencing. This technique provides a powerful approach to elucidate the compound mechanism of action in order to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Troy Ketela
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Guan M, Ji W, Xu Y, Yan L, Chen D, Li S, Zhang X. Molecular fingerprints of polar narcotic chemicals based on heterozygous essential gene knockout library in Saccharomyces cerevisiae. CHEMOSPHERE 2022; 308:136343. [PMID: 36087727 DOI: 10.1016/j.chemosphere.2022.136343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Cytotoxicity of non-polar narcotic chemicals can be predicted by quantitative structure activity relationship (QSAR) models, but the polar narcotic chemicals' actual cytotoxicity exceeds the predicted values by their chemical structures. This discrepancy indicates that the molecular mechanism by which polar narcotic chemicals exert their toxicity is unclear. Taking advantage of Saccharomyces cerevisiae (yeast) functional genome-wide heterozygous essential gene knockout mutants, we here have identified the specific molecular fingerprints of two main chemical structure groups (phenols and anilines) of polar narcotic chemicals (dichlorophen (DCP), 4-chlorophenol (4-CP), 2, 4, 6-trichlorophenol (TCP), 3, 4-dichloroaniline (DCA) and N-methylaniline (NMA)) and one non-polar narcotic chemical 2, 2, 2-trichloroethanol (TCE). Especially, we identify 33, 57, 54, 46, 59 and 53 responsive strains through exposure to TCE, DCP, 4-CP, TCP, DCA and NMA with three test concentrations, respectively, revealing that these polar narcotic chemicals have more responsive strains than the non-polar narcotic chemical. Remarkably, we find that the molecular fingerprints of polar narcotic chemicals in different chemical structure groups are obviously varied, particularly phenols and anilines have their own specific molecular fingerprints. Interestingly, our results demonstrate that the molecular toxicity mechanisms of anilines are associated with DNA replication, but phenols are related with pathway of RNA degradation. Additionally, we find that the two knockout strains (SME1 and DIS3) and the three knockout strains (TSC11, RSP5 and HSF1) can specifically respond to exposure to phenols and anilines, respectively. Thus, they may be served as potential biomarkers to distinguish phenols from anilines. Collectively, our works demonstrate that the functional genomic platform of yeast essential gene mutants can not only act as an effective tool to identify key specific molecular fingerprints for polar narcotic chemicals, but also help to understand the molecular mechanisms of polar narcotic chemicals.
Collapse
Affiliation(s)
- Miao Guan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China.
| | - Wenya Ji
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Yue Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China
| | - Lu Yan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China
| | - Dong Chen
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu, 210036, China
| | - Shengjie Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu, 210023, China; School of Food Science, Nanjing Xiaozhuang University, Jiangsu, Nanjing, 211171, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
11
|
Rosemary essential oil and its components 1,8-cineole and α-pinene induce ROS-dependent lethality and ROS-independent virulence inhibition in Candida albicans. PLoS One 2022; 17:e0277097. [DOI: 10.1371/journal.pone.0277097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The essential oil from Rosmarinus officinalis L., a composite mixture of plant-derived secondary metabolites, exhibits antifungal activity against virulent candidal species. Here we report the impact of rosemary oil and two of its components, the monoterpene α-pinene and the monoterpenoid 1,8-cineole, against Candida albicans, which induce ROS-dependent cell death at high concentrations and inhibit hyphal morphogenesis and biofilm formation at lower concentrations. The minimum inhibitory concentrations (100% inhibition) for both rosemary oil and 1,8-cineole were 4500 μg/ml and 3125 μg/ml for α-pinene, with the two components exhibiting partial synergy (FICI = 0.55 ± 0.07). At MIC and 1/2 MIC, rosemary oil and its components induced a generalized cell wall stress response, causing damage to cellular and organelle membranes, along with elevated chitin production and increased cell surface adhesion and elasticity, leading to complete vacuolar segregation, mitochondrial depolarization, elevated reactive oxygen species, microtubule dysfunction, and cell cycle arrest mainly at the G1/S phase, consequently triggering cell death. Interestingly, the same oils at lower fractional MIC (1/8-1/4) inhibited virulence traits, including reduction of mycelium (up to 2-fold) and biofilm (up to 4-fold) formation, through a ROS-independent mechanism.
Collapse
|
12
|
Vanderwaeren L, Dok R, Voordeckers K, Nuyts S, Verstrepen KJ. Saccharomyces cerevisiae as a Model System for Eukaryotic Cell Biology, from Cell Cycle Control to DNA Damage Response. Int J Mol Sci 2022; 23:11665. [PMID: 36232965 PMCID: PMC9570374 DOI: 10.3390/ijms231911665] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.
Collapse
Affiliation(s)
- Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Karin Voordeckers
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, Department M2S, KU Leuven, 3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|
13
|
Robbins N, Cowen LE. Genomic Approaches to Antifungal Drug Target Identification and Validation. Annu Rev Microbiol 2022; 76:369-388. [PMID: 35650665 PMCID: PMC10727914 DOI: 10.1146/annurev-micro-041020-094524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada;
| |
Collapse
|
14
|
Sehrawat U, Haimov O, Weiss B, Tamarkin-Ben Harush A, Ashkenazi S, Plotnikov A, Noiman T, Leshkowitz D, Stelzer G, Dikstein R. Inhibitors of eIF4G1-eIF1 uncover its regulatory role of ER/UPR stress-response genes independent of eIF2α-phosphorylation. Proc Natl Acad Sci U S A 2022; 119:e2120339119. [PMID: 35857873 PMCID: PMC9335335 DOI: 10.1073/pnas.2120339119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/27/2022] [Indexed: 01/22/2023] Open
Abstract
During translation initiation, eIF4G1 dynamically interacts with eIF4E and eIF1. While the role of eIF4E-eIF4G1 is well established, the regulatory functions of eIF4G1-eIF1 are poorly understood. Here, we report the identification of the eIF4G1-eIF1 inhibitors i14G1-10 and i14G1-12. i14G1s directly bind eIF4G1 and inhibit translation in vitro and in the cell, and their effects on translation are dependent on eIF4G1 levels. Translatome analyses revealed that i14G1s mimic eIF1 and eIF4G1 perturbations on the stringency of start codon selection and the opposing roles of eIF1-eIF4G1 in scanning-dependent and scanning-independent short 5' untranslated region (UTR) translation. Remarkably, i14G1s activate ER/unfolded protein response (UPR) stress-response genes via enhanced ribosome loading, elevated 5'UTR translation at near-cognate AUGs, and unexpected concomitant up-regulation of coding-region translation. These effects are, at least in part, independent of eIF2α-phosphorylation. Interestingly, eIF4G1-eIF1 interaction itself is negatively regulated by ER stress and mTOR inhibition. Thus, i14G1s uncover an unknown mechanism of ER/UPR translational stress response and are valuable research tools and potential drugs against diseases exhibiting dysregulated translation.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ora Haimov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ana Tamarkin-Ben Harush
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shaked Ashkenazi
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Plotnikov
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tzahi Noiman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dena Leshkowitz
- Department of Life Sciences Core Facilities, Bioinformatics Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gil Stelzer
- Department of Life Sciences Core Facilities, Bioinformatics Unit, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
15
|
Goh CJH, Cui L, Wong JH, Lewis J, Goh M, Kong KW, Yang LK, Alfatah M, Kanagasundaram Y, Hoon S, Arumugam P. Diethyl phthalate (DEP) perturbs nitrogen metabolism in Saccharomyces cerevisiae. Sci Rep 2022; 12:10237. [PMID: 35715465 PMCID: PMC9205984 DOI: 10.1038/s41598-022-14284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
Phthalates are ubiquitously used as plasticizers in various consumer care products. Diethyl phthalate (DEP), one of the main phthalates, elicits developmental and reproductive toxicities but the underlying mechanisms are not fully understood. Chemogenomic profiling of DEP in S. cerevisiae revealed that two transcription factors Stp1 and Dal81 involved in the Ssy1-Ptr5-Ssy5 (SPS) amino acid-sensing pathway provide resistance to DEP. Growth inhibition of yeast cells by DEP was stronger in poor nitrogen medium in comparison to nitrogen-rich medium. Addition of amino acids to nitrogen-poor medium suppressed DEP toxicity. Catabolism of amino acids via the Ehrlich pathway is required for suppressing DEP toxicity. Targeted metabolite analyses showed that DEP treatment alters the amino acid profile of yeast cells. We propose that DEP inhibits the growth of yeast cells by affecting nitrogen metabolism and discuss the implications of our findings on DEP-mediated toxic effects in humans.
Collapse
Affiliation(s)
| | - Liang Cui
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore, 138602, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Jacqueline Lewis
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Megan Goh
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Kiat Whye Kong
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, Singapore, 138671, Singapore
| | - Yoganathan Kanagasundaram
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Shawn Hoon
- Institute of Molecular and Cellular Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Prakash Arumugam
- Singapore Institute of Food and Biotechnology Innovation, 61 Biopolis Drive, Singapore, 138673, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
16
|
Chauvin A, Bergeron D, Vencic J, Lévesque D, Paquette B, Scott MS, Boisvert FM. Downregulation of KRAB zinc finger proteins in 5-fluorouracil resistant colorectal cancer cells. BMC Cancer 2022; 22:363. [PMID: 35379199 PMCID: PMC8981854 DOI: 10.1186/s12885-022-09417-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/15/2022] [Indexed: 12/23/2022] Open
Abstract
Radio-chemotherapy with 5-flu orouracil (5-FU) is the standard of care treatment for patients with colorectal cancer, but it is only effective for a third of them. Despite our understanding of the mechanism of action of 5-FU, drug resistance remains a significant limitation to the clinical use of 5-FU, as both intrinsic and acquired chemoresistance represents the major obstacles for the success of 5-FU-based chemotherapy. In order to identify the mechanism of acquired resistance, 5-FU chemoresistance was induced in CRC cell lines by passaging cells with increasing concentrations of 5-FU. To study global molecular changes, quantitative proteomics and transcriptomics analyses were performed on these cell lines, comparing the resistant cells as well as the effect of chemo and radiotherapy. Interestingly, a very high proportion of downregulated genes were annotated as transcription factors coding for Krüppel-associated box (KRAB) domain-containing zinc-finger proteins (KZFPs), the largest family of transcriptional repressors. Among nearly 350 KRAB-ZFPs, almost a quarter were downregulated after the induction of a 5-FU-resistance including a common one between the three CRC cell lines, ZNF649, whose role is still unknown. To confirm the observations of the proteomic and transcriptomic approaches, the abundance of 20 different KZFPs and control mRNAs was validated by RT-qPCR. In fact, several KZFPs were no longer detectable using qPCR in cell lines resistant to 5-FU, and the KZFPs that were downregulated only in one or two cell lines showed similar pattern of expression as measured by the omics approaches. This proteomic, transcriptomic and genomic analysis of intrinsic and acquired resistance highlights a possible new mechanism involved in the cellular adaptation to 5-FU and therefore identifies potential new therapeutic targets to overcome this resistance.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Danny Bergeron
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jean Vencic
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Dominique Lévesque
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - Michelle S Scott
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, Québec, J1E 4K8, Canada.
| |
Collapse
|
17
|
Sarsani V, Aldikacti B, He S, Zeinert R, Chien P, Flaherty P. Model-based identification of conditionally-essential genes from transposon-insertion sequencing data. PLoS Comput Biol 2022; 18:e1009273. [PMID: 35255084 PMCID: PMC8929702 DOI: 10.1371/journal.pcbi.1009273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 03/17/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The understanding of bacterial gene function has been greatly enhanced by recent advancements in the deep sequencing of microbial genomes. Transposon insertion sequencing methods combines next-generation sequencing techniques with transposon mutagenesis for the exploration of the essentiality of genes under different environmental conditions. We propose a model-based method that uses regularized negative binomial regression to estimate the change in transposon insertions attributable to gene-environment changes in this genetic interaction study without transformations or uniform normalization. An empirical Bayes model for estimating the local false discovery rate combines unique and total count information to test for genes that show a statistically significant change in transposon counts. When applied to RB-TnSeq (randomized barcode transposon sequencing) and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus using both total and unique count data the model was able to identify a set of conditionally beneficial or conditionally detrimental genes for each target condition that shed light on their functions and roles during various stress conditions.
Collapse
Affiliation(s)
- Vishal Sarsani
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Berent Aldikacti
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Shai He
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Rilee Zeinert
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Patrick Flaherty
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
18
|
Ottilie S, Luth MR, Hellemann E, Goldgof GM, Vigil E, Kumar P, Cheung AL, Song M, Godinez-Macias KP, Carolino K, Yang J, Lopez G, Abraham M, Tarsio M, LeBlanc E, Whitesell L, Schenken J, Gunawan F, Patel R, Smith J, Love MS, Williams RM, McNamara CW, Gerwick WH, Ideker T, Suzuki Y, Wirth DF, Lukens AK, Kane PM, Cowen LE, Durrant JD, Winzeler EA. Adaptive laboratory evolution in S. cerevisiae highlights role of transcription factors in fungal xenobiotic resistance. Commun Biol 2022; 5:128. [PMID: 35149760 PMCID: PMC8837787 DOI: 10.1038/s42003-022-03076-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
In vitro evolution and whole genome analysis were used to comprehensively identify the genetic determinants of chemical resistance in Saccharomyces cerevisiae. Sequence analysis identified many genes contributing to the resistance phenotype as well as numerous amino acids in potential targets that may play a role in compound binding. Our work shows that compound-target pairs can be conserved across multiple species. The set of 25 most frequently mutated genes was enriched for transcription factors, and for almost 25 percent of the compounds, resistance was mediated by one of 100 independently derived, gain-of-function SNVs found in a 170 amino acid domain in the two Zn2C6 transcription factors YRR1 and YRM1 (p < 1 × 10−100). This remarkable enrichment for transcription factors as drug resistance genes highlights their important role in the evolution of antifungal xenobiotic resistance and underscores the challenge to develop antifungal treatments that maintain potency. Ottilie et al. employ an experimental evolution approach to investigate the role of transcription factors in yeast chemical resistance. Most emergent mutations in resistant strains were enriched in transcription factor coding genes, highlighting their importance in drug resistance.
Collapse
Affiliation(s)
- Sabine Ottilie
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Madeline R Luth
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Erich Hellemann
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Eddy Vigil
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Prianka Kumar
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Andrea L Cheung
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Miranda Song
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Karla P Godinez-Macias
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Krypton Carolino
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Jennifer Yang
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Gisel Lopez
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Maureen Tarsio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Emmanuelle LeBlanc
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jake Schenken
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Felicia Gunawan
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Reysha Patel
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Joshua Smith
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA
| | - Melissa S Love
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - Roy M Williams
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.,Aspen Neuroscience, San Diego, CA, 92121, USA
| | - Case W McNamara
- Calibr, a division of The Scripps Research Institutes, La Jolla, CA, 92037, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, La Jolla, CA, 92037, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yo Suzuki
- Department of Synthetic Biology and Bioenergy, J. Craig Venter Institute, La Jolla, CA, 92037, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Amanda K Lukens
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, 02142, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, NY, 13210, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5G 1M1, Canada
| | - Jacob D Durrant
- Department of Biological Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA, 15260, USA
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
19
|
High-throughput platform for yeast morphological profiling predicts the targets of bioactive compounds. NPJ Syst Biol Appl 2022; 8:3. [PMID: 35087094 PMCID: PMC8795194 DOI: 10.1038/s41540-022-00212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
Morphological profiling is an omics-based approach for predicting intracellular targets of chemical compounds in which the dose-dependent morphological changes induced by the compound are systematically compared to the morphological changes in gene-deleted cells. In this study, we developed a reliable high-throughput (HT) platform for yeast morphological profiling using drug-hypersensitive strains to minimize compound use, HT microscopy to speed up data generation and analysis, and a generalized linear model to predict targets with high reliability. We first conducted a proof-of-concept study using six compounds with known targets: bortezomib, hydroxyurea, methyl methanesulfonate, benomyl, tunicamycin, and echinocandin B. Then we applied our platform to predict the mechanism of action of a novel diferulate-derived compound, poacidiene. Morphological profiling of poacidiene implied that it affects the DNA damage response, which genetic analysis confirmed. Furthermore, we found that poacidiene inhibits the growth of phytopathogenic fungi, implying applications as an effective antifungal agent. Thus, our platform is a new whole-cell target prediction tool for drug discovery.
Collapse
|
20
|
Huang MY, Joshi MB, Boucher MJ, Lee S, Loza LC, Gaylord EA, Doering TL, Madhani HD. Short homology-directed repair using optimized Cas9 in the pathogen Cryptococcus neoformans enables rapid gene deletion and tagging. Genetics 2022; 220:iyab180. [PMID: 34791226 PMCID: PMC8733451 DOI: 10.1093/genetics/iyab180] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cryptococcus neoformans, the most common cause of fungal meningitis, is a basidiomycete haploid budding yeast with a complete sexual cycle. Genome modification by homologous recombination is feasible using biolistic transformation and long homology arms, but the method is arduous and unreliable. Recently, multiple groups have reported the use of CRISPR-Cas9 as an alternative to biolistics, but long homology arms are still necessary, limiting the utility of this method. Since the S. pyogenes Cas9 derivatives used in prior studies were not optimized for expression in C. neoformans, we designed, synthesized, and tested a fully C. neoformans-optimized (Cno) Cas9. We found that a Cas9 harboring only common C. neoformans codons and a consensus C. neoformans intron together with a TEF1 promoter and terminator and a nuclear localization signal (Cno CAS9 or "CnoCAS9") reliably enabled genome editing in the widely used KN99α C. neoformans strain. Furthermore, editing was accomplished using donors harboring short (50 bp) homology arms attached to marker DNAs produced with synthetic oligonucleotides and PCR amplification. We also demonstrated that prior stable integration of CnoCAS9 further enhances both transformation and homologous recombination efficiency; importantly, this manipulation does not impact virulence in animals. We also implemented a universal tagging module harboring a codon-optimized fluorescent protein (mNeonGreen) and a tandem Calmodulin Binding Peptide-2X FLAG Tag that allows for both localization and purification studies of proteins for which the corresponding genes are modified by short homology-directed recombination. These tools enable short-homology genome engineering in C. neoformans.
Collapse
Affiliation(s)
- Manning Y Huang
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Meenakshi B Joshi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michael J Boucher
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sujin Lee
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Liza C Loza
- Department of Molecular Microbiology, Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Elizabeth A Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Hiten D Madhani
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
21
|
Assessment of genotoxic chemicals using chemogenomic profiling based on gene-knockout library in Saccharomyces cerevisiae. Toxicol In Vitro 2021; 79:105278. [PMID: 34843885 DOI: 10.1016/j.tiv.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/19/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
Understanding the adverse effects of genotoxic chemicals and identifying them effectively from non-genotoxic chemicals are of great worldwide concerns. Here, Saccharomyces cerevisiae (yeast) genome-wide single-gene knockout screening approach was conducted to assess two genotoxic chemicals (4-nitroquinoline-1-oxide (4-NQO) and formaldehyde (FA)) and environmental pollutant dichloroacetic acid (DCA, genotoxicity is controversial). DNA repair was significant enriched in the gene ontology (GO) biology process (BP) terms and KEGG pathways when exposed to low concentrations of 4-NQO and FA. Higher concentrations of 4-NQO and FA influenced some RNA metabolic and biosynthesis pathways. Moreover, replication and repair associated pathways were top ranked KEGG pathways with high fold-change for low concentrations of 4-NQO and FA. The similar gene profiles perturbed by DCA with three test concentrations identified, the common GO BP terms associated with aromatic amino acid family biosynthetic process and ubiquitin-dependent protein catabolic process via the multivesicular body sorting pathway. DCA has no obvious genotoxicity as there was no enriched DNA damage and repair pathways and fold-change of replication and repair KEGG pathways were very low. Five genes (RAD18, RAD59, MUS81, MMS4, and BEM4) could serve as candidate genes for genotoxic chemicals. Overall, the yeast functional genomic profiling showed great performance for assessing the signatures and potential molecular mechanisms of genotoxic chemicals.
Collapse
|
22
|
Safizadeh H, Simpkins SW, Nelson J, Li SC, Piotrowski JS, Yoshimura M, Yashiroda Y, Hirano H, Osada H, Yoshida M, Boone C, Myers CL. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical-Genetic Interactions. J Chem Inf Model 2021; 61:4156-4172. [PMID: 34318674 PMCID: PMC8479812 DOI: 10.1021/acs.jcim.0c00993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
A common strategy
for identifying molecules likely to possess a
desired biological activity is to search large databases of compounds
for high structural similarity to a query molecule that demonstrates
this activity, under the assumption that structural similarity is
predictive of similar biological activity. However, efforts to systematically
benchmark the diverse array of available molecular fingerprints and
similarity coefficients have been limited by a lack of large-scale
datasets that reflect biological similarities of compounds. To elucidate
the relative performance of these alternatives, we systematically
benchmarked 11 different molecular fingerprint encodings, each combined
with 13 different similarity coefficients, using a large set of chemical–genetic
interaction data from the yeast Saccharomyces cerevisiae as a systematic proxy for biological activity. We found that the
performance of different molecular fingerprints and similarity coefficients
varied substantially and that the all-shortest path fingerprints paired
with the Braun-Blanquet similarity coefficient provided superior performance
that was robust across several compound collections. We further proposed
a machine learning pipeline based on support vector machines that
offered a fivefold improvement relative to the best unsupervised approach.
Our results generally suggest that using high-dimensional chemical–genetic
data as a basis for refining molecular fingerprints can be a powerful
approach for improving prediction of biological functions from chemical
structures.
Collapse
Affiliation(s)
- Hamid Safizadeh
- Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.,Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Scott W Simpkins
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Justin Nelson
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Jeff S Piotrowski
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Mami Yoshimura
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Yoko Yashiroda
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Hiroyuki Hirano
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan.,Department of Biotechnology and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo City, Tokyo 113-8654, Japan
| | - Charles Boone
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,RIKEN Center for Sustainable Resource Science (CSRS), Wako, Saitama 351-0198, Japan
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States.,Bioinformatics and Computational Biology Graduate Program, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
23
|
Ogbede JU, Giaever G, Nislow C. A genome-wide portrait of pervasive drug contaminants. Sci Rep 2021; 11:12487. [PMID: 34127714 PMCID: PMC8203678 DOI: 10.1038/s41598-021-91792-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 11/08/2022] Open
Abstract
Using a validated yeast chemogenomic platform, we characterized the genome-wide effects of several pharmaceutical contaminants, including three N-nitrosamines (NDMA, NDEA and NMBA), two related compounds (DMF and 4NQO) and several of their metabolites. A collection of 4800 non-essential homozygous diploid yeast deletion strains were screened in parallel and the strain abundance was quantified by barcode sequencing. These data were used to rank deletion strains representing genes required for resistance to the compounds to delineate affected cellular pathways and to visualize the global cellular effects of these toxins in an easy-to-use searchable database. Our analysis of the N-nitrosamine screens uncovered genes (via their corresponding homozygous deletion mutants) involved in several evolutionarily conserved pathways, including: arginine biosynthesis, mitochondrial genome integrity, vacuolar protein sorting and DNA damage repair. To investigate why NDMA, NDEA and DMF caused fitness defects in strains lacking genes of the arginine pathway, we tested several N-nitrosamine metabolites (methylamine, ethylamine and formamide), and found they also affected arginine pathway mutants. Notably, each of these metabolites has the potential to produce ammonium ions during their biotransformation. We directly tested the role of ammonium ions in N-nitrosamine toxicity by treatment with ammonium sulfate and we found that ammonium sulfate also caused a growth defect in arginine pathway deletion strains. Formaldehyde, a metabolite produced from NDMA, methylamine and formamide, and which is known to cross-link free amines, perturbed deletion strains involved in chromatin remodeling and DNA repair pathways. Finally, co-administration of N-nitrosamines with ascorbic or ferulic acid did not relieve N-nitrosamine toxicity. In conclusion, we used parallel deletion mutant analysis to characterize the genes and pathways affected by exposure to N-nitrosamines and related compounds, and provide the data in an accessible, queryable database.
Collapse
Affiliation(s)
- Joseph Uche Ogbede
- Genome Science & Technology Graduate Program, University of British Columbia, Vancouver, Canada
| | - Guri Giaever
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, Canada
| | - Corey Nislow
- Genome Science & Technology Graduate Program, University of British Columbia, Vancouver, Canada.
- Faculty of Pharmaceutical Science, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
24
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
25
|
Elsadek LA, Matthews JH, Nishimura S, Nakatani T, Ito A, Gu T, Luo D, Salvador-Reyes LA, Paul VJ, Kakeya H, Luesch H. Genomic and Targeted Approaches Unveil the Cell Membrane as a Major Target of the Antifungal Cytotoxin Amantelide A. Chembiochem 2021; 22:1790-1799. [PMID: 33527693 DOI: 10.1002/cbic.202000685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Amantelide A, a polyhydroxylated macrolide isolated from a marine cyanobacterium, displays broad-spectrum activity against mammalian cells, bacterial pathogens, and marine fungi. We conducted comprehensive mechanistic studies to identify the molecular targets and pathways affected by amantelide A. Our investigations relied on chemical structure similarities with compounds of known mechanisms, yeast knockout mutants, yeast chemogenomic profiling, and direct biochemical and biophysical methods. We established that amantelide A exerts its antifungal action by binding to ergosterol-containing membranes followed by pore formation and cell death, a mechanism partially shared with polyene antifungals. Binding assays demonstrated that amantelide A also binds to membranes containing epicholesterol or mammalian cholesterol, thus suggesting that the cytotoxicity to mammalian cells might be due to its affinity to cholesterol-containing membranes. However, membrane interactions were not completely dependent on sterols. Yeast chemogenomic profiling suggested additional direct or indirect effects on actin. Accordingly, we performed actin polymerization assays, which suggested that amantelide A also promotes actin polymerization in cell-free systems. However, the C-33 acetoxy derivative amantelide B showed a similar effect on actin dynamics in vitro but no significant activity against yeast. Overall, these studies suggest that the membrane effects are the most functionally relevant for amantelide A mechanism of action.
Collapse
Affiliation(s)
- Lobna A Elsadek
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takahiro Nakatani
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Airi Ito
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL 32610, USA
| | - Danmeng Luo
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| | - Lilibeth A Salvador-Reyes
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, 1100, Philippines
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Ft., Pierce, FL 34949, USA
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA.,Center for Natural Products,Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Hesketh A, Bucca G, Smith CP, Hong HJ. Chemotranscriptomic Profiling Defines Drug-Specific Signatures of the Glycopeptide Antibiotics Dalbavancin, Vancomycin and Chlorobiphenyl-Vancomycin in a VanB-Type-Resistant Streptomycete. Front Microbiol 2021; 12:641756. [PMID: 33717038 PMCID: PMC7947799 DOI: 10.3389/fmicb.2021.641756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 11/25/2022] Open
Abstract
Dalbavancin, vancomycin and chlorobiphenyl-vancomycin share a high degree of structural similarity and the same primary mode of drug action. All inhibit bacterial cell wall biosynthesis through complexation with intermediates in peptidoglycan biosynthesis mediated via interaction with peptidyl-d-alanyl-d-alanine (d-Ala-d-Ala) residues present at the termini of the intermediates. VanB-type glycopeptide resistance in bacteria encodes an inducible reprogramming of bacterial cell wall biosynthesis that generates precursors terminating with d-alanyl-d-lactate (d-Ala-d-Lac). This system in Streptomyces coelicolor confers protection against the natural product vancomycin but not dalbavancin or chlorobiphenyl-vancomycin, which are semi-synthetic derivatives and fail to sufficiently activate the inducible VanB-type sensory response. We used transcriptome profiling by RNAseq to identify the gene expression signatures elucidated in S. coelicolor in response to the three different glycopeptide compounds. An integrated comparison of the results defines both the contribution of the VanB resistance system to the control of changes in gene transcription and the impact at the transcriptional level of the structural diversity present in the glycopeptide antibiotics used. Dalbavancin induces markedly more extensive changes in the expression of genes required for transport processes, RNA methylation, haem biosynthesis and the biosynthesis of the amino acids arginine and glutamine. Chlorobiphenyl-vancomycin exhibits specific effects on tryptophan and calcium-dependent antibiotic biosynthesis and has a stronger repressive effect on translation. Vancomycin predictably has a uniquely strong effect on the genes controlled by the VanB resistance system and also impacts metal ion homeostasis and leucine biosynthesis. Leaderless gene transcription is disfavoured in the core transcriptional up- and down-regulation taking place in response to all the glycopeptide antibiotics, while HrdB-dependent transcripts are favoured in the down-regulated group. This study illustrates the biological impact of peripheral changes to glycopeptide antibiotic structure and could inform the design of future semi-synthetic glycopeptide derivatives.
Collapse
Affiliation(s)
- Andy Hesketh
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Giselda Bucca
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Colin P. Smith
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Hee-Jeon Hong
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
27
|
Tocci N, Weil T, Perenzoni D, Moretto M, Nürk N, Madriñán S, Ferrazza R, Guella G, Mattivi F. Potent Antifungal Properties of Dimeric Acylphloroglucinols from Hypericum mexicanum and Mechanism of Action of a Highly Active 3'Prenyl Uliginosin B. Metabolites 2020; 10:metabo10110459. [PMID: 33202828 PMCID: PMC7697946 DOI: 10.3390/metabo10110459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023] Open
Abstract
The success of antifungal therapies is often hindered by the limited number of available drugs. To close the gap in the antifungal pipeline, the search of novel leads is of primary importance, and here the exploration of neglected plants has great promise for the discovery of new principles. Through bioassay-guided isolation, uliginosin B and five new dimeric acylphloroglucinols (uliginosins C-D, and 3′prenyl uliginosins B-D), besides cembrenoids, have been isolated from the lipophilic extract of Hypericum mexicanum. Their structures were elucidated by a combination of Liquid Chromatography - Mass Spectrometry LC-MS and Nuclear Magnetic Resonance (NMR) measurements. The compounds showed strong anti-Candida activity, also against fluconazole-resistant strains, with fungal growth inhibition properties at concentrations ranging from 3 to 32 µM, and reduced or absent cytotoxicity against human cell lines. A chemogenomic screen of 3′prenyl uliginosin B revealed target genes that are important for cell cycle regulation and cytoskeleton assembly in fungi. Taken together, our study suggests dimeric acylphloroglucinols as potential candidates for the development of alternative antifungal therapies.
Collapse
Affiliation(s)
- Noemi Tocci
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy; (N.T.); (T.W.); (D.P.); (M.M.)
| | - Tobias Weil
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy; (N.T.); (T.W.); (D.P.); (M.M.)
| | - Daniele Perenzoni
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy; (N.T.); (T.W.); (D.P.); (M.M.)
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy; (N.T.); (T.W.); (D.P.); (M.M.)
| | - Nicolai Nürk
- Department of Plant Systematics, BayCEER, University of Bayreuth, 95447 Bayreuth, Germany;
| | - Santiago Madriñán
- Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá 111711, Colombia;
- Jardín Botánico de Cartagena “Guillermo Piñeres”, Turbaco, Bolívar 131007, Colombia
| | - Ruggero Ferrazza
- Department of Physics, University of Trento, 38123 Trento, Italy;
| | - Graziano Guella
- Department of Physics, University of Trento, 38123 Trento, Italy;
- Correspondence: (G.G.); (F.M.)
| | - Fulvio Mattivi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy; (N.T.); (T.W.); (D.P.); (M.M.)
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38122 Trento, Italy
- Correspondence: (G.G.); (F.M.)
| |
Collapse
|
28
|
Brockway S, Wang G, Jackson JM, Amici DR, Takagishi SR, Clutter MR, Bartom ET, Mendillo ML. Quantitative and multiplexed chemical-genetic phenotyping in mammalian cells with QMAP-Seq. Nat Commun 2020; 11:5722. [PMID: 33184288 PMCID: PMC7661543 DOI: 10.1038/s41467-020-19553-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
Chemical-genetic interaction profiling in model organisms has proven powerful in providing insights into compound mechanism of action and gene function. However, identifying chemical-genetic interactions in mammalian systems has been limited to low-throughput or computational methods. Here, we develop Quantitative and Multiplexed Analysis of Phenotype by Sequencing (QMAP-Seq), which leverages next-generation sequencing for pooled high-throughput chemical-genetic profiling. We apply QMAP-Seq to investigate how cellular stress response factors affect therapeutic response in cancer. Using minimal automation, we treat pools of 60 cell types—comprising 12 genetic perturbations in five cell lines—with 1440 compound-dose combinations, generating 86,400 chemical-genetic measurements. QMAP-Seq produces precise and accurate quantitative measures of acute drug response comparable to gold standard assays, but with increased throughput at lower cost. Moreover, QMAP-Seq reveals clinically actionable drug vulnerabilities and functional relationships involving these stress response factors, many of which are activated in cancer. Thus, QMAP-Seq provides a broadly accessible and scalable strategy for chemical-genetic profiling in mammalian cells. Identifying chemical-genetic interactions in mammalian cells is limited to low-throughput or computational methods. Here, the authors present QMAP-Seq, a broadly accessible and scalable approach that uses NGS for pooled high-throughput chemical-genetic profiling in mammalian cells.
Collapse
Affiliation(s)
- Sonia Brockway
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Geng Wang
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Jasen M Jackson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - David R Amici
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Seesha R Takagishi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Matthew R Clutter
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.,Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Marc L Mendillo
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Genome Profiling for Aflatoxin B 1 Resistance in Saccharomyces cerevisiae Reveals a Role for the CSM2/SHU Complex in Tolerance of Aflatoxin B 1-Associated DNA Damage. G3-GENES GENOMES GENETICS 2020; 10:3929-3947. [PMID: 32994210 PMCID: PMC7642924 DOI: 10.1534/g3.120.401723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to the mycotoxin aflatoxin B1 (AFB1) strongly correlates with hepatocellular carcinoma (HCC). P450 enzymes convert AFB1 into a highly reactive epoxide that forms unstable 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 (AFB1-N 7-Gua) DNA adducts, which convert to stable mutagenic AFB1 formamidopyrimidine (FAPY) DNA adducts. In CYP1A2-expressing budding yeast, AFB1 is a weak mutagen but a potent recombinagen. However, few genes have been identified that confer AFB1 resistance. Here, we profiled the yeast genome for AFB1 resistance. We introduced the human CYP1A2 into ∼90% of the diploid deletion library, and pooled samples from CYP1A2-expressing libraries and the original library were exposed to 50 μM AFB1 for 20 hs. By using next generation sequencing (NGS) to count molecular barcodes, we initially identified 86 genes from the CYP1A2-expressing libraries, of which 79 were confirmed to confer AFB1 resistance. While functionally diverse genes, including those that function in proteolysis, actin reorganization, and tRNA modification, were identified, those that function in postreplication DNA repair and encode proteins that bind to DNA damage were over-represented, compared to the yeast genome, at large. DNA metabolism genes also included those functioning in checkpoint recovery and replication fork maintenance, emphasizing the potency of the mycotoxin to trigger replication stress. Among genes involved in postreplication repair, we observed that CSM2, a member of the CSM2 (SHU) complex, functioned in AFB1-associated sister chromatid recombination while suppressing AFB1-associated mutations. These studies thus broaden the number of AFB1 resistance genes and have elucidated a mechanism of error-free bypass of AFB1-associated DNA adducts.
Collapse
|
30
|
Guan M, Xia P, Tian M, Chen D, Zhang X. Molecular fingerprints of conazoles via functional genomic profiling of Saccharomyces cerevisiae. Toxicol In Vitro 2020; 69:104998. [PMID: 32919014 DOI: 10.1016/j.tiv.2020.104998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
Conazoles were designed to inhibit ergosterol biosynthesis. Conazoles have been widely used as agricultural fungicides and are frequently detected in the environment. Although conazoles have been reported to have adverse effects, such as potential carcinogenic effects, the underlying molecular mechanisms of toxicity remain unclear. Here, the molecular fingerprints of five conazoles (propiconazole (Pro), penconazole (Pen), tebuconazole (Teb), flusilazole (Flu) and epoxiconazole (Epo)) were assessed in Saccharomyces cerevisiae (yeast) via functional genome-wide knockout mutant profiling. A total of 169 (4.49%), 176 (4.67%), 198 (5.26%), 218 (5.79%) and 173 (4.59%) responsive genes were identified at three concentrations (IC50, IC20 and IC10) of Pro, Pen, Teb, Flu and Epo, respectively. The five conazoles tended to have similar gene mutant fingerprints and toxicity mechanisms. "Ribosome" (sce03010) and "cytoplasmic translation" (GO: 0002181) were the common KEGG pathway and GO biological process term by gene set enrichment analysis of the responsive genes, which suggested that conazoles influenced protein synthesis. Conazoles also affected fatty acids synthesis because "biosynthesis of unsaturated fatty acids" pathway was among the top-ranked KEGG pathways. Moreover, two genes, YGR037C (acyl-CoA-binding protein) and YCR034W (fatty acid elongase), were key fingerprints of conazoles because they played vital roles in conazole-induced toxicity. Overall, the fingerprints derived from the yeast functional genomic screening provide an alternative approach to elucidate the molecular mechanisms of environmental pollutant conazoles.
Collapse
Affiliation(s)
- Miao Guan
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Rd., Nanjing, Jiangsu 210023, China.
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Mingming Tian
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Dong Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China.
| |
Collapse
|
31
|
SIR2 Expression Noise Can Generate Heterogeneity in Viability but Does Not Affect Cell-to-Cell Epigenetic Silencing of Subtelomeric URA3 in Yeast. G3-GENES GENOMES GENETICS 2020; 10:3435-3443. [PMID: 32727919 PMCID: PMC7466964 DOI: 10.1534/g3.120.401589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatin structure clearly modulates gene expression noise, but the reverse influence has never been investigated, namely how the cell-to-cell expression heterogeneity of chromatin modifiers may generate variable rates of epigenetic modification. Sir2 is a well-characterized histone deacetylase of the Sirtuin family. It strongly influences chromatin silencing, especially at telomeres, subtelomeres and rDNA. This ability to influence epigenetic landscapes makes it a good model to study the largely unexplored interplay between gene expression noise and other epigenetic processes leading to phenotypic diversification. Here, we addressed this question by investigating whether noise in the expression of SIR2 was associated with cell-to-cell heterogeneity in the frequency of epigenetic silencing at subtelomeres in Saccharomyces cerevisiae Using cell sorting to isolate subpopulations with various expression levels, we found that heterogeneity in the cellular concentration of Sir2 does not lead to heterogeneity in the epigenetic silencing of subtelomeric URA3 between these subpopulations. We also noticed that SIR2 expression noise can generate cell-to-cell variability in viability, with lower levels being associated with better viability. This work shows that SIR2 expression fluctuations are not sufficient to generate cell-to-cell heterogeneity in the epigenetic silencing of URA3 at subtelomeres in Saccharomyces cerevisiae but can strongly affect cellular viability.
Collapse
|
32
|
Xue A, Robbins N, Cowen LE. Advances in fungal chemical genomics for the discovery of new antifungal agents. Ann N Y Acad Sci 2020; 1496:5-22. [PMID: 32860238 DOI: 10.1111/nyas.14484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Invasive fungal infections have escalated from a rare curiosity to a major cause of human mortality around the globe. This is in part due to a scarcity in the number of antifungal drugs available to combat mycotic disease, making the discovery of novel bioactive compounds and determining their mode of action of utmost importance. The development and application of chemical genomic assays using the model yeast Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of diverse molecules in a living cell. Furthermore, complementary assays are continually being developed in fungal pathogens, most notably Candida albicans and Cryptococcus neoformans, to elucidate compound mechanism of action directly in the pathogen of interest. Collectively, the suite of chemical genetic assays that have been developed in multiple fungal species enables the identification of candidate drug target genes, as well as genes involved in buffering drug target pathways, and genes involved in general cellular responses to small molecules. In this review, we examine current yeast chemical genomic assays and highlight how such resources provide powerful tools that can be utilized to bolster the antifungal pipeline.
Collapse
Affiliation(s)
- Alice Xue
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Tranter D, Filipuzzi I, Lochmann T, Knapp B, Kellosalo J, Estoppey D, Pistorius D, Meissner A, Paavilainen VO, Hoepfner D. Kendomycin Cytotoxicity against Bacterial, Fungal, and Mammalian Cells Is Due to Cation Chelation. JOURNAL OF NATURAL PRODUCTS 2020; 83:965-971. [PMID: 32182062 PMCID: PMC7497661 DOI: 10.1021/acs.jnatprod.9b00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Kendomycin is a small-molecule natural product that has gained significant attention due to reported cytotoxicity against pathogenic bacteria and fungi as well as a number of cancer cell lines. Despite significant biomedical interest and attempts to reveal its mechanism of action, the cellular target of kendomycin remains disputed. Herein it is shown that kendomycin induces cellular responses indicative of cation stress comparable to the effects of established iron chelators. Furthermore, addition of excess iron and copper attenuated kendomycin cytotoxicity in bacteria, yeast, and mammalian cells. Finally, NMR analysis demonstrated a direct interaction with cations, corroborating a close link between the observed kendomycin polypharmacology across different species and modulation of iron and/or copper levels.
Collapse
Affiliation(s)
- Dale Tranter
- Institute
of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Ireos Filipuzzi
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Thomas Lochmann
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Britta Knapp
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Juho Kellosalo
- Institute
of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - David Estoppey
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Dominik Pistorius
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Axel Meissner
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| | | | - Dominic Hoepfner
- Novartis
Institutes for BioMedical Research, 4056 Basel, Switzerland
| |
Collapse
|
34
|
Lyu J, Wang K, Ye M. Modification-free approaches to screen drug targets at proteome level. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Liang X, Luo D, Luesch H. Advances in exploring the therapeutic potential of marine natural products. Pharmacol Res 2019; 147:104373. [PMID: 31351913 PMCID: PMC6839689 DOI: 10.1016/j.phrs.2019.104373] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/26/2022]
Abstract
Marine natural products represent novel and diverse chemotypes that serve as templates for the discovery and development of therapeutic agents with distinct mechanisms of action. These genetically encoded compounds produced by an evolutionary optimized biosynthetic machinery are usually quite complex and can be difficult to recreate in the laboratory. The isolation from the source organism results in limited amount of material; however, the development of advanced NMR technologies and dereplication strategies has enabled the structure elucidation on small scale. In order to rigorously explore the therapeutic potential of marine natural products and advance them further, the biological characterization has to keep pace with the chemical characterization. The limited marine natural product supply has been a serious challenge for thorough investigation of the biological targets. Several marine drugs have reached the markets or are in clinical trials, where those challenges have been overcome, including through the development of scalable syntheses. However, the identification of mechanisms of action of marine natural products early in the discovery process is potentially game changing, since effectively linking marine natural products to potential therapeutic applications in turn triggers motivation to tackle challenging syntheses and solve the supply problem. An increasing number of sensitive technologies and methods have been developed in recent years, some of which have been successfully applied to marine natural products, increasing the value of these compounds with respect to their biomedical utility. In this review, we discuss advances in overcoming the bottlenecks in marine natural product research, emphasizing on the development and advances of diverse target identification technologies applicable for marine natural product research.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, Florida, 32610, United States.
| |
Collapse
|
36
|
Alfatah M, Wong JH, Kong KW, Utama F, Hoon S, Arumugam P. Chemical-genetic interaction landscape of mono-(2-ethylhexyl)-phthalate using chemogenomic profiling in yeast. CHEMOSPHERE 2019; 228:219-231. [PMID: 31029968 DOI: 10.1016/j.chemosphere.2019.04.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/07/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Integration of chemical-genetic interaction data with biological functions provides a mechanistic understanding of how toxic compounds affect cells. Mono-(2-ethylhexyl)-phthalate (MEHP) is an active metabolite of di-(2-ethylhexyl)-phthalate (DEHP), a commonly used plasticizer. MEHP adversely affects human health causing hepatotoxicity and reproductive toxicity. How MEHP affects cellular physiology is not fully understood. We utilized a genome-wide competitive fitness-based assay called 'chemogenomic profiling' to determine the genetic interaction map of MEHP in Saccharomyces cerevisiae. Gene Ontology enrichment analysis of 218 genes that provide resistance to MEHP indicated that MEHP affects seven cellular processes namely: (1) cellular amino acid biosynthetic process, (2) sterol biosynthetic process, (3) cellular transport, (4) transcriptional and translational regulation, (5) protein glycosylation, (6) cytokinesis and cell morphogenesis and (7) ionic homeostasis. We show that MEHP protects yeast cells from membrane perturbing agents such as amphotericin B, dihydrosphingosine and phytosphingosine. Moreover, we also demonstrate that MEHP compromises the integrity of the yeast plasma membrane and cell wall. Our work provides a basis for further investigation of MEHP toxicity in humans.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12 Proteos, Singapore 13867, Singapore
| | - Felix Utama
- School of Chemical and Life Sciences, Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore
| | - Shawn Hoon
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12 Proteos, Singapore 13867, Singapore
| | - Prakash Arumugam
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| |
Collapse
|
37
|
Genomic Identification of the TOR Signaling Pathway as a Target of the Plant Alkaloid Antofine in the Phytopathogen Fusarium graminearum. mBio 2019; 10:mBio.00792-19. [PMID: 31186319 PMCID: PMC6561021 DOI: 10.1128/mbio.00792-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Fusarium head blight caused by the fungal pathogen Fusarium graminearum is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for F. graminearum pathogenicity. Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen Fusarium graminearum, the cause of Fusarium head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in F. graminearum using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in F. graminearum. The Fusarium homologues of two targets, glutamate dehydrogenase (FgGDH) and resistance to rapamycin deletion 2 (FgRRD2), can bind antofine. Of the two genes, only the Fgrrd2 knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in F. graminearum. Mechanistically, we demonstrate that antofine disrupts the interaction between FgRRD2 and FgTap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies.
Collapse
|
38
|
Wong JH, Alfatah M, Kong KW, Hoon S, Yeo WL, Ching KC, Jie Hui Goh C, Zhang MM, Lim YH, Wong FT, Arumugam P. Chemogenomic profiling in yeast reveals antifungal mode-of-action of polyene macrolactam auroramycin. PLoS One 2019; 14:e0218189. [PMID: 31181115 PMCID: PMC6557514 DOI: 10.1371/journal.pone.0218189] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/28/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we report antifungal activity of auroramycin against Candida albicans, Candida tropicalis, and Cryptococcus neoformans. Auroramycin, a potent antimicrobial doubly glycosylated 24-membered polyene macrolactam, was previously isolated and characterized, following CRISPR-Cas9 mediated activation of a silent polyketide synthase biosynthetic gene cluster in Streptomyces rosesporous NRRL 15998. Chemogenomic profiling of auroramycin in yeast has linked its antifungal bioactivity to vacuolar transport and membrane organization. This was verified by disruption of vacuolar structure and membrane integrity of yeast cells with auroramycin treatment. Addition of salt but not sorbitol to the medium rescued the growth of auroramycin-treated yeast cells suggesting that auroramycin causes ionic stress. Furthermore, auroramycin caused hyperpolarization of the yeast plasma membrane and displayed a synergistic interaction with cationic hygromycin. Our data strongly suggest that auroramycin inhibits yeast cells by causing leakage of cations from the cytoplasm. Thus, auroramycin’s mode-of-action is distinct from known antifungal polyenes, reinforcing the importance of natural products in the discovery of new anti-infectives.
Collapse
Affiliation(s)
| | | | | | - Shawn Hoon
- Molecular Engineering Laboratory, Singapore
| | - Wan Lin Yeo
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Singapore
| | - Kuan Chieh Ching
- Organic Chemistry, Institute of Chemical and Engineering Sciences, Singapore
| | | | - Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Institute of Chemical and Engineering Sciences, Singapore
| | - Yee Hwee Lim
- Organic Chemistry, Institute of Chemical and Engineering Sciences, Singapore
| | | | | |
Collapse
|
39
|
Xie B, Becker E, Stuparevic I, Wery M, Szachnowski U, Morillon A, Primig M. The anti-cancer drug 5-fluorouracil affects cell cycle regulators and potential regulatory long non-coding RNAs in yeast. RNA Biol 2019; 16:727-741. [PMID: 30760080 PMCID: PMC6546400 DOI: 10.1080/15476286.2019.1581596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/16/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022] Open
Abstract
5-fluorouracil (5-FU) was isolated as an inhibitor of thymidylate synthase, which is important for DNA synthesis. The drug was later found to also affect the conserved 3'-5' exoribonuclease EXOSC10/Rrp6, a catalytic subunit of the RNA exosome that degrades and processes protein-coding and non-coding transcripts. Work on 5-FU's cytotoxicity has been focused on mRNAs and non-coding transcripts such as rRNAs, tRNAs and snoRNAs. However, the effect of 5-FU on long non-coding RNAs (lncRNAs), which include regulatory transcripts important for cell growth and differentiation, is poorly understood. RNA profiling of synchronized 5-FU treated yeast cells and protein assays reveal that the drug specifically inhibits a set of cell cycle regulated genes involved in mitotic division, by decreasing levels of the paralogous Swi5 and Ace2 transcriptional activators. We also observe widespread accumulation of different lncRNA types in treated cells, which are typically present at high levels in a strain lacking EXOSC10/Rrp6. 5-FU responsive lncRNAs include potential regulatory antisense transcripts that form double-stranded RNAs (dsRNAs) with overlapping sense mRNAs. Some of these transcripts encode proteins important for cell growth and division, such as the transcription factor Ace2, and the RNA exosome subunit EXOSC6/Mtr3. In addition to revealing a transcriptional effect of 5-FU action via DNA binding regulators involved in cell cycle progression, our results have implications for the function of putative regulatory lncRNAs in 5-FU mediated cytotoxicity. The data raise the intriguing possibility that the drug deregulates lncRNAs/dsRNAs involved in controlling eukaryotic cell division, thereby highlighting a new class of promising therapeutical targets.
Collapse
Affiliation(s)
- Bingning Xie
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Emmanuelle Becker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
- Univ Rennes, Inria, CNRS, IRISA F-35000, Rennes, France
| | - Igor Stuparevic
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Ugo Szachnowski
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL UniversityCNRS UMR 3244, Université Pierre et Marie Curie, Paris, France
| | - Michael Primig
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Rennes, France
| |
Collapse
|
40
|
Tackling Cancer with Yeast-Based Technologies. Trends Biotechnol 2019; 37:592-603. [DOI: 10.1016/j.tibtech.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022]
|
41
|
Sokolov A, Ashenden S, Sahin N, Lewis R, Erdem N, Ozaltan E, Bender A, Roth FP, Cokol M. Characterizing ABC-Transporter Substrate-Likeness Using a Clean-Slate Genetic Background. Front Pharmacol 2019; 10:448. [PMID: 31105571 PMCID: PMC6494965 DOI: 10.3389/fphar.2019.00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/08/2019] [Indexed: 12/02/2022] Open
Abstract
Mutations in ATP Binding Cassette (ABC)-transporter genes can have major effects on the bioavailability and toxicity of the drugs that are ABC-transporter substrates. Consequently, methods to predict if a drug is an ABC-transporter substrate are useful for drug development. Such methods traditionally relied on literature curated collections of ABC-transporter dependent membrane transfer assays. Here, we used a single large-scale dataset of 376 drugs with relative efficacy on an engineered yeast strain with all ABC-transporter genes deleted (ABC-16), to explore the relationship between a drug’s chemical structure and ABC-transporter substrate-likeness. We represented a drug’s chemical structure by an array of substructure keys and explored several machine learning methods to predict the drug’s efficacy in an ABC-16 yeast strain. Gradient-Boosted Random Forest models outperformed all other methods with an AUC of 0.723. We prospectively validated the model using new experimental data and found significant agreement with predictions. Our analysis expands the previously reported chemical substructures associated with ABC-transporter substrates and provides an alternative means to investigate ABC-transporter substrate-likeness.
Collapse
Affiliation(s)
- Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Stephanie Ashenden
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.,Discovery Sciences, IMed Biotech Unit, AstraZeneca R&D, Cambridge, United Kingdom
| | - Nil Sahin
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.,Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Richard Lewis
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nurdan Erdem
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Elif Ozaltan
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics and Computer Science, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Murat Cokol
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, United States.,Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.,Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Axcella Health, Cambridge, MA, United States
| |
Collapse
|
42
|
Sinha S, Nge CE, Leong CY, Ng V, Crasta S, Alfatah M, Goh F, Low KN, Zhang H, Arumugam P, Lezhava A, Chen SL, Kanagasundaram Y, Ng SB, Eisenhaber F, Eisenhaber B. Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723. BMC Genomics 2019; 20:374. [PMID: 31088369 PMCID: PMC6518819 DOI: 10.1186/s12864-019-5762-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Background Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis. Results Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined. Conclusions We describe the NRPS-t1PKS cluster ‘BIIRfg’ compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene. Electronic supplementary material The online version of this article (10.1186/s12864-019-5762-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Swati Sinha
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| | - Choy-Eng Nge
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Chung Yan Leong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Veronica Ng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Sharon Crasta
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Falicia Goh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Kia-Ngee Low
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Huibin Zhang
- Genome Institue of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Republic of Singapore
| | - Prakash Arumugam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Alexander Lezhava
- Genome Institue of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Republic of Singapore
| | - Swaine L Chen
- Genome Institue of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Republic of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Siew Bee Ng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.,School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| |
Collapse
|
43
|
Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research? Drug Resist Updat 2019; 42:22-34. [PMID: 30822675 DOI: 10.1016/j.drup.2019.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
The difficulty of manipulation and limited availability of genetic tools for use in many pathogenic fungi hamper fast and adequate investigation of cellular metabolism and consequent possibilities for antifungal therapies. S. cerevisiae is a model organism that is used to study many eukaryotic systems. In this review, we analyse the potency and relevance of this model system in investigating fungal susceptibility to azole drugs. Although many of the concepts apply to multiple pathogenic fungi, for the sake of simplicity, we will focus on the validity of using S. cerevisiae as a model organism for two Candida species, C. albicans and C. glabrata. Apart from the general benefits, we explore how S. cerevisiae can specifically be used to improve our knowledge on azole drug resistance and enables fast and efficient screening for novel drug targets in combinatorial therapy. We consider the shortcomings of the model system, yet conclude that it is still opportune to use S. cerevisiae as a model system for pathogenic fungi in this era.
Collapse
|
44
|
Wensing L, Sharma J, Uthayakumar D, Proteau Y, Chavez A, Shapiro RS. A CRISPR Interference Platform for Efficient Genetic Repression in Candida albicans. mSphere 2019; 4:e00002-19. [PMID: 30760609 PMCID: PMC6374589 DOI: 10.1128/msphere.00002-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fungal pathogens are emerging as an important cause of human disease, and Candida albicans is among the most common causative agents of fungal infections. Studying this fungal pathogen is of the utmost importance and necessitates the development of molecular technologies to perform comprehensive genetic and functional genomic analysis. Here, we designed and developed a novel clustered regularly interspaced short palindromic repeat interference (CRISPRi) system for targeted genetic repression in C. albicans We engineered a nuclease-dead Cas9 (dCas9) construct that, paired with a guide RNA targeted to the promoter of an endogenous gene, is capable of targeting that gene for transcriptional repression. We further optimized a favorable promoter locus to achieve repression and demonstrated that fusion of dCas9 to an Mxi1 repressor domain was able to further enhance transcriptional repression. Finally, we demonstrated the application of this CRISPRi system through genetic repression of the essential molecular chaperone HSP90 This is the first demonstration of a functional CRISPRi repression system in C. albicans, and this valuable technology will enable many future applications in this critical fungal pathogen.IMPORTANCE Fungal pathogens are an increasingly important cause of human disease and mortality, and Candida albicans is among the most common causes of fungal disease. Studying this important fungal pathogen requires a comprehensive genetic toolkit to establish how different genetic factors play roles in the biology and virulence of this pathogen. Here, we developed a CRISPR-based genetic regulation platform to achieve targeted repression of C. albicans genes. This CRISPR interference (CRISPRi) technology exploits a nuclease-dead Cas9 protein (dCas9) fused to transcriptional repressors. The dCas9 fusion proteins pair with a guide RNA to target genetic promoter regions and to repress expression from these genes. We demonstrated the functionality of this system for repression in C. albicans and show that we can apply this technology to repress essential genes. Taking the results together, this work presents a new technology for efficient genetic repression in C. albicans, with important applications for genetic analysis in this fungal pathogen.
Collapse
Affiliation(s)
- Lauren Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Yannic Proteau
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
45
|
Alfatah M, Wong JH, Nge CE, Kong KW, Low KN, Leong CY, Crasta S, Munusamy M, Chang AML, Hoon S, Ng SB, Kanagasundaram Y, Arumugam P. Hypoculoside, a sphingoid base-like compound from Acremonium disrupts the membrane integrity of yeast cells. Sci Rep 2019; 9:710. [PMID: 30679518 PMCID: PMC6345779 DOI: 10.1038/s41598-018-35979-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/09/2018] [Indexed: 11/15/2022] Open
Abstract
We have isolated Hypoculoside, a new glycosidic amino alcohol lipid from the fungus Acremonium sp. F2434 belonging to the order Hypocreales and determined its structure by 2D-NMR (Nuclear Magnetic Resonance) spectroscopy. Hypoculoside has antifungal, antibacterial and cytotoxic activities. Homozygous profiling (HOP) of hypoculoside in Saccharomyces cerevisiae (budding yeast) revealed that several mutants defective in vesicular trafficking and vacuolar protein transport are sensitive to hypoculoside. Staining of budding yeast cells with the styryl dye FM4-64 indicated that hypoculoside damaged the vacuolar structure. Furthermore, the propidium iodide (PI) uptake assay showed that hypoculoside disrupted the plasma membrane integrity of budding yeast cells. Interestingly, the glycosidic moiety of hypoculoside is required for its deleterious effect on growth, vacuoles and plasma membrane of budding yeast cells.
Collapse
Affiliation(s)
- Mohammad Alfatah
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Jin Huei Wong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Choy Eng Nge
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Kiat Whye Kong
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12, Proteos, 13867, Singapore
| | - Kia Ngee Low
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Chung Yan Leong
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Sharon Crasta
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | - Madhaiyan Munusamy
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore
| | | | - Shawn Hoon
- Molecular Engineering Laboratory, 61 Biopolis Drive, #03-12, Proteos, 13867, Singapore
| | - Siew Bee Ng
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.
| | | | - Prakash Arumugam
- Bioinformatics Institute, 30 Biopolis Street, #07-01, Matrix, 138671, Singapore.
| |
Collapse
|
46
|
From Yeast to Humans: Leveraging New Approaches in Yeast to Accelerate Discovery of Therapeutic Targets for Synucleinopathies. Methods Mol Biol 2019; 2049:419-444. [PMID: 31602625 DOI: 10.1007/978-1-4939-9736-7_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases (ND) represent a growing, global health crisis, one that lacks any disease-modifying therapeutic strategy. This critical need for new therapies must be met with an exhaustive approach to exploit all tools available. A yeast (Saccharomyces cerevisiae) model of α-synuclein toxicity-the protein causally linked to Parkinson's disease and other synucleinopathies-offers a powerful approach that takes advantage of the unique offerings of this system: tractable genetics, robust high-throughput screening strategies, unparalleled data repositories, powerful computational tools, and extensive evolutionary conservation of fundamental biological pathways. These attributes have enabled genetic and small molecule screens that have revealed toxic phenotypes and drug targets that translate directly to patient-derived iPSC neurons. Extending these insights, recent advances in genetic network analyses have generated the first "humanized" α-synuclein network, which has identified druggable proteins and led to validation of the toxic phenotypes in patient-derived cells. Unbiased phenotypic small molecule screens can identify compounds targeting critical proteins within α-synuclein networks. While identification of direct drug targets for phenotypic screen hits represents a bottleneck, high-throughput chemical genetic methods provide a means to uncover cellular targets and pathways for large numbers of compounds in parallel. Taken together, the yeast α-synuclein model and associated tools can reveal insights into underlying cellular pathologies, lead molecules and their cognate targets, and strategies to translate mechanisms of toxicity and cytoprotection into complex neuronal systems.
Collapse
|
47
|
Inducible Cell Fusion Permits Use of Competitive Fitness Profiling in the Human Pathogenic Fungus Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 63:AAC.01615-18. [PMID: 30397071 DOI: 10.1128/aac.01615-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/31/2018] [Indexed: 12/24/2022] Open
Abstract
Antifungal agents directed against novel therapeutic targets are required for treating invasive, chronic, and allergic Aspergillus infections. Competitive fitness profiling technologies have been used in a number of bacterial and yeast systems to identify druggable targets; however, the development of similar systems in filamentous fungi is complicated by the fact that they undergo cell fusion and heterokaryosis. Here, we demonstrate that cell fusion in Aspergillus fumigatus under standard culture conditions is not predominately constitutive, as with most ascomycetes, but can be induced by a range of extracellular stressors. Using this knowledge, we have developed a barcode-free genetic profiling system that permits high-throughput parallel determination of strain fitness in a collection of diploid A. fumigatus mutants. We show that heterozygous cyp51A and arf2 null mutants have reduced fitness in the presence of itraconazole and brefeldin A, respectively, and a heterozygous atp17 null mutant is resistant to brefeldin A.
Collapse
|
48
|
Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ. Antimicrob Agents Chemother 2018; 62:AAC.01231-18. [PMID: 30297366 PMCID: PMC6256756 DOI: 10.1128/aac.01231-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/01/2018] [Indexed: 12/26/2022] Open
Abstract
To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.
Collapse
|
49
|
Stynen B, Abd-Rabbo D, Kowarzyk J, Miller-Fleming L, Aulakh SK, Garneau P, Ralser M, Michnick SW. Changes of Cell Biochemical States Are Revealed in Protein Homomeric Complex Dynamics. Cell 2018; 175:1418-1429.e9. [PMID: 30454649 PMCID: PMC6242466 DOI: 10.1016/j.cell.2018.09.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 09/04/2018] [Accepted: 09/24/2018] [Indexed: 01/22/2023]
Abstract
We report here a simple and global strategy to map out gene functions and target pathways of drugs, toxins, or other small molecules based on "homomer dynamics" protein-fragment complementation assays (hdPCA). hdPCA measures changes in self-association (homomerization) of over 3,500 yeast proteins in yeast grown under different conditions. hdPCA complements genetic interaction measurements while eliminating the confounding effects of gene ablation. We demonstrate that hdPCA accurately predicts the effects of two longevity and health span-affecting drugs, the immunosuppressant rapamycin and the type 2 diabetes drug metformin, on cellular pathways. We also discovered an unsuspected global cellular response to metformin that resembles iron deficiency and includes a change in protein-bound iron levels. This discovery opens a new avenue to investigate molecular mechanisms for the prevention or treatment of diabetes, cancers, and other chronic diseases of aging.
Collapse
Affiliation(s)
- Bram Stynen
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Diala Abd-Rabbo
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada
| | - Jacqueline Kowarzyk
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Leonor Miller-Fleming
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Philippe Garneau
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Markus Ralser
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Biochemistry, Charité University Medicine, Berlin, Germany
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada; Centre Robert-Cedergren, Bio-Informatique et Génomique, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC H3C 3J7, Canada.
| |
Collapse
|
50
|
How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases. Genetics 2018; 208:833-851. [PMID: 29487144 PMCID: PMC5844338 DOI: 10.1534/genetics.117.300124] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 12/26/2017] [Indexed: 12/12/2022] Open
Abstract
Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases.
Collapse
|